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Abstract

In this paper, we show the effect of using a variety of facial surface feature maps within the Fishersurface technique, which uses linear
discriminant analysis, and suggest a method of identifying and extracting useful qualities offered by each surface feature map. Combining
these multi-feature subspace components into a unified surface subspace, we create a three-dimensional face recognition system produc-
ing significantly lower error rates than individual surface feature map systems tested on the same data. We evaluate systems by perform-
ing up to 1,079,715 verification operations on a large test set of 3D face models. Results are presented in the form of false acceptance and
false rejection rates, generated by varying a decision threshold applied to a distance metric in surface space.
� 2007 Published by Elsevier B.V.
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1. Introduction

Despite significant advances in face recognition technol-
ogy, it has yet to achieve levels of accuracy required for
many commercial and industrial applications. The high
error rates stem from well-known sub-problems. Variation
in lighting, facial expression and orientation all significantly
increase error rates. In an attempt to address these issues,
research has begun to focus on the use of three-dimensional
face models, motivated by three main factors. First, relying
on geometric shape, rather than colour and texture infor-
mation, systems become invariant to lighting conditions.
Second, the ability to rotate a facial structure in three-di-
mensional space, allowing for compensation of variations
in pose, aids those methods requiring alignment prior to
recognition. Third, the additional depth information in
the facial surface structure, not directly available from
two-dimensional images, provides supplementary cues for
recognition.
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In this paper, we expand on our previous research [1]
involving the use of facial surface data, derived from 3D
face models (generated using a stereo vision 3D camera),
as a substitute for the more familiar two-dimensional
images. To date numerous investigations have shown that
three-dimensional structure can be used to aid recognition.
Zhao and Chellappa [2] use a generic 3D face model to nor-
malise facial orientation and lighting direction in two-
dimensional images, increasing recognition accuracy from
approximately 81% (correct match within rank of 25) to
100%. Similar results are witnessed in the face recognition
vendor test [3], showing that pose correction using Romdh-
ani et al’s technique [4] reduces error rates when applied to
the FERET database. In this work parameters affecting the
shape, orientation and texture of the morphable face model
are varied and this is then projected onto a 2D plane for
comparison with the two-dimensional image. The iteration
continues until the difference between the projected image
and original image is minimised. The orientation parame-
ters can then be ignored, while the shape and texture
parameters are taken as features for identification, result-
ing in 82.6% correct identifications on a test set of 68
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people. However, due to its high computational complexity,
this method may not be suitable for applications that
require an immediate response, such as secure site access,
time and attendance systems and surveillance. Blanz et al.
[5] take a comparable approach, using a morphable face
model to aid in identification of two-dimensional images.
The method is initiated with an estimate of lighting direc-
tion and a generic three-dimensional facial surface.

Although the methods described above do show that
knowledge of three-dimensional face shape can aid normal-
isation for two-dimensional face recognition systems, none
of the methods mentioned so far use actual three-dimen-
sional geometric structure to perform recognition.
Although Beumier and Acheroy [6,7] do make direct use
of such information, when testing various methods of
matching 3D face models, few were successful. Curvature
analysis proved ineffective, and feature extraction was not
robust enough to provide accurate recognition. However,
Beumier and Acheroy were able to achieve reasonable
error rates using curvature values of vertical surface pro-
files. Verification tests carried out on a database of 30 peo-
ple produced equal error rates (EER) between 7.25% and
9.0%. Hesher et al. [8] test a different method, using princi-
pal component analysis (PCA) of depth maps and euclide-
an distance to perform identification with 94% accuracy on
37 face models (when trained on the gallery set).

Further investigation into this approach is carried out in
our earlier work [9]. Again applying PCA to facial surface
depth maps and testing on a database of 290 face models
that present typical difficulties for recognition, we have
shown that the EER can vary from 33.1% to 17.8%,
depending on the distance metric used in the surface space.
We have also demonstrated the effects of a variety of 3D
surface feature maps, such as spatial derivatives and curva-
ture values, which reduce the EER from 19.1% using the
initial depth map representation and a Euclidean distance
metric, down to 12.7% using the best surface feature map
in conjunction with a cosine distance metric.

We have also applied fisher’s linear discriminant analy-
sis (LDA) to the same facial surface feature maps [1]. We
term this approach the Fishersurface method, to distin-
guish it from the Belhumeur et al’s two-dimensional fisher-
face method [10]. However, the focus of our previous
research has been to identify discriminating surface feature
maps (such as depth, gradient or curvature maps), with lit-
tle regard for the advantages offered by each individual rep-
resentation. Here, we suggest that specific surface features
maps may be specifically suited to specific capture condi-
tions or certain facial characteristics, despite the feature
map being poor overall for recognition. For example, cur-
vature feature maps may aid recognition by making the
system more robust to inaccuracies in 3D orientation, yet
may also be highly sensitive to noise. Another type of fea-
ture map may enhance nose shape, but lose information
regarding jaw structure.

In this paper, we use LDA to determine a maximally dis-
criminating sub-space for each of seventeen different surface
feature maps. Within these subspaces, we examine the rela-
tive discriminating power of the components within each of
those subspaces. We then propose a means of combining
individual components from all of these subspaces into a
single unified space, in which face discrimination and hence
recognition accuracy is improved, when compared with any
sub-space based on a single feature surface map.

