
Background subtraction in video using recursive 
mixture models, spatio-temporal filtering and 

shadow removal 

Zezhi Chen1, Nick Pears2, Michael Freeman2 and Jim Austin1, 2 

1Cybula Limited, York, UK 
2Department of Computer Science, University of York, York, UK 

Abstract. We describe our approach to segmenting moving objects from the 
color video data supplied by a nominally stationary camera.  There are two main 
contributions in our work. The first contribution augments Zivkovic and Hei-
jden’s recursively updated Gaussian mixture model approach, with a multi-
dimensional Gaussian kernel spatio-temporal smoothing transform. We show 
that this improves the segmentation performance of the original approach, par-
ticularly in adverse imaging conditions, such as when there is camera vibration. 
Our second contribution is to present a comprehensive comparative evaluation 
of shadow and highlight detection appoaches, which is an essential component 
of background subtraction in unconstrained outdoor scenes. A comparative eve-
laution of these approaches over different color-spaces is currently lacking in 
the literature. We show that both segmentation and shadow removal performs 
best when we use RGB color spaces. 

1   Introduction 

We consider the case of a nominally static camera observing a scene, such as is the 
case in many visual surveillance applications, and we aim to generate a back-
ground/foreground segmentation, with automatic removal of any shadows cast by the 
foreground object onto the background.  In real applications, cameras are often 
mounted metal poles, which can oscillate in the wind, thus making the problem more 
difficult.  This problem is also addressed in this paper.   

To segment moving objects, a background model is built from the data and objects 
are segmented if they appear significantly different from this modelled background. 
Significant problems to be addressed include (i) how to correctly and efficiently model 
and update the background model, (ii) how to deal with camera vibration and (iii) how 
to deal with shadows. In this paper our contributions are a spatio-temporal filtering 
improvement to Zivkovic’s recursively updated Gaussian mixture model approach [1], 
and a comprehensive evaluation of shadow/highlight detection across different color 
spaces, which is currently lacking in the literature. We also present quantitative results 
of our complete foreground/background segmentation system with shadow removal in 



several real-world scenarios. This is valuable to those developing pragmatic visual 
surveillance solutions that demand a high quality foreground segmentation. 

A robust visual segmentation system should not depend on careful placement of the 
camera, rather it should be robust to whatever is in its visual field, whatever lighting 
effects occur or whatever the weather conditions. It should be capable of dealing with 
movement through cluttered areas, objects overlapping in the visual field, shadows, 
lighting changes, effects of moving elements of the scene (e.g. camera vibration, sway-
ing trees) and slow-moving objects. The simplest form of the background model is a 
time-averaged background image. However, this method suffers from many problems, 
for example it requires a large memory and a training period absent of foreground 
objects. Static foreground objects during the training period would be considered as a 
part of background. This limits their utility in real time applications. 

A Gaussian mixture model (GMM) was proposed by Friedman and Russell [2] and 
it was refined for real-time tracking by Stauffer and Grimson [3]. The algorithm relies 
on the assumptions that the background is visible more frequently than any foreground 
regions and that it has models with relatively narrow variances. The system can deal 
with real-time outdoor scenes with lighting changes, repetitive motions from clutter, 
and long-term scene changes.  Many adaptive GMM model have been proposed to 
improve the background subtraction method since that original work. Power and 
Schoonees [4] presented a GMM model employed with a hysteresis threshold. They 
introduced a faster and more logical application of the fundamental approximation 
than that used in the paper [5]. The standard GMM update equations have been ex-
tended to improve the speed and adaptation of the model [6][7]. All these GMMs use a 
fixed number of components. Zivkovic et al. [1] presented an improved GMM model 
adaptively chooses the number of Gaussian mixture components for each pixel on-line, 
according to a Bayesian perspective. We call this method the Zivkovic-Heijden Gaus-
sian mixture model (ZHGMM) in the remainder of this paper. 

Another main challenge in the application of background subtraction is identifying 
shadows that objects cast which also move along with them in the scene. Shadows 
cause serious problems while segmenting and extracting moving objects due to the 
misclassification of shadow points as foreground. Prati et al. [8] presented a survey of 
moving shadow detection approaches. Cucchiardi et al. [9] proposed the detection of 
moving objects, ghosts and shadows in HSV colour space and gave a comparison of 
different background subtraction methods. 

