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Abstract

Our obstacle detection method is applicable to deliberative translation motion of a mobile robot and, in such motion, the epipole of each image

of an image pair is coincident and termed the focus of expansion (FOE). We present an accurate method for computing the FOE and then we use

this to apply a novel rectification to each image, called a reciprocal-polar (RP) rectification. When robot translation is parallel to the ground, as

with a mobile robot, ground plane image motion in RP-space is a pure shift along an RP image scan line and hence can be recovered by a process

of 1D correlation, even over large image displacements and without the need for corner matches. Furthermore, we show that the magnitude of

these shifts follows a sinusoidal form along the second (orientation) dimension of the RP image. This gives the main result that ground plane

motion over RP image space forms a 3D sinusoidal manifold. Simultaneous ground plane pixel grouping and recovery of the ground plane motion

thus amounts to finding the FOE and then robustly fitting a 3D sinusoid to shifts of maximum correlation in RP space. The phase of the recovered

sinusoid corresponds to the orientation of the vanishing line of the ground plane and the amplitude is related to the magnitude of the robot/camera

translation. Recovered FOE, vanishing line and sinusoid amplitude fully define the ground plane motion (homography) across a pair of images and

thus obstacles and ground plane can be segmented without any explicit knowledge of either camera parameters or camera motion.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Various visual cues have been employed to facilitate

navigational functions with uncalibrated cameras. These

include navigation down corridors, both by using the focus

of expansion of non-vertical scene lines [1] and wide field

peripheral flow [2]. Other approaches have been used such as

time-to-contact from image divergence [3], combination of

central flow divergence and peripheral flow [4], and

quantitative planar region detection using point correspon-

dences [5]. Most of these techniques work in some types of

scene, but will fail when a particular type of feature is not well

supported within the image data. Perhaps the most common

approach used is to track corner features through an image

sequence, based on recovery of the fundamental matrix (F-

matrix). The F-matrix models the epipolar geometry between

two views taken by uncalibrated cameras and an iterative

process can be used to simultaneously estimate the F-matrix
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and the correspondences consistent with F. Once F is

estimated, it may be used to reconstruct 3D position of the

points in the scene up to an ambiguity of a projective

transformation [6–10]. Furthermore, we can use the F-matrix

to detect and track a small number of independently moving

objects [11] and to determine whether or not a collision will

occur [12]. Early work based on coplanar relations has been

presented by Tsai and Hung [13], Longuet-Higgins [14] and

Faugeras and Lustman [15]. More recently, Lhuillier and Quan

[16,17] have developed a quasi-dense approach to surface

reconstruction from a sequence of uncalibrated images. The

method gives a more robust and accurate geometry estimation,

using fewer images than other approaches.

Previously, we have presented mobile navigation methods

in indoor environments based on multiple visual cues, such as

colour, texture and region boundaries [18,19]. Our research is

particularly aimed at highly robust visual navigation, using a

single standard CCD camera mounted on a mobile robot. We

envisage that this robot can make deliberative (near) pure

translation motions, which greatly simplifies the F-matrix and

H-matrix (homography matrix) structure and suggests robust

mechanisms for the estimation of these matrices.

The essence of this paper is the application of the reciprocal-

polar (RP) image rectification process and the use of sinusoidal

models for planar segmentation within that space. This
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approach is novel, although related ideas have been presented

in the literature. For example, Pollefeys et al. [20] suggested a

polar rectification to aid stereo matching. Wolberg and Zokai

[21] have used the well-known log-polar transformation to aid

affine motion recovery. Both of these techniques allow more

general motion but do not give the main benefit of the RP

transformation, which allows correlation based matching over

large camera motions. If intensity correlation is used then

acceptable results can be obtained even if there are few or no

corner features on the plane of interest (ground plane).

