
SPECIAL ISSUE

Real-time human action recognition on an embedded,
reconfigurable video processing architecture

Hongying Meng Æ Michael Freeman Æ
Nick Pears Æ Chris Bailey

Received: 13 July 2007 / Accepted: 17 January 2008 / Published online: 14 February 2008

� Springer-Verlag 2008

Abstract In recent years, automatic human action recog-

nition has been widely researched within the computer vision

and image processing communities. Here we propose a real-

time, embedded vision solution for human action recogni-

tion, implemented on an FPGA-based ubiquitous device.

There are three main contributions in this paper. Firstly, we

have developed a fast human action recognition system with

simple motion features and a linear support vector machine

classifier. The method has been tested on a large, public

human action dataset and achieved competitive performance

for the temporal template class of approaches, which include

‘‘Motion History Image’’ based techniques. Secondly, we

have developed a reconfigurable, FPGA based video pro-

cessing architecture. One advantage of this architecture is

that the system processing performance can be reconfigured

for a particular application, with the addition of new or

replicated processing cores. Finally, we have successfully

implemented a human action recognition system on this re-

configurable architecture. With a small number of human

actions (hand gestures), this stand-alone system is operating

reliably at 12 frames/s, with an 80% average recognition rate

using limited training data. This type of system has appli-

cations in security systems, man–machine communications

and intelligent environments.

Keywords Human motion recognition �
Reconfigurable architectures � Embedded computer vision �
FPGA � Machine learning

1 Introduction

Ambient intelligence (AmI) reflects an emerging and

popular field of research and development that is oriented

towards the goal of ‘‘intelligent’’ or ‘‘smart’’ environments

that react in an attentive, adaptive, and active way to the

presence and activities of humans and objects in order to

provide smart services to the inhabitants of these

environments.

An environment is said to be ‘‘perceptive’’ when it is

capable of recognizing and describing things, people and

activities within its volume. Input can be obtained from

sensors for sound, images, and haptics. For example, video

capture is low cost, widespread, and can be used for

monitoring human events.

Event recognition is an important goal for building

intelligent systems which can react to what is happening in

a scene. It is also a fundamental building block for inter-

active systems which can respond to gestural commands,

instruct and correct a user learning athletics, gymnastics or

dance movements, or interact with live actors in an aug-

mented dance or theatre performance.

Recognizing motions or actions of human actors from

image sequences is also an important topic in computer

vision with many fundamental applications in video sur-

veillance, video indexing and social sciences. Event

detection in video is becoming an increasingly important

application for computer vision, particular in the context of

activity recognition [1].

Model based methods are extremely challenging as there

is a large degree of variability in human behaviour. The

highly articulated nature of the body leads to high dimen-

sional models and the problem is further complicated by

the non-rigid behaviour of clothing. Computationally

intensive methods are needed for non-linear modelling and

H. Meng (&) � M. Freeman � N. Pears � C. Bailey

Department of Computer Science,

University of York, Heslington,

York YO10 5DD, UK

e-mail: menghongying@tsinghua.org.cn

123

J Real-Time Image Proc (2008) 3:163–176

DOI 10.1007/s11554-008-0073-1

optimization. Recent research into anthropology has

revealed that body dynamics are far more complicated than

was earlier thought, affected by age, ethnicity, gender and

many other circumstances [11].

Appearance-based models are based on the extraction of

a 2D shape model directly from the images, to be classified

(or matched) against a trained one. Motion-based models

do not rely on static models of the person, but on human

motion characteristics. Motion feature extraction and

selection are two of the key components in these kinds of

human action recognition systems.

In this paper, we propose a human motion recognition

system that is both fast and accurate. It is designed for

applications in security systems, man–machine communi-

cation, and other cases of AmI. It is implemented on our

field-programmable gate array (FPGA) based reconfigura-

ble video processing architecture, which we call

‘‘Videoware’’. Experimental results demonstrate the effi-

ciency and reliability of the system.

The rest of this paper is organized as follows: in Sect. 2,

we give an introduction to our human action recognition

system and we evaluate the performance of the system on a

challenging, large, public human action dataset. In Sect. 3,

we introduce the reconfigurable video processing archi-

tecture. In Sect. 4, we introduce the implementation of the

human action recognition on the reconfigurable architec-

ture and give some experimental results for this real-time

embedded vision system. Finally, we present some dis-

cussion and the conclusions.

