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Abstract. We describe our approach to segmenting movingctbjeom the
color video data supplied by a nominally stationzaynera. There are two main
contributions in our work. The first contributiom@ments Zivkovic and Hei-
jden’s recursively updated Gaussian mixture mogmdra@ach, with a multi-
dimensional Gaussian kernel spatio-temporal smogthiansform. We show
that this improves the segmentation performancéa@foriginal approach, par-
ticularly in adverse imaging conditions, such aemwlhere is camera vibration.
Our second contribution is to present a comprelensdmparative evaluation
of shadow and highlight detection appoaches, whidn essential component
of background subtraction in unconstrained outdmenes. A comparative eve-
laution of these approaches over different col@esg is currently lacking in
the literature. We show that both segmentation stratow removal performs
best when we use RGB color spaces.

1 Introduction

We consider the case of a nominally static caméseiving a scene, such as is the
case in many visual surveillance applications, avel aim to generate a back-
ground/foreground segmentation, with automatic neahof any shadows cast by the
foreground object onto the background. In realliapfions, cameras are often
mounted metal poles, which can oscillate in thedwthus making the problem more
difficult. This problem is also addressed in théper.

To segment moving objects, a background model iis foom the data and objects
are segmented if they appear significantly diffefeam this modelled background.
Significant problems to be addressed include (W bmcorrectly and efficiently model
and update the background model, (ii) how to detd samera vibration and (iii) how
to deal with shadows. In this paper our contrimgi@re a spatio-temporal filtering
improvement to Zivkovic’s recursively updated Gaaissmixture model approach [1],
and a comprehensive evaluation of shadow/highlitgtection across different color
spaces, which is currently lacking in the literatWWe also present quantitative results
of our complete foreground/background segmentatj@mtem with shadow removal in



several real-world scenarios. This is valuablehosé developing pragmatic visual
surveillance solutions that demand a high quatiteground segmentation.

A robust visual segmentation system should not depa careful placement of the
camera, rather it should be robust to whateven issivisual field, whatever lighting
effects occur or whatever the weather conditionshould be capable of dealing with
movement through cluttered areas, objects ovengppi the visual field, shadows,
lighting changes, effects of moving elements ofd¢bene (e.g. camera vibration, sway-
ing trees) and slow-moving objects. The simplesinfof the background model is a
time-averaged background image. However, this naeiuffers from many problems,
for example it requires a large memory and a tnginperiod absent of foreground
objects. Static foreground objects during the trajrperiod would be considered as a
part of background. This limits their utility inaktime applications.

A Gaussian mixture model (GMM) was proposed bydfrian and Russell [2] and
it was refined for real-time tracking by StaufferdaGrimson [3]. The algorithm relies
on the assumptions that the background is visildeerfrequently than any foreground
regions and that it has models with relatively oarvariances. The system can deal
with real-time outdoor scenes with lighting changepetitive motions from clutter,
and long-term scene changes. Many adaptive GMMeinbdve been proposed to
improve the background subtraction method sinceé thainal work. Power and
Schoonees [4] presented a GMM model employed witlysteresis threshold. They
introduced a faster and more logical applicationttef fundamental approximation
than that used in the paper [5]. The standard GMidate equations have been ex-
tended to improve the speed and adaptation of taehi6][7]. All these GMMs use a
fixed number of components. Zivkovic et al. [1] geated an improved GMM model
adaptively chooses the number of Gaussian mixmmgonents for each pixel on-line,
according to a Bayesian perspective. We call tréthod the Zivkovic-Heijden Gaus-
sian mixture model (ZHGMM) in the remainder of tpiper.

Another main challenge in the application of backond subtraction is identifying
shadows that objects cast which also move alonly thi#m in the scene. Shadows
cause serious problems while segmenting and eixtgaotoving objects due to the
misclassification of shadow points as foregrourmatiret al. [8] presented a survey of
moving shadow detection approaches. Cucchiardi. §9laproposed the detection of
moving objects, ghosts and shadows in HSV coloacs@nd gave a comparison of
different background subtraction methods.