Furthermore, we never encounter degenerate configurations,

when implementing our method. In the absence of ground

plane texture or local intensity variations, we cannot segment

on a pixel-by-pixel basis, as we cannot locate a strong

maximum in the correlation process. In this case, we extract

contours of smooth regions, which are then matched along

epipolar lines and classified as ground or obstacle using the

extracted sinusoid model of ground plane motion.). Finally, we

note that, in our method, obstacles and the ground plane can be

segmented, without any explicit prior knowledge of either

camera parameters or camera motion. The obvious restriction

to our algorithm is that we require (near) pure translation. In

certain circumstances, such as hand-held camera applications,

this may be over restrictive, but when camera motion can be

carefully controlled, as in mobile robot navigation, such

motions can be deliberate and used to probe the environment.

The paper is structured as follows. In Section 2, we describe

the relationship between the homography and the fundamental

matrix under pure translation. In Section 3, we make an

incremental contribution to the accurate estimation of the focus

of expansion (FOE) or epipole. Section 4 presents the main

results of the paper, where the analysis suggests the use of a

sinusoidal motion model in RP image space to simultaneously

segment/group ground plane pixels and recover the vanishing

line of the ground plane and hence H-matrix representing

ground plane motion. Section 5 describes the obstacle detection

technique for a monocular mobile robot under pure translation.

Section 6 validates the method through experimentation, first

using simple point correspondences and then using 1D

intensity correlation, which is where the power of the method

lies. Also, it is shown that in terms of reprojection errors of the

recovered homography, the method performs as well as the

state-of-the-art. In Section 7, conclusions are drawn.

2. The relation of H and F under pure translation

There are two relations between two views of a 3D plane:

(1) through the epipolar geometry. This is applicable to a

general 3D scene, in which a point in one view determines a

line in the other, termed the epipolar line; (2) through the

planar homography [22–24]. This is specific to 3D scene

planes, in which a point in one view determines a point in the

other which is the image of the intersection of the original ray

with the 3D plane.

In pure translation of the camera, how are these related? One

may consider an equivalent situation in which the camera is

stationary, and the world undergoes a translation Kt. In this
situation, points in 3D space move on straight lines parallel to t,

and the imaged intersection of these parallel lines is the focus

of expansion (FOE) v in the direction of t. It is evident that v is

also the epipole e and e 0 for both views and the imaged parallel

lines (now radial in the image with respect to the FOE) are

epipolar lines. The fundamental matrix for pure translation has

a special skew-symmetric form such that

FZ ½e0�!Z ½e�!Z ½v�! (1)

where for a general three-vector, aZ[a1, a2, a3], then its skew-

symmetric matrix is:

½a�!Z

0 Ka3 a2

a3 0 Ka1

Ka2 a1 0

2
64

3
75

Let Xi be a set of points that are coplanar in 3D Euclidean

space. The images of Xi from two view points are related by a

plane to plane projectivity or homography H, such that:

lx0i ZHxi (2)

Here, l is a scalar, xi and x 0i are homogenous image

coordinates of the images of point Xi and H is a 3!3 matrix

representing the homography. As homogenous coordinates are

defined up to a scale factor, theH-matrix has only eight degrees

of freedom (dof), and it can be determined by standard linear

methods of four corresponding point pairs in general position

(no three collinear). When the number of point pairs is more

than four, a standard least square method or SVD (singular

value decomposition) method can be used.

Suppose the cameras are calibrated with the origin of the

world coordinate system at the first camera and the intrinsic

parameters (K) constant. If the cameras are separated by a

rotation (R) and translation (t), the projection matrices for each

camera (position) are then:

PZK Ij0
� �

; P0 ZK Rjt
� �

(3)

If the world plane pE has normal, n, and distance to origin,

d, so that its coordinates are pEZ ðnT;dÞT, then

HZKðRKltnTÞKK1 (4)

where lZ1/d, For a pure translation, RZI, and so H has the

form:

HZ IKlðKtÞðKKTnÞT (5)

We note that Kt is the FOE vZh xf yf 1
� �T

, and KKTn

is the vanishing line IZy av bv 1
� �T

corresponding to the

plane pE. Thus, we have

HZ IKkvlT (6)

where k is a constant scalar. Since two corresponding point

pairs fully define the FOE and vanishing line, theH-matrix can,

in theory, also be fully determined by two corresponding

matches (see Fig. 1).



Fig. 1. Two corresponding point pairs fully define the points v1, v2 and

vanishing line l.