Pentland et al. [11] have previously examined the benefit
of using multiple eigenspaces, in which specialist subspaces
were constructed for various facial orientations, from
which cumulative match scores were able to reduce error
rates. Our approach differs in that we extract and combine
individual dimensions, creating a single unified surface
space. For example, we may take the first two dimensions
of a subspace created from LDA of depth maps and com-
bine these with the fifth, ninth and tenth dimensions taken
from a subspace of a curvature feature map. This method
has already been proven a success when applied to two-di-
mensional images [12] and we conjecture that similar
improvements will be witnessed when applied to three-di-
mensional systems.

The paper is structured as follows: in Section 2, we
describe how we have captured our data and built up the
University of York 3D face database. Section 3 describes
pose normalisation, such that all faces are orientated to a
fronto-parallel pose. Section 4 then describes how we take
pose-normalised data and generate raw depth maps and
other (derived) 3D surface feature maps, such as gradient
and curvature maps. Since we have multiple examples of
each 3D face in our database, we can project our data to
a maximally discriminating sub-space using LDA, for each
individual surface feature type. We have called LDA
applied to 3D faces the ‘‘Fishersurface Method’’ and Sec-
tion 5 describes this in detail. Section 6 then applies LDA
to each individual surface feature map and examines the
relative performance of a range of single feature face recog-
nition systems. Section 7 then describes how we combine
components (individual dimensions from individual, single
feature sub-spaces) to build a multi-feature sub-space that
is more effective for face recognition than any single feature
system alone. Section 8 presents our evaluation procedure
and our results, while a final section is used for conclusions.

2. Data capture and the University of York 3D face database

In this section we discuss the nature of the 3D face data
being used in these experiments, and how this is used to
generate 3D surface feature maps.

The 3D face data (models) are captured and generated
in sub-second processing time from a single shot with a
3D camera, which operates on the basis of stereo disparity
of a high-density projected light pattern. The unit consists
of two cameras, from which the images are used to produce
a three-dimensional point cloud of the facial surface. A
third camera is used to capture texture information, which
is subsequently mapped onto the 3D model, as seen in
Fig. 1 (bottom right). A calibration procedure is performed



Fig. 1. 3D capture camera (left) and example 3D face models (right).

Fig. 2. Point cloud of three-dimensional face surface.
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to determine the intrinsic and extrinsic parameters of the
stereo cameras. The 3D facial surfaces are generated using
standard 3D reconstruction techniques and output in
Wavefront’s OBJ file format.

In its simplest form, the 3D face model is a set of points
in three-dimensional space, with each point lying on some
object surface. This means that the point cloud actually
describes the nearest visible surface to the 3D camera and
any areas that are occluded from one of the stereo cameras
will result in gaps in the point cloud, as can be seen in Fig. 2
around the nostril and ear regions. (This is effectively a 2.5D
representation from which we can derive a depth map.)

In addition to this point cloud data the OBJ file format
also includes polygon information. Each polygon is defined
as a reference to three neighbouring points (or vertices),
hence describing a three-dimensional triangular mesh. This
data allows for production of smooth polygonal visualisa-
tions (and ultimately full texture mapping) as well as wire-
mesh representations, which is useful for navigating
between locally connected vertices in surface processing
techniques.

Note that the resolution of 3D face models cannot be
clearly defined as with 2D images that have a defined and
consistent number of pixels in each image, across a spatially
array. Here, we specify the resolution of the 3D face mod-
els used in these experiments simply by the number of
points on the surface of the face, which typically number
in the range of 5000–6000, but this figure should only be
taken as a general guide to point resolution.



Fig. 4. 3D facial surface data viewed with and without texture mapping.
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This capture process has been used to populate a large
3D face database owned by the University of York (UK)
and recently made available as part of an ongoing project
to provide a publicly available database of 3D face models
[13]. The standard data set contains 15 capture conditions
per person, a subset of which can be seen in Fig. 3. The
database now consists of over 5000 models of over 350 peo-
ple, making it one of the largest 3D face databases current-
ly available.

For the purpose of these experiments we select a sample
of 1770 face models (280 people) captured under the condi-
tions in Fig. 3. During data acquisition no effort was made
to control lighting conditions and the faces have a variety
of facial expressions. In order to generate face models at
various head orientations, subjects were asked to face ref-
erence points positioned roughly 45� above and below
the camera, but no effort was made to enforce precise
orientation.

3. Pose normalisation

Many face recognition algorithms require some method
of alignment prior to performing recognition, including
two-dimensional PCA and LDA approaches. Similarly,
three-dimensional face recognition requires alignment of
the 3D surfaces before recognition takes place. The orien-
tation must take place across all six degrees of freedom
(three directions of rotation and three directions of transla-
tion), which may be achieved by aligning three points on
the 3D face surface. However, for this to be successful,
we must consistently localise these three points regardless
of the orientation of the face at the time of capture. This
has proven to be a particularly difficult task and forms a
significant part of our current research in 3D face recogni-
tion. In the work presented here, we have used a simple 3D
face alignment algorithm, which has proven to be robust
under the following assumptions:

• The tip of the nose is visible.
• The nose tip is the most protruding object on the 3D

surface.
Fig. 3. Example face models taken from th
• The face is within 45 degrees of pan and tilt angle rela-
tive to fronto-parallel pose.

