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Abstract. We present a fully automatic image processing pipeline to
build a 2D morphable model of craniofacial saggital profile from a set
of 3D head surface images. Subjects in this dataset wear a close fitting
latex cap to reveal the overall skull shape. Texture based 3D pose nor-
malization and facial landmarking are applied to extract the sagittal
profile from 3D raw scan. Fully automatic profile annotation, subdivi-
sion and registration methods are used to establish dense correspondence
among sagittal profiles. The collection of sagittal profiles in dense cor-
respondence are scaled and aligned using Generalised Procrustes Analy-
sis (GPA), before applying Principal Component Analysis to generate a
morphable model. Additionally, we propose a new alternative alignment
called the Ellipse Centre Nasion (ECN) method. Our model is used in
a case study of craniosynostosis intervention outcome evaluation and
the evaluation reveals that the proposed model achieves state-of-the-art
results. We make publicly available both the morphable model with mat-
lab code and the profile dataset used to construct it.

Keywords: Morphable · Craniofacial · Fully automatic · Craniosynos-
tosis

1 Introduction

In the analysis of head shape, the sagittal profile is often the most revealing and
informative dimension to look for deviations from population norms and it is
often useful, in terms of visual clarity and attention focus, for the clinician to
examine shape from such a canonical viewpoint. Therefore, we have developed a
novel image processing pipeline to generate a 2D morphable model of craniofacial
saggital profile from a set of 3D head surface images. Other profiles are of course
useful, as is a full 3D morphable model of the entire craniofacial region, but
these are beyond the scope of this paper.

A morphable model is constructed by performing some form of dimensionality
reduction, typically Principal Component Analysis (PCA), on a training dataset
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of shape examples. This is feasible only if each shape is first re-parametrised into
a consistent form where the number of points and their anatomical meaning are
made consistent. Shapes satisfying these properties are said to be in dense cor-
respondence with one another. Once built, the morphable model provides two
functions. Firstly, the it is powerful prior on 2D profile shapes that can be lever-
aged in fitting algorithms to reconstruct accurate and complete 2D representa-
tions of profiles. Secondly, the proposed model provides a mechanism to encode
any 2D profile in a low dimensional feature space; a compact representation that
makes tractable many 2D profile analysis problems in the medical domain.

Contributions: We propose a new pipeline to build a 2D morphable model of
craniofacial sagittal profile. A new pose normalisation scheme is presented called
Ellipse Centre- Nasion (ECN) normalisation. Extensive qualitative and quanti-
tative evaluations reveal that the proposed normalisation achieves state-of-the-
art results We use our morphable model to perform craniosynostosis intervention
outcome evaluation on a set of 25 craniosynostosis patients. For the benefit of the
research community, we will make publicly available the sagittal profile dataset,
and our 2D morphable model with matlab code.

Paper Structure: In the following section, we discuss related literature.
Section 3 discusses our new pipeline used to extract sagittal profiles and con-
struct 2D morphable models. The next section evaluates several variants of the
constructed models both qualitatively and quantitatively, while Sect. 5 illustrates
the use of the morphable model in intervention outcome assessment for a popu-
lation of 25 craniosynostosis patients. A final section concludes the work.

2 Related Work

In the late 1990s, Blanz and Vetter built a ‘3D morphable model’ (3DMM) from
3D face scans [1] and employed it in a 2D face recognition application [2]. Two
hundred scans were employed (young adults, 100 males and 100 females). Dense
correspondences were computed using a gradient-based optic flow algorithm -
both shape and colour-texture is used. The model is constructed by applying
PCA to shape and colour-texture (separately).

There are very few publicly available morphable models of the human face
and, to our knowledge, none that include the full cranium. The Basel Face Model
(BFM) is the most well-known and widely used face model and was developed
by Paysan et al. [3]. Again 200 scans were used, but the method of determining
corresponding points was improved. Instead of optic flow, a set of hand-labelled
feature points is marked on each of the 200 training scans. The corresponding
points are known on a template mesh, which is then morphed onto the training
scan using underconstrained per-vertex affine transformations, which are con-
strained by regularisation across neighbouring points [4].

Other deformable template methods could be used to build morphable mod-
els, such as the well-known method of Thin Plate Splines (TPS) [17] or the work
of Li et al. (2008). Their global correspondence optimization method solves simul-
taneously for both the deformation parameters as well as the correspondence
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positions [5]. Myronenko and Song (2009) consider the alignment of two point
sets as a probability density estimation [6] and they call the method Coherent
Point Drift(CPD), and this is remains a highly competitive template morphing
algorithm.