2 Human motion recognition system

2.1 Related works on human action recognition

Aggarwal and Cai [1] present an excellent overview of

human motion analysis. Of the appearance based methods,

template matching has gained increasing interest recently.

Moeslund et al. [20] have produced a review paper for the

most recent advances.

Bobick and Davis [7] pioneered the idea of temporal

templates. They use motion energy images (MEI) and

motion history images (MHI) to recognize many types of

aerobics exercise. Bradski and Davis [8] proposed

the motion gradient orientation (MGO) to explicitly

encode changes in an image introduced by motion

events.

Davis [10] presented a useful hierarchical extension for

computing a local motion field from the original MHI

representation. The MHI was transformed into an image

pyramid, permitting efficient fixed-size gradient masks to

be convolved at all levels of the pyramid, thus extracting

motion information at a wide range of speeds. The hier-

archical MHI approach remains a computationally

inexpensive algorithm to represent, characterize, and rec-

ognize human motion in video.

Ogata et al. [21] proposed modified motion history

images (MMHI) and used an eigenspace technique to

realize high-speed recognition. The experiment was

performed on recognizing six human motions and

the results showed satisfactory performance of the

technique.

We note that, in some of these methods [9, 6, 14, 22, 25,

28], the motion features employed are relatively complex,

which implies significant computational cost on building

the features. Some methods [6, 7, 8, 10, 21, 30, 31] require

segmentation, tracking or other prohibitive computational

cost, that is not suitable for real-time embedded vision

applications.

To our knowledge, there are no publications on the

implementation of visual human action recognition using

an FPGA platform, which is the main theme of this paper.

2.2 MHI/SVM based recognition system

We now propose a novel solution for fast human action

recognition. This has been reported in our previous work

[16]. In this approach, a linear support vector machine

(SVM) was chosen as the classifier and the MHI provided

our fundamental features.

There are three reasons for choosing a linear SVM as the

classifier in the system. Firstly, the SVM is a classifier that

has achieved excellent performance in many real-world

classification problems. Secondly, the SVM can deal with

very high dimensional feature vectors, which means that

there is plenty of freedom to choose the feature vectors.

Finally the classifier is able to operate very quickly during

the recognition process.

A normal recognition system includes two parts: a

learning (or training) part and a classification part. These

two parts of our recognition system are showed separately

in Fig. 1.

The feature vectors are to be obtained using motion

information directly from the input video. It is expected

that the feature extraction algorithms and dimension

reduction algorithms should be as simple as possible to

enable hardware based implementation.

The learning part is processed using video data collected

off-line. After that, the computed parameters for the clas-

sifier can be used in a small, embedded computing device

such as a FPGA or digital signal processor (DSP) based

system, which can be embedded in the application and can

give real-time performance.

164 J Real-Time Image Proc (2008) 3:163–176

123

2.3 Motion features

The recording of human actions usually needs very large

amounts of digital storage space and it is time consuming

to browse the whole video to find the required information.

It is also difficult to deal with this huge amount of data in

detection and recognition. Therefore, several motion fea-

tures have been proposed to compact the whole motion

sequence into one image to represent the motion. The most

popular ones are the MHI [7], MMHI [21] and MGO [8].

These three motion features have the same size as the

frame of the video, but they maintain the motion infor-

mation within them. In our experiments, it has been found

that the MHI representation gives a system with a better

classification performance than the other two features [16].

An MHI is a kind of temporal template. It is the

weighted sum of past successive images and the weights

decay as time lapses. Therefore, an MHI image contains

past raw images within itself, where most recent image is

brighter than past ones.

Normally, an MHI Hs(u,v,k) at time k and location (u,v)

is defined by the following Eq. 1:

Hsðu; v; kÞ ¼
s if Dðu; v; kÞ ¼ 1

maxf0;Hsðu; v; k � 1Þ � 1g; otherwise

�

ð1Þ

where D(u,v,k) is a binary image obtained from subtraction

of frames, and s is the maximum duration a motion is

stored. In general, s is chosen as constant 255 where MHI

can be easily represented as a greyscale image. An MHI

pixel can have a range of values, whereas the MEI is its

binary version. This can easily be computed by thres-

holding Hs [0.