We apply the 3D orientation normalisation algorithm in
a similar manner to typical 2D image alignment proce-
dures. After localising facial landmarks, we translate and
rotate all face models into a front-facing orientation prior
to any training, verification or identification procedures.
In 2D systems, localising the eye centres allows for image
alignment. In terms of colour and texture, the eyes are
well-defined, unique areas of the face with precise and eas-
ily detected centres (the pupils), but with the absence of tex-
ture information (when using purely geometric
information) this is not the case. As seen in Fig. 4, when
texture information is not available, pinpointing the centre
of the eyes is particularly difficult, even for the human
vision system.

Theory suggests that we require three points on the
facial surface to align a 3D model. However, we are faced
with the problem that there are few facial landmarks that
are easily detected when using surface shape alone. There-
fore, we have developed an algorithm that uses many more
points, creating a more robust solution, relying on multiple
e University of York 3D face database.



Fig. 5. Nose tip localisation algorithm.

Fig. 6. 3D orientation normalisation about the z-axis.

Fig. 7. 3D orientation normalisation about the y-axis.
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redundancy and majority voting. The algorithm consists of
four stages as follows:

(i) Nose tip detection. The most easily located facial fea-
ture is the nose tip, and it is for this reason that we
begin orientation normalisation by locating this fea-
ture. All subsequent procedures rely on successful
detection of the nose tip. The approach we take is
to identify the most protruding point on the surface.
If the head is in a fronto-parallel orientation, the nose
can be identified as the most forward vertex (the ver-
tex with the smallest z coordinate). However, as we
do not know which way the subject will be facing,
we must iteratively rotate the surface about the x (tilt)
and y (pan) axis, and build a histogram populated by
the most forward vertex on each iteration. Providing
each increment in rotation angle is sufficiently small,
the result is that the nose tip has the smallest z coor-
dinate at a higher frequency than any other vertex
(Fig. 5).Having located the nose tip, we translate
the 3D surface such that the nose tip is located
at the origin of the coordinate space, thus normalis-
ing the x, y and z position of the face in 3D space
to the resolution of the point cloud. Note that it is
possible to use interpolating bicubic surface patches,
such as Hermite patches, to improve the resolution
of nose tip localisation and, although not used here,
this is one of several methods being evaluated in
our ongoing work in 3D face alignment.

(ii) Roll correction. We then rotate the 3D model about
the z-axis, such that the face becomes vertical, thus
normalising rotation about the z-axis. This requires
that we locate the bridge of the nose by searching
for the most forward vertices within a 90-degree arc
of concentric radii above the nose tip, as shown on
the left of Fig. 6. This provides a set of points (one
on each radii) along the bridge of the nose, from
which we take the least squares line of best fit as a
vector indicating the nose bridge direction. We then
rotate the 3D model about the z-axis, such that the
nose bridge vector becomes vertical in the x–y plane,
thus normalising rotation about the z-axis.

(iii) Tilt correction. Rotating the 3D model, such that the
forehead is directly above the nose tip, normalises tilt
orientation about the x-axis. Initially, one may
suggest that the bridge of the nose could also be used
to normalise rotation about the x-axis (by ensuring
that a point on the nose bridge is located directly
above the nose tip). However, we have found this
method to produce imprecise alignment, as just a
small mis-localisation along the nose bridge can
result in large discrepancies in the degree of corrective
rotation applied. A much more suitable point to use
in normalising tilt about the x-axis would be located
on the forehead, due to the relatively flat surface
structure (and hence little impact through mis-loca-
tion). Therefore, the next step is to locate a point
on the facial surface intersecting with the plane
x = 0, at a distance F (typically 90 mm) from the nose
tip.

(iv) Pan correction. The final step in the alignment proce-
dure is to correct head pan, by rotating about the y-
axis to achieve a fronto-parallel alignment. This is
done by locating points of intersection between the
facial surface, an arbitrary horizontal plane and a
vertical cylinder, centred about the nose tip. For a
given horizontal plane and cylinder of radius W there
will be two points of intersection: one on the left side
of the face and one on the right, as shown in Fig. 7
(left). By adjusting the y-coordinate of the horizontal
plane, we produce a set of intersection point pairs on
the facial surface (Fig. 7, right).
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To achieve a fronto-parallel alignment, the left and right
points of each pair should have the same z-coordinates. We
calculate the required angle of rotation about the y-axis to
achieve this balance and then repeat the calculation for a
set of even spaced horizontal planes. If no point of intersec-
tion exists (due to an incomplete 3D surface), then that
horizontal plane is ignored. If few point pairs are detected
then the radius of the cylinder can be adjusted and the pro-
cess repeated. This is often necessary if the head is particu-
larly small (i.e. a child’s head), meaning that the face is
wholly contained within the cylinder.