Template morphing methods need an automatic initialisation to bring them
within the convergence basin of the global minimum of alignment and morphing.
To this end, Active Appearance Models (AAMs) [7] and elastic graph matching
[8] are the classic approaches of facial landmark and pose estimation. Many
improvements over AAM have been proposed [9,10]. Recent work has focused
on global spatial models built on top of local part detectors, sometimes known
as Constrained Local Models (CLMs) [11,12]. Zhu and Ramanan [13] use a tree
structured part model of the face, which both detects faces and locates facial
landmarks. One of the major advantages of their approach is that it can handle
extreme head pose and we exploit this directly in our model building pipeline.

Another relevant model-building technique is the minimum description
length method (MDL) [18], which selects the set of parameterizations that build
the ‘best’ model, where ‘best’ is defined as that which minimizes the description
length of the training set.

3 Model Construction Pipeline

Our pipeline to build a 2D morphable model is illustrated in Fig. 1. It employs
a range of techniques in both 3D surface image analysis and 2D image analy-
sis and has three main stages: (i) Profile extraction: The raw 3D scan from
the Headspace dataset undergoes pose normalization, preprocessing to remove
redundant data, and profile detection to find the sagittal profile; (ii) Dense corre-
spondence establishment: A collection of sagittal profiles are reparametrised into
a form where each sagittal profile has the same number of points joined into a
connectivity that is shared across all sagittal profiles. Furthermore, the semantic
or anatomical meaning of each point is shared across the collection; and (iii) Sim-
ilarity alignment and statistical modelling: The collection of sagittal profiles in
dense correspondence are subjected to Generalised Procrustes Analysis (GPA) to
remove similarity effects, leaving only shape information. The processed meshes
are statistically analysed, typically with PCA, generating a 2D morphable model
expressed using a linear basis of eigenshapes. This allows for the generation of
novel shape instances.

Each profiles is represented by m 2D points (yi, zi) and is reshaped to a 2m
row vector. Each of these vectors is then stacked in a n× 2m data matrix, and
each column is made zero mean. Singular Value Decomposition (SVD) is applied
from which eigenvectors are given directly and eigenvalues can be computed from
singular values. This yields a linear model as:

xi = x̄ + Pbi = x̄ +
k∑

i=1

pkbki (1)
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Fig. 1. The pipeline for 2D morphable model construction.

where x̄ is the mean head profile shape vector and P is a matrix whose columns
pk are the eigenvectors of the covariance matrix (after pose alignment), describ-
ing orthogonal modes of head profile variation. The vector b holds the shape
parameters {bk}, that weight the shape variation modes which, when added to
the mean shape, model a shape instance xi. The three main stages of the pipeline
are described in the following subsections.

3.1 Profile Extraction

Profile extraction requires three stages, namely (i) pose normalisation, (ii) crop-
ping and (iii) edge detection. Each of these stages is described in the following
subsection.

Pose Normalisation. Using the colour-texture information associated with the
3D mesh, we can generate a realistic 2D synthetic image from any view angle.
We rotate the scan over 360◦ in pitch and yaw (10 steps of each) to generate
100 images. Then the Viola-Jones face detection algorithm [14] is used to find
the frontal face image among this image sequence. A score is computed that
indicates how frontal the pose is. The 2D image with the highest score is chosen
to undergo 2D facial landmarking. We employ the method of Constrained Local
Models (CLMs) using robust Discriminative Response Map Fitting [15] to do
the 2D facial image landmarking. The CLMs are trained using data from the
Biwi Kinect Head Pose Database, which is equipped with ground truth rotation
angles (pitch, yaw and roll). Then the trained system is used to estimate the
three angles for the image with facial landmarks. Finally, 3D facial landmarks
are captured by projecting the 2D facial landmarks to 3D scan. By estimating
the rigid transformation matrix T from the landmarks of a 3D scan to that of
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Fig. 2. 3D pose normalization using the texture information

a template, a small adjustment of pose normalization is implemented by trans-
forming 3D scan using T−1.

Cropping. 3D facial landmarks can be used to crop out redundant points,
such as the shoulder area and long hair. The face landmarks delineate the face
size and its lower bounds on the pose normalised scan, allowing any of several
cropping heuristics to be used. We calculate the face size by computing the
average distance from facial landmarks to their mean. Subsequently a plane for
cropping the 3D scan is generated by moving the cropping plane downward an
empirical percentage of the face size. We use a sloping cropping plane so that
the chin area is included, but that still allows us to crop close to the base of
the latex skull cap at the back of the neck to remove the (typically noisy) scan
region, where the subject’s hair emerges from under the cap (see Fig. 2).

Edge Detection. The scan is rotated 90◦ to reveal the head profile and we can
generate a 2D image of this profile by orthogonal projection. Then the Canny
edge detector [16] is employed to find the edges of this 2D image. The threshold
is chosen to be the average of the set of pixels that excludes those that are white
space (i.e. off the profile).