This paper focuses on two issues: 1) How to get a robust GMM, which models the 
real background as accurately as possible, and can deal with lighting changes in diffi-
cult and challenging  environments, such as bad weather and camera vibration. 2) How 
to remove the shadows and highlight reflections, since these can affect many subse-
quent tasks such as foreground object classification. The contributions of this paper 
are (i) an improvement to the ZHGMM algorithm, using a multi-dimensional spatio-
temporal Gaussian kernel smoothing transform and (ii) a comprehensive survey of 
moving shadow and highlight reflection detection approaches in various colour spaces 
for moving object segmentation applications. 

The paper is organised as follows: In next section the ZHGMM approach is re-
viewed. In Section 3, ZHGMM with multi-dimensional Gaussian kernel density trans-
form (MDGKT) is proposed.  The training of the MDGKT is given in Section 4. A 



comprehensive analysis of various shadow removal methods in given in Section 5.  
Section 6 gives a quantitative evaluation of the background model update and fore-
ground object segmentation. Finally, we present conclusions in Section 7. 

2   ZHGMM review 

In this section, we provide a brief outline of the recursive mixture model estimation 
procedure described by Zivkovic et al [1] [10]. First, we choose a reasonable time 
adaption period of T frames (eg T=100 frames) over which to generate the background 
model so that, at time t, we have the training set { })()1()( ,,, Tttt

T xxxX −−= L  for each 

pixel. For each new sample, we update the training data set  
TX  and re-estimate the 

density. In general, these samples contain values that belong to both the background 
(BG) and foreground (FG) object(s). Therefore, we should denote the estimated den-
sity as ( )FGBGXxp T

t +,ˆ )( . We use a GMM with M components (we set it as 4). 
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where mµ is the estimate of the mean of mth Gaussian and 
m∑ is the estimate of the 

variances that describe the mth GMM component. For computational reasons (easily 
invertible), an assumption is usually made that the dimensions of 

TX  are independent 

so that 
m∑  is diagonal. A further assumption is that the components (eg red, green and 

blue pixel values) have the same variances [3] so that the covariance matrix is assumed 
to be of the form Imm σ=∑ , where I is a 3×3 identity matrix. Note that a single 

mσ  

may be a reasonable approximation in a linear colour space, but it may be an excessive 
simplification in non-linear colour spaces. Thus, in this work, the covariance of a 
Gaussian component is diagonal, with three separate estimates of variance. The esti-
mated mixing weights (what portion of the data is accounted for by this Gaussian) of 
mth Gaussian in the GMM at time t, denoted by 

mw , are non-negative and normalized. 

Given a new data sample )(tx  at time t, the recursive update equations are 
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colour image, 
m

t
m x µδ −= )( . Instead of the time interval T, mentioned above, here the 

constant α  defines an exponentially decaying envelope that is used to limit the influ-

ence of the old data, and we note that α = 1/T. Tc  is the negative Dirichlet prior evi-

dence weight [1], which means that we will accept that the class exists only if there is 
enough evidence from the data for its existence. It will suppress the components that 
are not supported by the data and we discard the components with negative weights. 
This also ensures that the mixture weights are non-negative. 



For a new sample the ownership T
mo  is set to 1 for the “close” component with larg-

est 
mw  and the others are set to zero. We define that a sample is “close” to a compo-

nent if the Mahalanobis distance (MD) from the component is, for example, less than 
three. The squared Mahalanobis distance from the mth component is calculated as 

( ) mm
T
m

t
m xD δδ 1)(2 −∑= . If there are no “close” components a new component is generated 

with α=+1mw , )(
1

t
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01 σσ =+m
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0σ  is some appropriate initial variance. If 

the maximum number of components M is reached, we discard the component with 
smallest mw . After each weight update, using equation (2), we need to renormalize the 

weights so that they again sum to unity. 

3   ZHGMM with Multi-dimensional Gaussian kernel density 
transform 

An image is typically represented as a two-dimensional matrix of p-dimensional vec-
tors, where p=1 in the gray-level case, p=3 for colour images, and p>3 for multispec-
tral images. The space of the matrix is known as the spatial domain, while the gray, 
colour or multispectral is known as the spectral domain [11] [12]. For algorithms that 
use image sequences, there is also the temporal domain. 