Table 1

A robust method to estimate the FOE

(1) Extract interest points. Compute interest points in each image by using the

Plessey–Harris corner detector [27] or KLT algorithm [28] or SUSAN [29]

method

(2) Putative correspondences. Compute a set of interest point matches based on

proximity and similarity of their intensity neighbourhood

(3) RANSAC robust estimation. Repeat for m samples, where m is determined

adaptively by using a binning technique [6]

(a) Select a random sample of at least two correspondences and compute the

FOE by using the simultaneous equations

ðx1!x01Þ†vZ0

ðx2!x02Þ†vZ0

«

ðxn!x0nÞ†vZ0

;

8>>>><
>>>>:

where xi4x0i ðiZ1;2;.;nÞ is any pair of matching

points in two images

(b) Calculate the epipolar distance f(v) for each putative correspondence

f ðvÞZ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fxið Þ21C Fxið Þ22

p C 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FTx0

ið Þ21C FTx0
ið Þ22

p
 !

x0Ti Fxi
�� ��where F is the fundamental

matrix and the subscripts 1,2 denote vector components

(c) Compute the number of inliers consistent with v, using the number of

correspondences for which f(v)!threshold. Choose the FOE with the largest

number of inliers

(4) Optimal estimation. Re-estimate the FOE from all correspondences

classified as inliers, by minimizing the object function f(v)

(5) Repeat steps (3)–(4) until the number of correspondences is stable or a

maximum number of iterations is reached
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3. Accurate estimation of the FOE

Although robot and hence camera motion can be intention-

ally translational, we prefer to detect (near) pure translation by

monitoring image motion, due to the potential for robot wheel

slip. The simplest way to implement this is by intersecting all

lines defined by all corner correspondences from the image

pair. If a large proportion of intersections lie in a small area (for

example, 85% of intersections should lie within a 50 pixels

radius), then pure translation is assumed. However, this is not

optimal and we implement a more sophisticated procedure.

Under the assumption of Gaussian measurement noise, the

maximum likelihood estimate (MLE) of the FOE and line

segments is computed by determining a set of lines that do

intersect in a single point and which minimize the sum of

squared orthogonal distance from these lines. This minimiza-

tion may be computed numerically using the Levenberg–

Marquardt algorithm [25,26]. The question now is: how can we

calculate the FOE with high accuracy and stability? A robust

algorithm for estimating the FOE is summarized in Table 1.
4. Ground plane segmentation and ground plane

motion recovery.

Once the FOE has been computed, we shift image

coordinates so that each image is centred on the FOE

vZ xf yf 1
� �T

. Let:

Tc Z

1 0 Kxf

0 1 Kyf

0 0 1

2
64

3
75 (7)

After translation Tc is applied, the FOE is at homogenous

coordinates vcZ(0,0,1)T and vanishing line becomes

lcZTKT
c lZ ðav;bv;v

TlÞT. The homography relating points in

FOE centred coordinates is

Hc Z IKkvcl
T
c Z

1 0 0

0 1 0

Kkav Kkbv ð1KkvTlÞ

2
64

3
75

Z

1 0 0

0 1 0

s m q

2
64

3
75 (8)
where qZ1KkvTl, sZKkav and mZKkbv. The homography

Hc has a very simple form and corresponding points xc, x
0
c, in

FOE centered images are related as follows:

l

x0

y0

1

2
64

3
75Z

1 0 0

0 1 0

s m q

2
64

3
75

x

y

1

2
64
3
75 (9)

If the robot’s translation direction is parallel to the ground

plane, as is the case for normal mobile robot operation, qZ1,

since the FOE lies on the vanishing line for these translation

directions. In this case, the original H-matrix has four dof, and

is sometimes termed an elation [22]. Otherwise, the FOE is at a

distance D from the vanishing line, where

DZ
1Kq

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2v Cb2v

p
�����

����� (10)

and the five dof two-view planar relation is termed a homology.