This paper focuses on two issues: 1) How to gebast GMM, which models the
real background as accurately as possible, andiealnwith lighting changes in diffi-
cult and challenging environments, such as badhgeand camera vibration. 2) How
to remove the shadows and highlight reflectionscesithese can affect many subse-
guent tasks such as foreground object classificafidie contributions of this paper
are (i) an improvement to the ZHGMM algorithm, @gsiaa multi-dimensional spatio-
temporal Gaussian kernel smoothing transform anda(icomprehensive survey of
moving shadow and highlight reflection detectiopraches in various colour spaces
for moving object segmentation applications.

The paper is organised as follows: In next sectimh ZHGMM approach is re-
viewed. In Section 3, ZHGMM with multi-dimension@haussian kernel density trans-
form (MDGKT) is proposed. The training of the MDGKs given in Section 4. A



comprehensive analysis of various shadow removahads in given in Section 5.
Section 6 gives a quantitative evaluation of thekigrpound model update and fore-
ground object segmentation. Finally, we presentkusions in Section 7.

2 ZHGMM review

In this section, we provide a brief outline of tleeursive mixture model estimation
procedure described by Zivkovic et al [1] [10]. $kirwe choose a reasonable time
adaption period of T frames (eg T=100 frames) owdch to generate the background
model so that, at time t, we have the training xet= {xﬁ),xﬂ-l),...,xﬁ-ﬂ} for each
pixel. For each new sample, we update the traidatg set x, and re-estimate the
density. In general, these samples contain vaheshelong to both the background
(BG) and foreground (FG) object(s). Therefore, Wweutd denote the estimated den-
sity as f)(x(”\XT, BG + FG)- We use a GMM wittM components (we set it as 4).
B(x|X;,BG +FG)= 3™ w N(x"; 4, 5,,) (1)
where 4 _is the estimate of the mean wfh Gaussian ang’ is the estimate of the
variances that describe thgh GMM component. For computational reasons (easily
invertible), an assumption is usually made thatdimeensions ofX. are independent

so thaty’ is diagonal. A further assumption is that the congnts (eg red, green and

blue pixel values) have the same variances [3habthe covariance matrix is assumed
to be of the formy =4 |, wherel is a 3x3 identity matrix. Note that a single_

may be a reasonable approximation in a linear capace, but it may be an excessive
simplification in non-linear colour spaces. Thus,this work, the covariance of a
Gaussian component is diagonal, with three sepasttmates of variance. The esti-
mated mixing weights (what portion of the datadsaunted for by this Gaussian) of
mth Gaussian in the GMM at tintedenoted byw_, are non-negative and normalized.

Given a new data sampld” at time t, the recursive update equations are

W, W, + a(o,(,? —wm)+ ac, (2)
My < My ¥t or(;) (a/Wm)dm (3)
a2 — a2 +o¥(alw,)ore, - 02) (4)

where xO =[x, %, %" t, =[th.16.18]" 3, =16,,3,,0]"+ 02 =[0?.02,02] for @ 3 channel
colour image,5_ = x® - _. Instead of the time interval T, mentioned abdwge the
constanta defines an exponentially decaying envelope thased to limit the influ-
ence of the old data, and we note that 1/T. C; is the negative Dirichlet prior evi-

dence weight [1], which means that we will accdyat the class exists only if there is
enough evidence from the data for its existencwilltsuppress the components that
are not supported by the data and we discard thpaoents with negative weights.
This also ensures that the mixture weights arenegative.



For a new sample the ownershiﬁ is set to 1 for the “close” component with larg-
estw_ and the others are set to zero. We define thatvgple is “close” to a compo-
nent if the Mahalanobis distance (MD) from the comgnt is, for example, less than
three. The squared Mahalanobis distance from ttte component is calculated as
D;(X<t>)=5n: y1g . If there are no “close” components a new compbiegenerated
with w . =a, 4., =xY, o, =0, Whereg, is some appropriate initial variance. If

the maximum number of componenikis reached, we discard the component with
smallestw_ . After each weight update, using equation (2)need to renormalize the

weights so that they again sum to unity.

3 ZHGMM with Multi-dimensional Gaussian kernel density
transform

An image is typically represented as a two-dimemsionatrix of p-dimensional vec-
tors, where p=1 in the gray-level case, p=3 fopapbimages, and p>3 for multispec-
tral images. The space of the matrix is known asgpatial domain, while the gray,
colour or multispectral is known as thgectral domain [11] [12]. For algorithms that
use image sequences, there is alsaefmporal domain.