The final degree of rotation (about the y-axis) is calcu-
lated as the average of all corrective angles for the point
pairs. This averaging method helps to compensate for
noise, facial distortion (due to expression) or small non-
face protrusions (headwear).
4. Generation of depth maps and other 3D surface feature

maps

Once all of the 3D face data is aligned to a common ori-
entation using the procedures described in the above sec-
tion, we generate a depth map for each face model. A
depth map is analogous in structure to a standard image,
in that a regular rectangular array of values describes the
data. Here, however, those values represent depth rather
than image intensity and ‘pixels’ are regions on the x–y

plane in 3D space rather than in image space. Furthermore,
when the 3D point cloud is projected into a depth map, all
of the data is aligned, due to the alignment process in 3D
space. The image on the right of Fig. 8 shows the depth
map after orientation normalisation has been applied. As
with all our depth maps, it is 60 pixels wide by 90 pixels
high and it is rendered such that points near the camera
are bright and points farther from the camera are dark.

Once all of the data in our database has been put into
(aligned) depth map form, it is easy to see how popular
appearance based 2D face recognition approaches, which
project the data into a sub-space can be applied. The most
common approaches are Eigenface (PCA) and, for datasets
Fig. 8. Original 3D face model (left two), orientation normalise
which contain multiple examples of the same person, Fish-
erface (LDA).

It is well known that the use of image processing can sig-
nificantly reduce error rates of pattern matching applica-
tions for standard 2D images by removing unwanted
effects caused by environmental capture conditions, as
demonstrated in previous work experimenting with 2D face
recognition methods [12,10,13]. Much of this environmen-
tal influence is not present in the 3D face models, but depth
map processing may still aid recognition by making distin-
guishing features more explicit and reducing noise.

In this work, we have processed raw depth maps in a
number of different ways to produce a set of surface feature
maps, which include features such as gradient and curva-
ture, expressed over the same rectangular array as the
raw depth maps themselves. The various feature maps
expose relationships between 3D vertices otherwise not
taken into account when LDA is applied directly to depth
maps. It is also thought that gradient maps may be more
robust to translations along the z-axis and curvature maps
more resilient to small inaccuracies in orientation, although
also more susceptible to noise. The full list of surface fea-
ture maps are as follows (pictured in order, left to right
in Fig. 9):

• Depth map.
• Horizontal gradient map (at two scales).
• Vertical gradient map (at two scales).
• Laplacian map (second order derivative).
• Sobel gradient map (in x and y dimensions).
• Sobel magnitude map.
• Curvature map (in x and y dimensions).
• Curvature magnitude map.
• Curvature type map.
• Convexity map (minimum curvature).
• Concavity map (maximum curvature).
• Absolute minimum curvature map.
• Absolute maximum curvature map.

The detail of how these surface feature maps are gener-
ated is given in Appendix A. These methods are applied to
d 3D face model and depth map representation (right two).



Fig. 9. The seventeen surface feature maps used to create seventeen subspaces, later combined into a single unified face recognition system.
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depth map images prior to any further analysis in either the
training or test procedures. Typically, processing algo-
rithms are applied to the training and test sets of depth
maps as a batch process and the resulting images stored
on disk, ready for eigenvector analysis or face subspace
projection later, such that a separate surface space is gener-
ated for each surface feature map and hence creates a sep-
arate face recognition system. The method we use to
implement a face recognition system is subspace generation
using linear discriminant analysis, which we describe in the
next section.

5. The Fishersurface method

In this section we provide details of the Fishersurface
method of face recognition. We use the term Fishersurface
method to describe the application of LDA (linear discrim-
inant analysis) to surface feature maps of 3D face models
in order to produce subspace projection matrices, as with
Belhumier et al’s fisherface approach [10]. The method
can be applied to a variety of surface feature maps, creating
a series of projection matrices, each corresponding to a spe-
cific type of 3D surface feature. Taking advantage of ‘with-
in-class’ and ‘between-class’ information, we maximise the
ratio of between-class to within-class separation. Thus cre-
ating a subspace in which the variation between face mod-
els of the same person is minimal, relative to the much
greater deviation between images of different people.

To accomplish this we define a training set s, of surface
feature maps in vector form, shown in Eq. (1). This train-
ing set is populated with samples of one specific type of fea-
ture map and partitioned into c classes (where c equals the
number of different people present in the training set). Each
class Xn is comprised of a number of surface feature maps
Cni, such that all feature maps in a single class are of the
same person and no one person is present in multiple
classes.

s ¼ fX 1;X 2; . . . ;X Cg
where X n ¼ fCn1;Cn2;Cn3; . . .g

ð1Þ

For each type of feature map described in Appendix A, we
create a separate training set containing the same subjects
but represented by a different type of surface feature
map. For clarity, we now continue to describe the Fisher-
surface method as applied to a single feature map, bearing
in mind this process will be repeated for each feature map
type and later combined as described in Section 7.

From s we calculate the average feature map Wn for each
class Xn, as well as the average of all feature maps W, using
the formulae shown in Eq. (2).