Under the new (FOE centered) homography, we have:

ðsx0c Cmy0c CqÞ2 x02c Cy02c
� �

Z x02c Cy02c
� �

(11)

If we define rZ1/r, where r is the Euclidean distance between

an image point and the FOE in a frame, then taking square roots

of Eq. (11) yields the main result of this paper (showing that

image motion in RP-space lies on a sinusoidal manifold)

f ðqÞZ rKqrZ s
x0c
r
Cm

y0c
r
Z ksmsinðqCaÞ (12)

where q is the angular position of a pixel in a frame centred on the

FOE and:
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ksm Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 Cm2

p
; sin aZ

s

ksm
; cos aZ

m

ksm
;

tan aZ
av
bv

(13)

Eq. (12) indicates that we need to find three constants (q, ksm,

a) in order to recover the homography defining the ground plane

image motion and that the computation should be implemented

in (r, q) image space (note that a planar homology has five dof,

but two have been recovered in the FOE computation). We call

this space reciprocal-polar (RP) image space. Thus, after

computing the FOE, a linear interpolation procedure is used to

generate an RP rectified image for each image in the original

image pair. Fig. 5(a)–(d) show an image pair and their

corresponding RP image pair. These images appear highly

distorted, as the horizontal lines in the RP image represent radial

(epipolar) lines centred on the FOE in the original image, but

inverted, such that a point at r from the FOE in the original image

is mapped to a horizontal position proportional to 1/r in the RP

image. The second (vertical) dimension of the RP image

corresponds to q in the original image, which is the orientation

of a FOE centred radial line (i.e. epipolar line).

In many mobile robot applications q may be taken as 1, but

this parameter may be estimated if the translation is not parallel

to the ground plane, for example, in detection of obstacles on a

runway as an aircraft lands. In this case, along any radius from

the FOE, f(q) is constant, so for any two pairs of

correspondences (i, j):

qZ
riKrj

riKrj
(14)

Values of r in above equation can be determined by 1D

windowed correlation between the two images in RP image

space, i.e. along lines of constant q (horizontal lines) in the RP

image space and q is obtained by using all the strong

correlation results.

For the time being, lets assume that qZ1. This allows

correlations to be made along the r dimension of the RP image

pair for each angle qi. For each pixel in image 1, its position in

RP image space is computed, and a 1D window is created

around this position along the (horizontal) r dimension. We

then correlate this window along the r dimension in RP image

2, at the same value of q. This correlation process is possible

because of the ‘pure-shift’ relation, expressed in Eq. (12) and

the position of the maximum value of the correlation is related

as a value of fi(q).

Eq. (12) indicates that correlation maxima and feature

correlations in RP space, which are associated with a planar

surface, lie on a sinusoid and the constants (ksm, a) can

recovered by fitting a sinusoid to the data for f(q).

Suppose that we have two values of f(q), fi, fj measured at

two angles, qi, qj, so that

fi Z ksm sinðqi CaÞ; fj Z ksm sinðqj CaÞ (15)
fi
fj
Z

sin qi Ccos qi tan a

sin qj Ccos qj tan a
(16)

collecting terms in tan a and rearranging gives:

tan aZ
fj sin qiKfi sin qj

fi cos qjKfj cos qi
(17)

Thus, in theory, a pair of f values, at different angular

positions, for pixels belonging to the same plane, allows us to

estimate the orientation of the vanishing line of that plane.

Then, given the phase angle, a, corresponding to the

orientation of the vanishing line, we can compute ksm from

Eq. (15).

In order to robustly and accurately estimate the vanishing

line orientation from many correlation maxima and feature

correspondences in RP space, many of which will not be

associated with the ground plane, a RANdom SAmple

Consensus (RANSAC) method [30] and iterated least-squares

process are used. We define an optimization object function as

fðdÞZ
X
i;j

dK
fj sin qiKfi sin qj

fi cos qjKfj cos qi

����
���� (18)

where dZtan a can be used to minimize f(d) and determine

the best set of inliers in the f(q) data to a putative sinusoid. In

this way, co-planar pixels may be grouped without explicit

construction of a homography matrix, although this is easily

recovered in the FOE centered frame from the FOE and the two

parameters of the sinusoid.