In order to provide spatio-temporal smoothing facte spectral component, a mul-
tivariate kernel is defined as the product of twalially symmetric kernels and the
Euclidean metric allows a single bandwidth paramiteeach domain.
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where x° is the spatial part angl' is the temporal part of the feature veckgk) is a

common kernel profile (we use Gaussian) used ih bpatial and temporal domains,
h, and h, are the kernel bandwidths, and C is the correspgnabrmalization con-
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stant. In order to improve stability and robustnesthe ZHGMM, we have used this
Multi-Dimensional Gaussian Kernel density Transform (MDGKT) as a pre-process,
which only requires a pair of bandwidth parameigrh ) to control the size of the

kernel, thus determining the resolution and tinteriral of the ZHGMM.

4 Onlinetraining of MDGKT

A sample RGB image is shown in Fig.1 (a). The vemmof red and blue values of a
pixel stream over 596 frames is shown in Fig.1laf@] (f). The black curves show the
variation of the original red and blue componestsd the red curves illustrate the
variation of red and blue components in the MDGKTage. A Gaussian kernel with
bandwidth (h.,h)= (55) and standard deviatiostq) of 0.5 was chosen as the kernel

profile. Thestd of the original image is 1.834 and 1.110, butdideof MDGKT out-
put image is only 1.193 and 0.832. Obviously, MDGi€8uces the std figures. Fig.1



(c) and (d) show the scatter plots of the origarad MDGKT image (red, blue) values
of the same pixel. Fig.1 (d) shows that the distitn of MDGKT image is more
localised within two Gaussian components of thetunexmodel, illustrating the effect
of the spatio-temporal filtering in the spectrahwon. The mixture of these two Gaus-
sians for the blue colour component of the origipadel and the estimated GMM
distribution using MDGKT are shown in Fig.1 (b).

The MDGKT algorithm described above allows us tenitify the foreground pixels
in each new frame while updating the descriptiora@ath pixel's background model.
This procedure is effective in determining the abany of moving objects, thus mov-
ing regions can be characterized not only by tpesition, but also size, aspect ratio,
moments and other shape and colour informations& lebaracteristics can be used for
later processing and classification, for exampna a support vector machine [13].
To analyse the performance of the algorithm, wel @ésdynamic scene. The results are
shown in Fig.2. (a) and (d) are original imagese @noutside scene, another is inside
scene. (b) and (e) are the results of the ZHGMMrétlgm. (c) and (f) are the results
of our MDGKT algorithm. Note that the results shoane without the application of
any post-processing.
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Fig. 1. The effect of spatio-temporal filtering. (a) A salmimage. (b) GMM distribution of the
blue component value of a sample pixel. (c) ands@dtter plots of corresponding pixel in
original images and MDGKT images respectively. ¢ajl (f) show the variation of red and
blue colour components over time (red trace isisfiatnporally filtered)

(b)
Fig. 2. Comparative results of ZHGMM and MDGKT algorithms

5 Shadow removal

The previous section showed promising initial reséibr our MDGKT background
subtraction algorithm. However, the algorithm iscptible to both global and local
illumination changes such as shadows and highligi¢ctions (specularities). These



often cause subsequent processes, such as traeidngecognition, to fail. Prati et al.
[8] present a comprehensive survey of moving shadetection approaches. It is
important to recognize the type of features utiliZer shadow detection. Some ap-
proaches improve performance by using spatial imé&ion working at a region level
or at a frame level instead of pixel level [14]nlBiyson et al. [15] proposed a method
to remove shadows from a still image using illurtiora invariance. We give a com-
parison of several different shadow removal methadsrking in different colour
spaces, below. For the sake of clarity, we disistgtwo different foreground segmen-
tations: segmentation F1, is the foreground segatient which includes shadows
(MDGKT segmentation output), while F2 is the formgnd segmentation after we
have removed shadows.