W ¼
PC

n¼1

PjXnj
i¼1 CniPC

m¼1jXmj
Wn ¼

1

jXnj
XjXnj

i¼1

Cni ð2Þ

From these average feature maps we are then able to com-
pute three scatter matrices describing the variance of facial
surface structure throughout the training set. First, we
compute the between-class scatter matrix SB, representing
the natural variance in facial structure from one person
to another, using Eq. (3). It is this variance between differ-
ent people that we wish to accentuate within our final sur-
face space.

SB ¼
XC

n¼1

jXnjðWn �WÞðWn �WÞT ð3Þ

The next scatter matrix Sw, is calculated using Eq. (4). This
matrix describes the variance due to other influences, such
as facial expression, minor discrepancies in alignment and
other noise that may occur between different facial surfaces
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acquired from the same person, which we hope to suppress
in the final surface space produced.

SW ¼
XC

n¼1

XjXnj

i¼1

ðCni �WnÞðCni �WnÞT ð4Þ

If we were able to ensure that SB and SW were non-singu-
lar, we could omit this next step in the Fishersurface meth-
od and perform LDA directly, using the ratio of these two
matrices. However, with little training data relative to the
dimensionality of the vectors, we must firstly reduce the
dimensionality of the two scatter matrices using PCA. This
is done by computing the eigenvectors of a third scatter
matrix ST, as shown in Eq. (5), and taking the top 250
(the total number of feature maps minus c) principal com-
ponents to produce a projection matrix Upca. ST describes
the variance across the entire surface space for the given
type of feature map used.

Upca ¼ arg max
U

jUT ST U j
� �

where ST ¼
XC

n¼1

XjXnj

i¼1

ðCni �WÞðCni �WÞT
ð5Þ

This projection matrix Upca is ultimately used to reduce
dimensionality of the within-class and between-class scatter
matrices Sw and SB, ensuring they are non-singular before
computing the top c � 1 eigenvectors of the reduced scatter
matrix ratio, Ufld, as shown in Eq. (6).

U fld ¼ arg max
U

UT UT
pcaSBUpcaU

UT UT
pcaSW UpcaU

 !
ð6Þ

Finally, we produce the projection matrix Uff in Eq. (7),
such that we may project a surface feature map into a re-
duced space of c � 1 dimensions using a single projection
matrix. The resulting subspace maximises the ratio of be-
tween-class scatter (for all c classes) to within-class scatter
(for each class Xn).

U ff ¼ U fldUpca ð7Þ

Like the fisherface system [10], components of the projec-
tion matrix Uff can be viewed as images, as shown in
Fig. 10 for the (raw) depth map surface space.

Once surface space has been defined, we project a vector
form of the facial surface C into the reduced surface space
by a simple matrix multiplication, as shown in Eq. (8). The
resultant vector XT = [x1,x2, . . . ,xc�1] is taken as a ‘face-
Fig. 10. The average surface (left) and first five Fishersurfaces (right), in which
respectively, while mid-grey pixels indicates zero variance.
key’ representing the facial structure in reduced dimension-
ality space

X ¼ ðC�WÞT U ff ð8Þ

Face-keys may be compared using a variety of distance
metrics. Here, we test two, the simple euclidean distance
and the cosine distance as shown in Eq. (9), the results of
which are compared in Sections 6 and 8.

deuclidean ¼ kXa �Xbk dcos ine ¼ 1� XT
a Xb

kXakkXbk
ð9Þ

An acceptance (facial surfaces match) or rejection (surfaces
do not match) is determined by applying a threshold to the
distance calculated. Any comparison producing a distance
value below the threshold is considered an acceptance. By
adjusting this threshold value, one can change the balance
between the number of false acceptances and false rejec-
tions, making the system either more secure or more toler-
ant to changing conditions. Secure site access systems
would typically set the threshold such that false accep-
tances were significantly lower than false rejections: unwill-
ing to tolerate intruders at the cost of inconvenient access
denials. Surveillance systems on the other hand would re-
quire low false rejection rates to successfully identify people
in a less controlled environment. By adjusting the threshold
through the full range of possible distance values we are
able to produce error curves that describe the operating
characteristics across all threshold values, as presented in
Section 8. In order to select a suitable threshold for a spe-
cific application, the FAR and FRR error curves would be
plotted as a function of threshold and having chosen a suit-
able balance of FAR to FRR the required threshold value
can be observed (the sensitivity of which is related to the
gradient of the error curve).

Note that, in order to make a comparison of systems
that is application neutral, we choose the equal error rate
(EER) as the single comparative value for system perfor-
mance. This is the misclassification error when FAR is
equal to FRR, a lower value indicating a better system per-
formance over the data test set.

6. Face recognition using individual surface feature maps

This work aims to apply the Fishersurface technique to
individual surface feature maps in order to determine fea-
ture specific recognition performance. It then aims to com-
lighter and darker regions indicate greater positive and negative variance,
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bine a mixture of subspace components across all surface
feature subspaces to give a recognition system with
improved performance over the best single feature recogni-
tion system. We therefore have to be careful about using a
common training and test data set for all experiments.