3.2 Dense Correspondence Establishment

To extract profile points using subdivision, we have an interpolation procedure
that ensures that there is a fixed number of evenly-spaced points between any
pair of facial profile landmarks. However, it is not possible to landmark the
cranial region and extract profile model points in the same way. This area is
smooth and approximately elliptical in structure and so we project vectors from
the ellipse centre and intersect a set of fitted cubic spline curves, starting at
the nasion, and incrementing the angle anticlockwise in small steps (we use one
degree) over a fixed angle.
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Fig. 3. Head tilt pose normalisation based on ellipse centre and nasion position. The
extracted head profile is shown in blue, red crosses show facial landmarks and the
ellipse fitted to the cranial profile is shown in cyan. Its major axis is red and its minor
axis green. (Color figure online)

As well as using subdivision points directly in model construction, we form a
model template as the mean of the population of subdivided and aligned profiles
and we use template deformation on the dataset. The resulting deformed tem-
plates are re-parameterised versions of each subject that are in correspondence
with one another. In this paper, we apply Subdivison, Thin Plate Splines (TPS)
[17] nonrigid ICP (NICP) [4], Li’s method [5], Coherent Point Drift (CPD) [6]
and Minimum Description Length (MDL) [18] to the proposed pipeline for com-
parative performance evaluation.

3.3 Profile Alignment

A profile alignment method is needed before PCA can be applied to build the
2DMM. We use both the standard GPA approach and a new Ellipse Centre -
Nasion (ECN) method. Ellipse fitting was motivated by the fact that large sec-
tions of the cranium appeared to be elliptical in form, thus suggesting a natural
centre and frame origin with which to model cranial shape. One might ask, why
not just use GPA over the whole head for alignment. One reason is because vari-
able facial feature sizes (e.g., the nose’s Pinocchio effect) induce displacements
in the cranial alignment, which is a disadvantage if we are primarily interested in
cranial rather than facial shape. We use the nasion’s position to segment out the
cranium region from the face and use a robust iterative ellipse fitting procedure
that rejects outliers.

Figure 3 shows examples of the robust ellipse fit for two head profiles. The
centre of the ellipse is used in a pose normalisation procedure where the ellipse
centre is used as the origin of the profile and the angle from the ellipse centre
to the nasion is fixed at −10◦. We call this Ellipse Centre - Nasion (ECN) pose
normalisation and later compare this to GPA. The major and minor axes of the
extracted ellipses are plotted as red and green lines respectively in Fig. 3.
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Figure 4 shows all the profiles overlaid with the same alignment scheme. We
noted regularity in the orientation of the fitted ellipse as is indicated by the
clustering of the major (red) and minor (green) axes in Fig. 4 and the histogram
of ellipse orientations in Fig. 4. A minority of heads (9%) in the training sample
have their major ellipse axes closer to the vertical (brachycephalic).

Fig. 4. (1)All training profiles after ECN normalisation; (2)Major axis ellipse angles
with respect to an ECN baseline of −10◦: median angle is −6.4◦ (2sf). (Color figure
online)

4 Morphable Model Evaluation

We built four main 2DMM variants using 100 adult males from the Headspace
dataset and animated shape variation along the principal components. The four
model variations correspond to full head, scale normalised and unscaled, and
cranium only, scale normalised and unscaled.

As an example, when ECN is used (Fig. 5, 1st row), the following three dom-
inant (unscaled) modes are observed: (i) Cranial height with facial angle are
the main shape variations, with small cranial heights being correlated with a
depression in the region of the coronal suture; (ii) The overall size of the head
varies: surprisingly this appears to be almost uncorrelated with craniofacial pro-
file shape. This was only found in the ECN method of pose normalisation; (iii)
The length of the face varies - i.e. there is variation in the ratio of face and
cranium size. The second row of Fig. 5, shows the model variation using GPA
alignment for comparison.

For quantitative evaluation of morphable models, Styner et al. [19] gives
detailed descriptions of three metrics: compactness, generalisation and speci-
ficity, now used on our scale-normalised models.

Compactness: This describes the number of parameters (fewer is better)
required to express some fraction of the variance in the training set. As illus-
trated in Fig. 6, the compactness using ECN is superior to that of GPA, for
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Fig. 5. 1st row: The dominant four modes (left: mode 1; right: mode (3) of head shape
variation using automatic profile landmark refinement and ECN similarity alignment.
Mean is blue, mean+3SD is red and mean− 3SD is green. 2nd row: GPA similarity
alignment. (Color figure online)

Fig. 6. Compactness

the same correspondence method. Among these methods, subdivision, TPS and
MDL, all aligned with ECN are able to generate the most compact models.

Specificity: Specificity measures the model’s ability to generate shape instances
of the class that are similar to those in the training set. We generate 1000
random samples and take the average Euclidean distance error to the closest
training shape for evaluation, lower is better. We show the specificity error as
a function of the number of parameters in Fig. 7. Across all correspondence
methods with GPA, it gives better specificity against all correspondence methods
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with ECN. This suggests that GPA helps improve the performance of modelling
the underlying shape space. NICP with GPA captures the best specificity.