5.1 Working with RGB and normalized RGB colour space

(i) RGB colour The observed colour vector is projected onto theeeted colour
vector, and théth pixel's brightness distortiow, is a scalar value (less than unity for

a shadow) describing the fraction of remainingghtness’. This may be obtained by

minimizing [16]
da))=(,-aE) (6)
where |, =[lI,1q, 1] denotes theth pixel value in RGB spaceg, = [y, g, s ]

represents the ith pixel's expected (mean) RGBevatuMDGKT. The solution to
equation (6) is an alpha value equal to the inmedyct ofl; andE;, divided by the
square of the Euclidean normgf

Colour distortion is defined as the orthogonalatise between the observed colour
and the expected colour vector. Thus, the colostodion of theith pixel is

CD, :H|i -a, EiH' If we balance the colour bands by rescaling tleuwr values by the
pixelstd s = [URi O ,aBi], the brightness and chromaticity distortion become
_wHn 10g Gl 10G + gty 10 @)
I [:uRi log ]2 +[:uGi /UGi]Z +[:“Bi /UBi]Z
0D, = (s — et P /0% +(1 — arpas V[0 + (1 -yt V[ 02 (®)

Then a pixel in the foreground segmentation (F1y ba classified as either a
shadow or highlight on the true background as ¥adto
Shadow CD,<f and a,<1 9)
Highlight CD, <G anda, > (5,
B,is a selected threshold value, used to determiaeithilarities of the chromaticity

between the MDGKT and the current observed imdgbele is a case where a pixel
from a moving object in the current image contangery low RGB value, then this

dark pixel will always be misclassified as a shadbecause the value of the dark
pixel is close to the origin in RGB space and hhomaticity lines in RGB space meet
at the origin. Thus a dark colour point is alwagsgidered to be close or similar to
any chromaticity line. We introduce a threshgdd for the normalized brightness dis-



tortion to avoid this problem. This is defined a&; =1/(1-¢), where & is a lower
band for the normalized brightness distortion. Autoanatic threshold selection
method was provided by Horprasert et al. [16].

(i) Normalized RGB Given three colour variableR , g, and g, the chromaticity
coordinates are. :R./(R +G, "’B.)’ 9 :Gi/(R +G +B|) andbl :Bi/(R +G; +B|)’ where
r+g +b =1 [17]. s =R +G, +B, is a brightness measure. Let a pixel value of the
background MDGKT be<r,,g,,s >. Assume that this pixel is covered by a shadow
in framet and let<r,,g,,s; > be the observed value for this pixel at this frame
Then, for a pixel in the foreground segmentatioh)(F

{ Shadow B, <s;/s <, J10

Highlight B, <s;/s

where g,, g, and 3, are selected threshold values used to determinsitttilarities of
the normalized brightness between the MDGKT ancctiveent observed image. It is
expected that, in the shadow area, the observee B! will be darker than the nor-
mal values, up to a certain limit. On the other hand, in tighlight area,s; > s . So
that B, >0,3,<1 and B, >1. These thresholds may be adapted for different-env
ronments (e.g. indoor image, outdoor image or lniggs of source light).

5.2 Working with HSV colour space

HSV colour space explicitly separates chromatieibd luminosity and has proven
easier than RGB space to set a mathematical fotimulor shadow detection [8] [9].
HSV space is more closely related to the humaraVisgstem than RGB and it is more
sensitive to brightness changes due to shadowseaeadr pixel in F1, that initially has
been segmented as foreground, we check if it lsad®w~ on the background accord-
ing to the following consideration. If a shadowcesst on a background, the hue and
saturation components change, but within a cefi@mih The difference in saturation
is an absolute difference, while the differencéte is an angular difference.
Shadow f3, <V, Vg < By and[H,; ~Hg| <7, and|S; - Sy| <75 (12)

{High”ght ViV > B; and‘Hli - HBi‘ <Ty and‘sli _SBi‘ <Ts

with 0< B, ,,7,,,7s <1 and B, >1. Intuitively, this means that a shadow darkens a

covered point, and a highlight brightens a coveuedt, but only within a certain
range. Prati et al. [8] state that the shadow dfi@h a lower saturation and, from our
experimental results, we see that sometimes thdosh&as a higher saturation than
that of background sometimes. However, a shadokighlight cast on a background
does not change its hue and saturation as signiificas intensity.