In order to do this, we take a training set of 300 depth
maps (50 people), which is used to compute the scatter
matrices described in the previous section. The remaining
1470 depth maps (230 people) are then separated into
two disjoint sets of equal size (test set A and test set B).
We use test set A to analyse the face-key variance through-
out each surface feature subspace, calculate discriminant
weightings and compute the optimum surface space combi-
nations. This leaves set B as an unseen test set to evaluate
the final combined system. Both training and test sets con-
tain subjects of various race, age and gender and nobody is
present in both the training and test sets.

First, we examine surface feature specific sub-spaces and
the overall performance produced when specific surface
feature maps are used within the Fishersurface method.
We begin by testing the variety of surface feature maps
on test set A and the range of error rates produced is shown
in Fig. 11. Note that the use of the cosine distance metric is
consistently better than the Euclidean distance metric.
Clearly, within a feature subspace, faces seem to be better
discriminated based on their angular separation rather
than distance separation.

Figure 11 also clearly shows that the choice of surface
feature map has a significant impact on the effectiveness
of recognition, with horizontal gradient surface feature
maps providing the lowest equal error rate (EER, the point
at which false acceptance rate equals false rejection rate).

However, the superiority of the horizontal gradient sur-
face feature map does not suggest that the vertical gradient
and curvature feature maps are no use whatsoever.
Although discriminatory information provided by these
features may not be as robust and distinguishing, they
may contain a degree of information not available in hor-
izontal gradients and could therefore still make a positive
contribution to a combined surface space. We measure
the discriminating ability of surface space dimensions by
applying Fisher’s linear discriminant (FLD) (as used by
Fig. 11. Equal error rates of Fishersur
Gordon [14]) to individual components (single dimensions)
of each surface subspace. We calculate the discriminant d,
describing the discriminating power of a given dimension,
between c people in test set A.

d ¼
PC
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X
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where Ui is the set of all class i face-key vector elements in
dimension n, and m and mi are the mean and class mean of
nth dimension elements in test set A. Applying Eq. (10) to
all of our surface feature maps, we see a wide range of dis-
criminant values across the individual surface feature sub-
space dimensions.

Fig. 12 shows the discriminant values calculated using
Eq. (10) for individual dimensions of all surface spaces
produced. A dimension with a higher discriminant value
has a greater ratio of between-class to within-class vari-
ance and hence termed to have greater discriminating
ability, when analysed as a separated entity. For clarity,
we only display ten dimensions of each space, yet the
range of discriminating ability is apparent. We see that
some surface spaces have a fairly uniform discriminating
ability across each dimension, such as the surface space
produced using the vertical curvature feature map. How-
ever, the surface space produced using other feature maps,
such as max curvature, have one or two dimensions that
are much more discriminating than the other dimensions
of the same surface space.

It is clear that although some surface feature maps do
not perform well in the face recognition tests, producing
high EERs, some face-key components do contain highly
discriminatory information. For example, we see that the
min and max curvature features contain dimensions with
a higher discriminant than the horizontal gradient and
curve type dimensions, yet the EERs are significantly high-
er. We hypothesise that the reason for these highly discrim-
inating anomalies, in an otherwise ineffective subspace, is
that a certain surface representation may be particularly
face systems applied to test set A.



Fig. 13. Fishersurface combination algorithm.

Fig. 12. Top ten discriminant values of all Fishersurface dimensions.
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suited to a single discriminating factor, such as nose shape
or jaw structure, but is not effective when used as a more
general classifier. Therefore, if we were able to isolate these
few useful qualities from the more specialised subspaces,
they could be used to make a positive contribution to a
generally more effective surface space, reducing error rates
further.
7. Combining multi-feature subspace components

In this section, we describe how the analysis methods
discussed in Section 6 are used to combine multiple surface
feature map subspace components into a single multi-fea-
ture face recognition system. Note that this approach first
requires a subspace to be created for each specific surface
feature map using LDA. One may consider this series of
separate analysis procedures followed by a combination
of the subspace components produced, as a sub-optimal
approach, given that applying LDA directly to pre-com-
bined (concatenated) surface feature maps would produce
an optimum subspace. LDA applied to a concatenated fea-
ture space is a simpler process, however, concatenating just
the 16 feature maps described in this paper would create an
image of 86,400 pixels. Performing LDA on such a large
image would be a process to challenge the resources of a
reasonably powerful desktop computer, even by today’s
standards. If we were to include a greater number of sur-
face feature maps, the problem would become intractable,
although one possible approach to mitigate this would be
to use data compression via principal components analysis
(PCA) prior to feature map concatenation.

An alternative approach that we have found to be effec-
tive, employs an incremental process of combination, con-
tinually producing an improved system on each iteration.
Once a combined system is produced, because of the pro-
gressive nature of the algorithm, another surface feature
map can easily be included in the combination, without
the need to restart the process. In addition, the processing
time can be controlled by the size of test set A, allowing a
decrease in computation time at the expense of the statisti-
cal significance of the test set.