In order to provide spatio-temporal smoothing for each spectral component, a mul-
tivariate kernel is defined as the product of two radially symmetric kernels and the 
Euclidean metric allows a single bandwidth parameter for each domain. 
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where sx  is the spatial part and tx  is the temporal part of the feature vector.)(xk  is a 

common kernel profile (we use Gaussian) used in both spatial and temporal domains, 

sh  and th  are the kernel bandwidths, and C is the corresponding normalization con-

stant. In order to improve stability and robustness of the ZHGMM, we have used this 
Multi-Dimensional Gaussian Kernel density Transform (MDGKT) as a pre-process, 
which only requires a pair of bandwidth parameter ( )ts hh ,  to control the size of the 

kernel, thus determining the resolution and time interval of the ZHGMM. 

4   Online training of MDGKT 

A sample RGB image is shown in Fig.1 (a). The variation of red and blue values of a 
pixel stream over 596 frames is shown in Fig.1 (e) and (f). The black curves show the 
variation of the original red and blue components, and the red curves illustrate the 
variation of red and blue components in the MDGKT image. A Gaussian kernel with 
bandwidth ( ) )5,5(, =ts hh  and standard deviation (std) of 0.5 was chosen as the kernel 

profile. The std of the original image is 1.834 and 1.110, but the std of MDGKT out-
put image is only 1.193 and 0.832. Obviously, MDGKT reduces the std figures. Fig.1 



(c) and (d) show the scatter plots of the original and MDGKT image (red, blue) values 
of the same pixel. Fig.1 (d) shows that the distribution of MDGKT image is more 
localised within two Gaussian components of the mixture model, illustrating the effect 
of the spatio-temporal filtering in the spectral domain. The mixture of these two Gaus-
sians for the blue colour component of the original pixel and the estimated GMM 
distribution using MDGKT are shown in Fig.1 (b). 

The MDGKT algorithm described above allows us to identify the foreground pixels 
in each new frame while updating the description of each pixel’s background model. 
This procedure is effective in determining the boundary of moving objects, thus mov-
ing regions can be characterized not only by their position, but also size, aspect ratio, 
moments and other shape and colour information. These characteristics can be used for 
later processing and classification, for example, using a support vector machine [13]. 
To analyse the performance of the algorithm, we used a dynamic scene. The results are 
shown in Fig.2. (a) and (d) are original images. One is outside scene, another is inside 
scene. (b) and (e) are the results of the ZHGMM algorithm. (c) and (f) are the results 
of our MDGKT algorithm. Note that the results shown are without the application of 
any post-processing. 

  
(a)                                       (b)                                     (c)                             (d) 

 
(e)                                            (f) 

Fig. 1. The effect of spatio-temporal filtering. (a) A sample image. (b) GMM distribution of the 
blue component value of a sample pixel. (c) and (d) scatter plots of corresponding pixel in 
original images and MDGKT images respectively. (e) and (f)  show the variation of red and 
blue colour components over time (red trace is spatio-temporally filtered) 

      
(a)                 (b)                  (c)                (d)                (e)                 (f) 

Fig. 2. Comparative results of ZHGMM and MDGKT algorithms 

5   Shadow removal 

The previous section showed promising initial results for our MDGKT background 
subtraction algorithm. However, the algorithm is susceptible to both global and local 
illumination changes such as shadows and highlight reflections (specularities). These 



often cause subsequent processes, such as tracking and recognition, to fail. Prati et al. 
[8] present a comprehensive survey of moving shadow detection approaches. It is 
important to recognize the type of features utilized for shadow detection. Some ap-
proaches improve performance by using spatial information working at a region level 
or at a frame level instead of pixel level [14]. Finlayson et al. [15] proposed a method 
to remove shadows from a still image using illumination invariance. We give a com-
parison of several different shadow removal methods, working in different colour 
spaces, below. For the sake of clarity, we distinguish two different foreground segmen-
tations: segmentation F1, is the foreground segmentation which includes shadows 
(MDGKT segmentation output), while F2 is the foreground segmentation after we 
have removed shadows. 