Let:

fi Z ksm sinðqi CaÞZ s cos qi Cm sin qi (19)

Thus, for the all n inliers of the sinusoid model, we can write

AZZ b (20)

where

AZ

cos q1 sin q1

« «

cos qn sin qn

2
64

3
75; ZZ

s

m

� �
; bZ

f1

«

fn

2
64

3
75

ZZ ðATAÞK1ATb (21)

The original homography matrix (non-FOE centered) can

then be explicitly expressed as

HZTK1
c

1 0 0

0 1 0

s m q

2
64

3
75Tc (22)

It is useful to compute this homography, so that we can

compare our method with other homography estimation

techniques, in terms of noise sensitivity. A summary of the

recovery of the H-matrix using RP rectification is given in

Table 2. Note that the vanishing line of the ground plane also

gives a good visual check of the quality of the homography,

when overlaid on the original images. This can be determined

from the FOE and the phase of the sinusoid, which represents



Table 2

Recovery of H matrix

Compute the FOE

Shift image coordinates so that each image is centred on the FOE

Convert both images from Cartesian space to RP space

Determine the best set of inliers to a putative sinusoid using RANSAC

Get a highly accurate vanishing line orientation of the ground plane by

estimation of the phase of the sinusoid

Obtain the ground plane motion H matrix by formula (22)

Fig. 2. A synthetic 3D scene.
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the orientation of the vanishing line, or alternatively from Eq.

(6), we have

kvlT Z IKH (23)

If the j-th row of the matrix IKH is denoted by hjT, then we

may write:

k

xf l
T

yf l
T

lT

0
BB@

1
CCAZ

h1T

h2T

h3T

0
BB@

1
CCA (24)

Then we can get the vanishing line

lT Z h3T (25)
5. Segmentation of obstacles from the ground plane

Although, we have discussed explicit reconstruction of a

homography matrix to represent ground plane motion, this is

not strictly necessary to detect obstacles, as we can leave the

ground plane motion explicitly modelled as a sinusoid in RP

space. In this case, we define residual error as

r Z jðr0KqrÞKksmsinðqCaÞj (26)

In order to classify a point (corner or pixel) we threshold

the above metric and if r!threshold (thresholdZ0.00025

in our experiments), then that point is deemed to lie on the

ground plane. Otherwise the point is classified as part of an

obstacle.
6. Experimental results

A large amount of synthetic data and real images were

selected and intensive experimental work was carried out in

order to test the robustness and accuracy of the method

proposed in this paper. Only selections of our experimental

results are presented here: one simulated image and some real

images.

6.1. Simulated experimental results

The simulated experiment was carried out on a 3D

Euclidean model, consisting of 234 points (Fig. 2). The

intrinsic simulated camera parameters were fixed as follows:

aspect ratio of one with no skew, f/dxZf/dyZ500, principal

point at (225, 225) pixels, and the image size is 512!512

pixels. Fig. 3 shows the images taken both when the robot’s
translation direction is parallel and not parallel to the ground.

Note that the FOE positions and vanishing lines are also shown

in this figure.

In order to analyse the influence of noise on the RP

algorithm, several methods were utilized to compute the

H-matrix such as the pseudo-projective transform homography

transformation algorithm (PPTH) [31]; the linear normalized

transformation (LNT) method and the minimization reprojec-

tion error (MRPE) method [22]. For each method, the variation

of the reprojective error was computed using the symmetric

transfer error (STE) formula

d Z
XN
iZ1

d xi;x̂i
� �2

Cd x0i;x̂
0
i

� �2
(27)

where x̂iZHK1x0i and x̂0iZHxi, dðx;x
0Þ2Z ðxKx0Þ2C ðyKy0Þ2.