To begin combining multiple features we must first
address the problem of prioritising surface space dimen-
sions. Because the average magnitude and deviation of
face-key vectors from a range of feature maps are likely
to differ by some orders of magnitude, certain dimensions
will have a greater influence than others, even if the dis-
criminating abilities are evenly matched. To compensate
for this effect, we normalise moments by dividing each
face-key element by its within-class standard deviation (cal-
culated from test set A face-keys). However, in normalising
these dimensions we have also removed any prioritisation,
such that all surface subspace components are considered
equal. Although not a problem when applied to a single
surface space, when combining multiple dimensions we
would ideally wish to give greater precedence to the more
reliable components. Otherwise the situation is likely to
arise when a large number of less discriminating dimen-
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sions begin to outweigh the fewer more discriminating
dimensions, diminishing their influence on the verification
operation and hence increasing error rates. In Section 6,
we showed how FLD could be used to measure the discrim-
inating ability of a single dimension from any given face
space. We now apply this discriminant value dn as weight-
ing for each surface space dimension n, prioritising those
dimensions with the highest discriminating ability. This is
carried out by simply multiplying each element xn of all
face-keys X, by the discriminant value of the correspond-
ing dimension dn.

With this weighting scheme in place, we now require some
criterion to decide which subspace dimensions to combine.
It is not enough to rely purely on the discriminant value
itself, as this only provides an indication of the discriminat-
ing ability of that dimension alone, without any indication
of whether the inclusion of this dimension would benefit
the existing set of dimensions. If an existing surface space
already provides a certain amount of feature specific dis-
crimination, it would be of little benefit (or could even be
detrimental) if we were to introduce an additional dimension
describing a feature already present within the existing set
(i.e. if the information is highly correlated). The criterion
required for introduction of a new dimension to an existing
surface space is a resultant decrease in EER (computed using
test set A), thus we have an algorithm that implements a hill
climbing technique to a local optimum combination of mul-
ti-feature subspace components (Fig. 13).

We do acknowledge that other methods of dimensional
combination may exist that result in superior performance
to that tested here. One distinct disadvantage being that a
small group of beneficial dimensions would not be included
if each dimension hindered performance when introduced
individually. An obvious contrast would be to begin the
combination with all dimensions included, followed by an
Fig. 14. Face space dimensions included (x)
iterative elimination of dimensions. Alternatively, a genetic
algorithm may result in more effective surface space combi-
nations. However, we postpone these investigations for
now, whilst we explore the simpler method in depth, before
commencing with more elaborate combination methods in
future work.

8. Evaluation and performance results of the multi-feature
system

In order to evaluate the effectiveness of a surface space,
we project and compare each facial surface with every
other surface in the test set, no surface is compared with
itself and each pair is compared only once. The false accep-
tance rate (FAR) and false rejection rate (FRR) are then
calculated as the percentage of incorrect acceptances and
incorrect rejections after applying a threshold. By varying
the threshold, we produce a series of FAR/FRR pairs,
which are plotted on a graph to produce an error curve,
as seen in Figs. 15 and 16. The equal error rate (EER,
the point at which FAR equals FRR) can then be taken
as a single comparative value indicating the overall perfor-
mance of a system, whether that be a single feature recog-
nition system or a multi-feature recognition system.

The multi-feature subspace dimensions selected to form
the combined multi-feature Fishersurface system are pre-
sented in Fig. 14. Note that different dimensions are select-
ed depending on the distance metric (Euclidean distance or
cosine distance) used to evaluate the EER.

We see that systems with lower EERs generally make
the most contribution to the combined system, as would
be expected. However, it is also interesting to note that
even systems with particularly high EERs do contain some
dimensions that make a positive contribution, although
this is much more prominent for the cosine distance, show-
in the combined Fishersurface systems.



Fig. 16. Error curves comparing combined (dashed lines) and individual
(solid lines) systems using the cosine distance metric.
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ing that this metric is more suited to combing multiple sur-
face spaces.

Having selected and combined the range of dimensions
shown in Fig. 14, we now apply these combined systems
to test sets A and B using both the cosine and Euclidean
distance metric. We also perform an evaluation on the
union of test sets A and B: an experiment analogous to
training on a database (or gallery set) of known people,
which are then compared with newly acquired (unseen)
images.

Figs. 15 and 16 show the error curves obtained when the
best single feature Fishersurface systems and combined
multi-feature systems are applied to test set A (used to con-
struct the combination), test set B (the unseen test set) and
the full test set (all surfaces from sets A and B), using the
Euclidean and cosine distance metrics, respectively. We
see that the combined systems produce lower error rates
than the best single feature systems for all six experiments.
As would be expected, the lowest error rates are achieved
when tested on the surfaces used to construct the combina-
tion (7.2% and 12.8% EER, respectively). However an
improvement is also seen when applied to the unseen test
set B, from 11.5% and 17.3% using the best single feature
systems to 9.3% and 16.3% EER for the multi-feature sys-
tems. Performing the evaluation on the larger set, provid-
ing 1,079,715 verification operations (completed in 14 min
23 s on a Pentium III 1.2 GHz processor at a rate of
1251 verifications per second), the error drops slightly to
8.2% and 14.4% EER, showing that a small improvement
is introduced if some test data is available for training, as
well as suggesting that the method scales well, considering
the large increase in verification operations.
Fig. 15. Error curves comparing combined (dashed lines) and individual
(solid lines) systems using the Euclidean distance metric.
9. Conclusion

This work is the first attempt (to our knowledge) to
apply LDA to 3D facial surfaces, to apply LDA to multiple
feature maps, and to combine components from multiple
feature sub-spaces in order to build are more effective space
in which to implement 3D face recognition.