5.3 Working with YCbCr and Lab colour spaces

We now consider the luminance and chrominance (MTlGlour space to remove
shadows from the results of background subtractioa. shadow is cast on a back-



ground, the shadow darkens a point in the MDGKTe Tiiminance distortion is
a, =Y, /Yy <1, and chrominance components diI"ferencgfi[s,:qu)i —C;" +‘qi —Q?\)/2</ia

wherey,, C,, c! andYy, C?2, C? are Y, Cb, Cr components in the current image

and MDGKT respectively. A pixel in the F1 is cldi&sd as follows:
{ Shadow @, <1 andCH, <j3 (12)
Highlighta; > B,andCH, < 5,
where g <1 and g, >1. There is a similar criterion for shadow removalLab space.

6 Quantitative evaluation

This section demonstrates the performance of tbpgsed algorithms above on sev-
eral videos of both indoor and outdoor scenes,guaimimage size of 320240. A
guantitative comparison of two GMMs (ZHGMM and MDGK with different
shadow removal methods is presented. A set of siiedest the algorithms was cho-
sen and, in order to compute the evaluation metitiesground truth for each frame is
necessary. We obtained this ground truth by sedntetihe images with a manual
classification of points as foreground, backgroand shadow regions. We prepared
41 ground truth frames in a ‘walking people’ sequeerand 26 in a ‘moving car’ se-
guence. Sample frames of each sequence and toeindytruth mark-up are given in
Fig.3. All shadow removal methods in five colouases using two GMMs have been
fully implemented. Quantitative results for truespiive rate (TPR) and specificity
(SPC) metrics are reported in Table 1.

7

) Walig ' . (b) vng car

Fig. 3. Ground truth images: the red manual mark-up shibesoreground segmentation that
we are interested in, the blue mark-up shows thdah cast by the foreground

Table 1. Experimental quantitative results

ZHGMM MDGKT
TPR SPC TPR SPC
RGB 0.8548 0.9838 0.9552 0.9858
Lab 0.7165 0.9828 0.8499 0.984p
YChbCr 0.6183 0.9811 0.6748 0.9811
Normalized RGB 0.6077 0.9628 0.635¢ 0.9714
HSV 0.5039 0.9671 0.6327 0.9712

Fig.4 shows sample frames 9 and 17 of the ‘walkingeo, 3 and 8 of the ‘moving
car’ video. Each two-by-two block of images refewshe same frame in the original
video. The top-left image is the original frame.eThottom-left image is the fore-
ground segmentation (F1) results. In this imades@bured pixels are the foreground



segmentation output of the MDGKT algorithm, whikeetblack pixels represent the
modelled background. The coloured pixels are caiegw as foreground object (col-
oured yellow), shadow (coloured green) or highligtdloured red) by our shadow
removal algorithm operating in RGB colour spacee Bhadow and highlight pixels
are then removed and this is then followed by &-poscessing binary morphology
stage of dilatation and erosion to remove sparggEndhis gives the final foreground
segmentation, as shown in the bottom right imageach two-by-two block. Finally,
the top-right image in each block is a synthetiage, created by using the final fore-
ground segmentation as a mask to extract the fouegr object from the original
frame, and superimposing this on the backgroundeifdean value of each pixel).
Clearly these synthetic images are largely shadee-fThe two videos in fig.4 are
scenes with very strong shadows.

Fig. 4. Segmentation results with heavily shadowed inpatges.

7 Conclusions

Online learning of adaptive GMMs on nonstationafgtributions is an important
technique for moving object segmentation. This pdp@es presented an improvement
to an existing adaptive Gaussian mixture modelpgugi multi-dimensional spatio-
temporal Gaussian kernel smoothing transform fakgeound modelling in moving
object segmentation applications. The model upgateess can robustly deal with
slow light changes (from clear to cloud or vicessyr blurred images, camera vibra-
tion in very strong wind, and difficult environmahtconditions, such as rain and
snow. The proposed solution has significantly enhdnsegmentation results over a
commonly used recursive GMM. We have given a coimmeive analysis of per-
formance results in a wide range of environments asing a wide variety of colour
space representations. The system has been sutiyesséd to segment objects in
both indoor and outdoor scenes, with strong shadtglst shadows, and highlight
reflections and we have verified our system witjorous evaluation. We have found
that working in standard RGB colour space provitiesbest results.
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