The results under different Gaussian noise conditions are

shown in Fig. 4(a). For all the tests that were performed, we

added Gaussian noise with zero mean, and variance from zero

(meaning no noise) to 10 pixels-squared. Note that all 180 of

the feature points on the ground plane are used. Fig. 4(b) shows

the variation of reprojective error with the same Gaussian noise

condition, zero mean and the variance equal to 5.0 pixels-

squared. The number of matching points used is varied from 2

to 180 and all of the computed STE values are the average

values computed from 10,000 executions of the main

simulation loop. Fig. 4(a) shows that if we have enough

matching points, the results of the RP method, the LNT method

and the MRPEmethod are almost the same. TheMRPEmethod

is more accurate than the LNT method, but it cannot always

converge to a solution. Fig. 4(b) shows that if there are only a

limited number of matching points on the ground plane (in

particular, less than 40 points), the RP method is the best

method to use.
6.2. Real images experimental results and applications

In the first experiment, qZ1 was assumed, since the camera

was moved parallel to the ground plane. Fig. 5(a) and (b) shows

the original images. After the FOE was obtained, the images

were then converted to RP (r, q) form, as shown in (c) and (d).

Fig. 5(e) shows us one of the sinusoidal forms of f(q) for a fixed



Fig. 3. (a) and (b) Robot’s translation direction is parallel to the ground. (c) and (d) Robot’s translation direction is not parallel to the ground.
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r and hence fixed r. The partial sinusoidal curve (q2[193.25,

315.00]) is clearly shown and represents the motion of the

ground plane in RP space. The phase is shown close to 1808

rather than 08 because the direction of y in the image is directed

upwards from the FOE rather than downwards. The main result

of the paper, showing that ground plane motion, plotted over

RP image space, lies on a 3D sinusoidal manifold, is shown in

Fig. 5(f). Here, the value of the function relates to image

motion in RP space, i.e. the pure shift described by Eq. (12).

Note that when we recover the amplitude and phase of this

sinusoid, we use the data over the full range of (reciprocal)

radii, as shown in this 3D plot. We can compute the H-matrix,

if required, using Eqs. (21) and (22). Furthermore, the

vanishing line can also be obtained from the Eq. (25), which

is useful for overlaying on the original images to check the

quality of the recovered ground plane homography. Fig. 6

shows one of the images with matching points ($), the FOE (o)
Fig. 4. The variation of reprojective errors computed under different Gaussian noise c

mean and variance from 0 to 10 pixels-squared. (b) All image points include the sa
and the vanishing line. In this set of experiments, the number of

coplanar matching points varied from 54 to 112. The mean of

residual errors of coplanar points is 1.558!10K5, the standard

deviation is 1.393!10K5 and the maximum value is 6.3!10K

5. But the mean of the residual errors of non-coplanar points is

0.00101, the standard deviation is 0.00183 and the maximum

value is 0.011. The variation of residual errors of matching

points is shown in Fig. 7.

The reprojection errors of several methods are shown in

Fig. 8, which shows us that the accuracy of the RP method is

very similar to the LNT method and much better than the other

two methods. Note that the vanishing lines of the other three

methods are not correct, since the FOE should lie on the

vanishing line for this particular situation. Quantitative results

of our experiments are given in Table 3. Finally, ground plane

points and points that lie on obstacles can be segmented by

using Eq. (26), as shown in Fig. 9. Ground plane points and
onditions and different number of matching points. (a) Gaussian noise with zero

me Gaussian noise with zero mean and variance 5.0 pixels-squared.



Fig. 5. (a) and (b) are the original images; (c) and (d) are the images in the RP space corresponding to (a) and (b), respectively; (e) shows the value of f(q) at fixed

radius. (f) shows f(q) over a range of radii and angles and clearly shows the ground plane motion stand out as a 3D sinusoid.
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points, which lie on potential obstacles are marked as ($) and
(C), respectively.

In the second experiment, the camera was moved in a

forward translation mode, but in a direction not parallel to the

ground. The camera motion is inclined downwards towards the

ground plane. In this situation, at least two matching points are

needed to calculate q and m. The H-matrix can then be obtained

as:

HZ

1:0000 K0:1522 35:9500

0 0:8343 39:1454

0 K0:0005 1:1294

2
64

3
75
Also, we computed the FOE as vZ(277.7252, 302.4104)

and the vanishing line as lZ(0, 0.0005, K0.1294). Some

correspondences, feature tracks, the vanishing line and the

FOE (o) are shown in Fig. 10. The segmented coplanar points

($) and non-coplanar points (C) are shown in Fig. 11.