Applying LDA to individual surface feature maps, we
have shown that we can achieve reasonably low error rates,
depending on the type of surface feature map used. Using
FLD as an analysis tool, we have confirmed the hypothesis
that although some surface feature maps may not perform
well when used for recognition, they may harbour highly
discriminatory subspace components that could comple-
ment other surface subspaces.

Iteratively improving error rates on a small test set, we
have built up a combination of dimensions extracted from
a variety of surface spaces, each utilising a different surface
feature map. This method of combination has been shown
to be most effective when used with the cosine distance met-
ric, in which a selection of 184 dimensions were combined
from 16 of the 17 surface spaces, reducing the EER from
11.6% to 8.2%. Applying the same combined surface space
to an unseen test set of data presenting typical difficulties
when performing recognition, we have demonstrated a sim-
ilar reduction in error from 11.5% to 9.3% EER.

Evaluating the combined system at its fundamental
level, using 1,079,715 verification operations between
three-dimensional facial surfaces, demonstrates that com-
bining multiple surface space dimensions improves effec-
tiveness of the core recognition algorithm. Error rates
have been significantly reduced to state-of-the-art levels,
when evaluated on a difficult test set including variations



394 T. Heseltine et al. / Image and Vision Computing 26 (2008) 382–396
in expression and orientation. However, we have not
attempted any further optimisation towards specific oper-
ating environments by applying additional heuristics, typi-
cally incorporated into fully functional commercial and
industrial systems. The improvements made to the core
algorithm will provide true benefit in a range of real-world
applications, producing highly effective face recognition
systems. Given the fast 3D capture method, small face-keys
of 184 vector elements (allowing extremely fast compari-
sons), invariance to lighting conditions and facial orienta-
tion, this system is particularly suited to security and
surveillance applications.
Appendix A. Extraction of surface feature maps
Depth map
The depth map is generated directly from an orientation normalised 3D face model and
then used as the standard image from which all other surface feature maps are derived.
This representation is highly susceptible to small translations and rotations in all
directions.
Horizontal gradient
Applies the 2 · 1 kernel to compute the horizontal
derivative describing the change in depth with respect to
the x-axis. The resultant gradient map is invariant to
translations along the z-axis and therefore also more
stable with regard to small rotations about the x-axis.
However, the small kernel size means surface noise is
amplified.
Vertical gradient
Applies the 1 · 2 kernel to compute the vertical
derivative describing the change in depth with respect to
the y-axis. Like the horizontal gradient it is invariant to
translations along the z-axis, but still susceptible to
noise.
Horizontal gradient large
To create this representation, we apply a similar kernel
to that of the horizontal gradient representation, but
calculating the change in depth over a greater horizontal
distance.
Vertical gradient large
Another version of the vertical gradient, using a larger
1 · 4.
Laplacian
An isotropic measure of the second spatial derivative,
calculating the depth change with respect to the x–y

plane. This surface representation is invariant to
translation along the z-axis and may also offer improved
stability regarding small rotations about the z-axis, as it
is less reliant on the vertical and horizontal direction.
However, this representation is likely to significantly
amplify the surface noise, creating a highly speckled
texture.
Sobel X

Application of the horizontal Sobel derivative filter,
calculating the horizontal gradient with the added
benefit of local reinforcement, producing a much
smoother (and potentially more robust) gradient map.

Line missing
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Sobel Y
Application of the vertical Sobel derivative filter, with
similar advantages to the other gradient features, plus
greatly reduced noise.
Sobel magnitude

The magnitude of Sobel X and Y combined, creating an absolute measure of gradient
magnitude with no directional bias.
Horizontal curvature
Applies the Sobel X kernel twice to calculate the second horizontal derivative, creating a
curvature map of the 3D surface with respect to the x-axis. Any noise present on the
surface will have been amplified by each application on the Sobel X filter, meaning this
representation will have a high noise content.
Vertical curvature
Applies the Sobel Y kernel twice to calculate the second vertical derivative, creating a
curvature map of the 3D surface with respect to the y-axis. Again, this representation
will have a high noise content, due to the double amplification effect.
Curvature magnitude
The magnitude of the vertical and horizontal curvature values, providing an absolute
measure of curvature magnitude with no directional bias.
Curve type
Segmentation of the surface into the eight discreet curvature types: peak, ridge, saddle
ridge, minimal, pit, valley, saddle valley and flat.
Min curvature
The minimum value of the horizontal and vertical curvature maps. This representation
can be thought of as a measure of surface convexity: the more convex the surface point
the darker the pixel.
Max curvature
The maximum value of horizontal and vertical curvature maps. Hence, creating a
representation of the surface concavity: the more concave the surface point, the brighter
the image pixel.
Abs min curvature
The minimum value of the absolute horizontal and absolute vertical curvatures. The
resulting representation highlights those areas that are highly curved with respect to
both the x-axis and y-axis.
Abs max curvature
The maximum value of the absolute horizontal and absolute vertical curvatures. The
resulting representation provides an indication of the magnitude of ridge curvature in
either the horizontal or vertical directions.
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