5.1   Working with RGB and normalized RGB colour space 

(i) RGB colour  The observed colour vector is projected onto the expected colour 
vector, and the ith pixel’s brightness distortion iα  is a scalar value (less than unity for 

a shadow) describing the fraction of remaining ‘brightness’. This may be obtained by 
minimizing [16] 

( ) ( )2
iiii EI ααφ −=                                               (6) 

where [ ]BiGiRii IIII ,,=  denotes the ith pixel value in RGB space, [ ]BiGiRiiE µµµ ,,=  

represents the ith pixel’s expected (mean) RGB value in MDGKT. The solution to 
equation (6) is an alpha value equal to the inner product of Ii and Ei, divided by the 
square of the Euclidean norm of Ei. 

Colour distortion is defined as the orthogonal distance between the observed colour 
and the expected colour vector. Thus, the colour distortion of the ith pixel is 

iiii EICD α−= . If we balance the colour bands by rescaling the colour values by the 

pixel std [ ]BiGiRiis σσσ ,,= , the brightness and chromaticity distortion become 
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Then a pixel in the foreground segmentation (F1) may be classified as either a 
shadow or highlight on the true background as follows: 
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1β is a selected threshold value, used to determine the similarities of the chromaticity 

between the MDGKT and the current observed image. If there is a case where a pixel 
from a moving object in the current image contains a very low RGB value, then this 
dark pixel will always be misclassified as a shadow, because the value of the dark 
pixel is close to the origin in RGB space and all chromaticity lines in RGB space meet 
at the origin. Thus a dark colour point is always considered to be close or similar to 
any chromaticity line. We introduce a threshold 

2β  for the normalized brightness dis-



tortion to avoid this problem. This is defined as: )1/(12 εβ −= , where ε  is a lower 

band for the normalized brightness distortion. An automatic threshold selection 
method was provided by Horprasert et al. [16]. 

(ii) Normalized RGB  Given three colour variables, 
iR , 

iG  and 
iB , the chromaticity 

coordinates are ( )iiiii BGRRr ++= , ( )iiiii BGRGg ++=  and ( )iiiii BGRBb ++= , where 

1=++ iii bgr  [17]. 
iiii BGRs ++=  is a brightness measure. Let a pixel value of the 

background MDGKT be >< iii sgr ,, . Assume that this pixel is covered by a shadow 

in frame t and let >< tititi sgr ,,  be the observed value for this pixel at this frame. 

Then, for a pixel in the foreground segmentation (F1): 

iti

iti

ss

ss

Highlight

Shadow

<
≤<





3

21

β
ββ                                                 (10) 

where 
21,ββ  and 3β  are selected threshold values used to determine the similarities of 

the normalized brightness between the MDGKT and the current observed image.  It is 

expected that, in the shadow area, the observed value tis  will be darker than the nor-

mal value is , up to a certain limit. On the other hand, in the highlight area, iti ss > . So 

that 1,0 21 ≤> ββ  and 13 >β . These thresholds may be adapted for different envi-

ronments (e.g. indoor image, outdoor image or brightness of source light). 

5.2   Working with HSV colour space 

HSV colour space explicitly separates chromaticity and luminosity and has proven 
easier than RGB space to set a mathematical formulation for shadow detection [8] [9]. 
HSV space is more closely related to the human visual system than RGB and it is more 
sensitive to brightness changes due to shadows. For each pixel in F1, that initially has 
been segmented as foreground, we check if it is a shadow on the background accord-
ing to the following consideration. If a shadow is cast on a background, the hue and 
saturation components change, but within a certain limit.  The difference in saturation 
is an absolute difference, while the difference in hue is an angular difference. 

SBiIi

SBiIi

HBiIi

HBiIi

BiIi

BiIi

SS

SS

and

and

HH

HH

and

and

VV

VV

Highlight

Shadow

τ
τ

τ
τ

β
ββ

<−
<−

<−
<−

>
<<





3

21               (11) 

with 1,,,0 21 << SH ττββ  and 13 >β . Intuitively, this means that a shadow darkens a 

covered point, and a highlight brightens a covered point, but only within a certain 
range. Prati et al. [8] state that the shadow often has a lower saturation and, from our 
experimental results, we see that sometimes the shadow has a higher saturation than 
that of background sometimes. However, a shadow or highlight cast on a background 
does not change its hue and saturation as significantly as intensity. 