The final experiment presented in this paper uses

correlations within locally textured regions and contour

matching to determine whether smooth (textureless) regions

should be grouped with the ground plane. Note that an

additional process is required, not described in this paper,

which is our own region segmentation algorithm, which

extracts homogenous regions of colour–texture and their



Fig. 7. The variation of residual errors (the number of coplanar points is

between 54 and 112).

Fig. 6. The matching points, the moving track of feature points and the FOE.

Fig. 8. Reprojection errors of several methods.
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boundaries. Smooth (textureless and featureless) regions

cannot be classified as ground plane or non-ground plane as

they cannot be matched across an image pair. Their boundaries,

however, can be and, in the case of pure translation, this

matching is easily done by ’casting’ rays (epipolar lines) from

the FOE (epipole) recovered from all corner matches (note that

there may be few or even no corner correspondences on the

ground!). Fig. 12(a) shows an image with two regions on the

floor, which have little texture. The first is a circular piece of

white paper, which can be driven over, and the second is a

small cardboard box, which cannot. The boundaries of these

regions are extracted and the FOE is used to cast a ray (epipolar

line) in order to match points along corresponding boundaries

using an adaptive windowing technique [32]. If the motion of

all matched boundary points falls within the threshold of the

sinusoid model in RP space, it is classified as belonging to the

ground plane, otherwise the region is classified as an obstacle.

Fig. 12(b) shows the extracted ground region, where the

textured carpet has been classified on a pixel by pixel basis, and

the smooth white paper region has been included by virtue of

its boundary motion being consistent with ground plane motion

in RP space. A second example of pixel-based segmentation is

shown in Fig. 12(c) and (d). Note that there are some ‘drop

outs’ in the foreground of the image, but the shape of the

segmentation is excellent to the extent that even the small black

doorstop to the centre right of the original image, Fig. 12(c),

has been correctly classified as an obstacle and removed in the

image, Fig. 12 (d).
Table 3

The distance between the FOE and the vanishing line (pixels)

Methods RP LNT MRPE PPTH

Distance K9.1054!
10K14

3.2690!104 1.9652!105 2.4590!104



Fig. 9. The coplanar points ($) and the points lie on potential obstacles (C).
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Fig. 13 shows some more obstacle detection results in which

a rectangular bounding box for ‘obstacle region contours’ is

determined and highlighted with a coloured translucent overlay

on one of the original images in the image pair.

7. Conclusions

We have presented a practical method for monocular mobile

robot obstacle detection, which requires, as input, a pair of

uncalibrated images, with viewpoints separated by a (near)
Fig. 10. Some correspondences, moving tracks (small
pure translation. The main contributions in this paper are: (1) a

robust method for estimating the FOE was developed yielding

an accurate result. (2) We have presented a novel reciprocal-

polar (RP) image rectification, which transforms planar image

motion under pure translation into a pure shift, irrespective of

the degree of perspective distortion of the planar surface.

Hence correlation can be done over large translations, when

correlation in the original image space would fail. Since the

method is correlation based, corner matches on the ground

plane are not a necessity. (3) We have shown that across the RP
line segment), the vanishing line and the FOE (o).



Fig. 11. The segmented coplanar points ($) and non-coplanar points (C).
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image pair, the magnitude of the image motion follows a

sinusoidal form along the q direction over a maximum of p

radians. Simultaneous planar pixel grouping and recovery of

the planar homography thus amounts to accurately finding the

FOE, and then robustly fitting a sinusoid to shifts of maximum

correlation in RP space. The phase of the recovered sinusoid

corresponds to the orientation of the vanishing line of the plane
Fig. 12. (a) Original image 1. (b) The segmented ground plane region correspond

corresponding to image 2.
and the amplitude is related to the magnitude of the camera

translation. (4) Intensive experimental work was carried out in

order to test the accuracy of the method proposed in this paper.

The results show that our algorithm performs very well to

outliers and noise and the stability, accuracy and robustness

performs favourably to other methods in terms of the

reprojection errors of the recovered homography. (5) We
ing to image 1. (c) Original image 2. (d) The segmented ground plane region



Fig. 13. Some obstacle detection results.
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have demonstrated that the technique is effective in detecting

obstacles on planar surfaces in real images.
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