Generalisation: Generalisation measures the capability of the model to rep-
resent unseen examples of the class of objects. It can be measured using the
leave-one-out strategy, where one example is omitted from the training set and
used for reconstruction testing. The accuracy of describing the unseen exam-
ple is calculated by the mean point-to-point Euclidean distance error, the lower
the better. Generalization results are shown in Fig. 7 and for more parameters,
the error decreases, as expected. NICP with GPA performs better in terms of
Euclidean distance once less than 7 model dimensions are used. Between 7 and
20 model dimensions, TPS with ECN outperforms other methods. When more
than 20 model dimensions are used, CPD with GPA has the best generaliza-
tion ability. Overall, GPA is able to help more successfully model the underlying
shape against ECN for the same correspondence method, thereby generating
better reconstructions of unseen examples.

Fig. 7. Left: specificity; right: generalization.

5 Craniosynostosis Intervention Outcome Evaluation

Craniosynostosis is a skull condition whereby, during skull growth and develop-
ment, the sutures prematurely fuse, leading to both an abnormally shaped head
and increased intracranial pressure. We present a case study of 25 craniosyn-
ostosis patients (all boys), 14 of which have undergone one type of corrective
procedure called Barrel Staving (BS) and the other 11, another corrective pro-
cedure called Total Calvarial Remodelling (TCR). The intervention aim is to
remodel the patient’s skull shape towards that of an adult and we can employ
our model in assessing this.
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Fig. 8. Patient cranial profile parameterisations, BS (left) and TCR (right) interven-
tion: pre-operative (red crosses) and post-operative (blue crosses) in comparison to the
training set (black dots). The circled values represent an example patient (Color figure
online)

We build a scale normalised, cranium only (to the nasion) 2D morphable
model (2DMM) using 100 male subjects, without cranial conditions. Note that
both facial structure and overall scale are now irrelevant and that major cranial
shape changes are not thought to occur after 2 years old. The patients’ scale
normalised profiles are then parameterised using the model, indicating the dis-
tance from the mean cranial shape along in terms of the model’s eigenstructure.
The comparisons of pre-operative and post-operative parametrisations show the
shapes moving nearer to the mean of the training examples, see Fig. 8.

For the BS patient set, the Mahalanobis distance of the mean pre-op para-
meters (red triangle in Fig. 8) is 4.670, and for the mean post-op parameters
(blue triangle) is 2.302. For shape parameter 2 only (the dominant effect), these
figures are 4.400 and 2.156. For the TCR patient set, the Mahalanobis distance
of the mean pre-op parameters (red triangle in Fig. 8) is 4.647, and for the mean
post-op parameters (blue triangle) is 2.439. For shape parameter 2 only these
figures are 4.354 and 2.439. We note that most of this change occurs in para-
meter 2, which corresponds to moving height in the cranium from the frontal
part of the profile to the rear. In these figures, we excluded one patient, who
preoperatively already had a near-mean head shape (see red cross near to the
origin in Fig. 8, so any operation is unlikely to improve on this (but intervention
is required in order to relieve potentially damaging intracranial pressure).

It is not possible to make definitive statements relating to one method of
intervention compared to another with these relatively small numbers of patients.
However, the cranial profile model does show that both procedures on average,
lead to a movement of head shape towards the mean of the training population.
An example of analysis of intervention outcome for a BS patient and a TCR
patient are given in Fig. 9. The particular example used is highlighted with circles
on Fig. 8 to indicate pre-op and post-op parametrisations.
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Fig. 9. 1st row: Pre-op and post-op profiles for a BS patient; 2nd row: Pre-op and
post-op profiles for a TCR patient. The red and blue traces show the extracted sagittal
profiles of the patient pre-operatively and post-operatively respectively, whilst the green
shows the mean profile of the training set. (Color figure online)

6 Conclusions

We have presented a fully automatic general and powerful sagittal profile mod-
elling pipeline. Alignment using the Ellipse-Centre Nasion method was intro-
duced. The proposed model has been demonstrated to capture profile shape
and assess the intervention outcomes. ECN builds more compact sagittal profile
models when compared to GPA. Subdivision, TPS and MDL with ECN are rec-
ommended for a more compact sagittal profile model, while NICP with GPA is
recommended to capture more specificity. NICP with GPA is able to generate
better reconstructions of unseen profiles when fewer than 7 model dimensions
are used. If using between 7 and 20 model dimensions, TPS with ECN is recom-
mended for a better generalisation ability. When more than 20 model dimensions
are used, CPD with GPA builds a model with better ability to reconstruct unseen
examples.
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