5.3   Working with YCbCr and Lab colour spaces 

We now consider the luminance and chrominance (YCbCr) colour space to remove 
shadows from the results of background subtraction. If a shadow is cast on a back-



ground, the shadow darkens a point in the MDGKT. The luminance distortion is 
1<= BiIii YYα , and  chrominance components difference is ( ) 12 β<−+−= B
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IiY , I

biC , I
riC  and BiY , B

biC , B
riC  are Y, Cb, Cr components in the current image 

and MDGKT respectively. A pixel in the F1 is classified as follows: 
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where 11 <β  and 12 >β . There is a similar criterion for shadow removal in Lab space. 

6   Quantitative evaluation 

This section demonstrates the performance of the proposed algorithms above on sev-
eral videos of both indoor and outdoor scenes, using an image size of 320×240. A 
quantitative comparison of two GMMs (ZHGMM and MDGKT) with different 
shadow removal methods is presented. A set of videos to test the algorithms was cho-
sen and, in order to compute the evaluation metrics, the ground truth for each frame is 
necessary. We obtained this ground truth by segmenting the images with a manual 
classification of points as foreground, background and shadow regions. We prepared 
41 ground truth frames in a ‘walking people’ sequence, and 26 in a ‘moving car’ se-
quence. Sample frames of each sequence and their ground truth mark-up are given in 
Fig.3. All shadow removal methods in five colour spaces using two GMMs have been 
fully implemented. Quantitative results for true positive rate (TPR) and specificity 
(SPC) metrics are reported in Table 1. 

    
(a) Walking                                          (b) Moving car 

Fig. 3. Ground truth images: the red manual mark-up shows the foreground segmentation that 
we are interested in, the blue mark-up shows the shadow cast by the foreground 

Table 1. Experimental quantitative results 

ZHGMM MDGKT 
 

TPR SPC TPR SPC 
RGB 0.8548 0.9838 0.9552 0.9853 
Lab 0.7165 0.9828 0.8499 0.9846 

YCbCr 0.6183 0.9811 0.6748 0.9811 
Normalized RGB 0.6077 0.9628 0.6356 0.9714 

HSV 0.5039 0.9671 0.6327 0.9712 
 

Fig.4 shows sample frames 9 and 17 of the ‘walking’ video, 3 and 8 of the ‘moving 
car’ video. Each two-by-two block of images refers to the same frame in the original 
video. The top-left image is the original frame. The bottom-left image is the fore-
ground segmentation (F1) results. In this image, all coloured pixels are the foreground 



segmentation output of the MDGKT algorithm, while the black pixels represent the 
modelled background. The coloured pixels are categorized as foreground object (col-
oured yellow), shadow (coloured green) or highlight (coloured red) by our shadow 
removal algorithm operating in RGB colour space. The shadow and highlight pixels 
are then removed and this is then followed by a post-processing binary morphology 
stage of dilatation and erosion to remove sparse noise. This gives the final foreground 
segmentation, as shown in the bottom right image of each two-by-two block. Finally, 
the top-right image in each block is a synthetic image, created by using the final fore-
ground segmentation as a mask to extract the foreground object from the original 
frame, and superimposing this on the background model (mean value of each pixel). 
Clearly these synthetic images are largely shadow-free. The two videos in fig.4 are 
scenes with very strong shadows.  

    

Fig. 4. Segmentation results with heavily shadowed input images. 

7   Conclusions 

Online learning of adaptive GMMs on nonstationary distributions is an important 
technique for moving object segmentation. This paper has presented an improvement 
to an existing adaptive Gaussian mixture model, using a multi-dimensional spatio-
temporal Gaussian kernel smoothing transform for background modelling in moving 
object segmentation applications. The model update process can robustly deal with 
slow light changes (from clear to cloud or vice versa), blurred images, camera vibra-
tion in very strong wind, and difficult environmental conditions, such as rain and 
snow. The proposed solution has significantly enhanced segmentation results over a 
commonly used recursive GMM. We have given a comprehensive analysis of per-
formance results in a wide range of environments and using a wide variety of colour 
space representations. The system has been successfully used to segment objects in 
both indoor and outdoor scenes, with strong shadows, light shadows, and highlight 
reflections and we have verified our system with rigorous evaluation. We have found 
that working in standard RGB colour space provides the best results. 
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