Figure 2 shows the motion features of MHI (b) and

MMHI (c) of a bird flight in the sky (a). From these fea-

tures, we can clearly determine how the bird flew in the sky

even though we did not see the original video clip, since

these features retain the motion information within them.

From these motion images, some researchers have

attempted to extract further low-dimensional feature vec-

tors. In [7], Hu moments, which are good at expressing

shape discrimination, were used to extract the motion

feature from the MHI. However, in order to keep the

simplicity for hardware implementation, we use the sim-

plest method to transform a motion feature image (e.g.

MHI) into a plain vector, based on the pixel scan order

(pixel by pixel) to feed a SVM classifier.

2.4 Support vector machine

SVM is a state-of-the-art classification technique with large

application in a range of fields including text classification,

face recognition and genomic classification, where patterns

can be described by a finite set of characteristic features.

We use the SVM for the classification component of our

system. This is due to SVM being a classifier that has

excellent performance on many real-world classification

problems. Using arbitrary positive definite kernels provides

a possibility to extend the SVM capability to handle high

dimensional feature spaces.

Originally, the SVM is a binary classifier in a higher

dimensional space where a maximal separating hyperplane

is constructed. Two parallel hyperplanes are constructed on

each side of the hyperplane that separates the data. The

separating hyperplane is the hyperplane that maximizes the

distance between the two parallel hyperplanes. If we have a

training dataset {xi|xi [Rd}, and its binary labels are

denoted as {yi|yi = ±1}, the norm-2 soft-margin SVM can

be represented as a constrained optimization problem

Fig. 1 SVM based human action recognition system. In the learning

part, the motion feature vector was used for training a SVM classifier,

and the parameters computed were used in the recognition part

Fig. 2 In this video sample, a

bird flies in the sky (left). The

features MHI (middle) and

MMHI (right) both have

retained the motion information

of the bird

J Real-Time Image Proc (2008) 3:163–176 165

123

min
w;b;n

1

2
jjwjj2 þ C

X
i

ni ð2Þ

s.t.

xi;wh i þ b� 1� ni; yi ¼ 1;

xi;wh i þ b� � 1þ ni; yi ¼ �1;

ni� 0;

where C is a penalty parameter and ni are slack variables.

The vector w [Rd points perpendicular to the separating

hyperplane. Adding the offset parameter b allows us to

increase the margin. It can be converted by applying

Lagrange multipliers into its Wolfe dual problem and can

be solved by quadratic programming methods.

The primal optimum solution for weight vector w can be

represented as

w ¼
X

i

aiyixi: ð3Þ

where 0 B ai B C. Obviously, w can be expressed as a

linear combination of the support vectors for which ai [0.

For a testing feature vector x, the decision function g and

its estimated label h are:

h xð Þ ¼ sign g xð Þð Þ ¼ sign w; xh i þ bð Þ: ð4Þ

The original optimal hyperplane algorithm was a linear

classifier. However, many researchers have created non-

linear classifiers by applying a kernel trick [2] and thus the

SVM can be generalized to the case where the decision

function is a non-linear function of the data.

Multiclass SVMs are usually implemented by combin-

ing several two-class SVMs. In each binary SVM, only one

class is labelled as ‘‘1’’ and the others labelled as ‘‘-1’’.

The one-versus-all method uses a winner-takes-all strategy.

If there are M classes, then the SVM method will con-

struct M binary classifiers by learning. During the testing

process, each classifier will get a confidence coefficient

{gj(x)|j = 1,2,...,M} and the class k with the maximum

confidence coefficient will be assigned to this sample x.

h xð Þ ¼ k; if gk xð Þ ¼ max
M

j¼1
gj xð Þ
� �

: ð5Þ

Our human action recognition problem here is a multiclass

classification case. If, for example, we have six classes,

then six SVM classifiers are trained based on motion fea-

tures such as the MHI obtained from human action video

clips in a training dataset. For each SVM training, one class

is labelled as ‘‘1’’ and the rest classes are labelled as ‘‘-1’’.

After the training, each SVM classifier is represented by

two parameters w and b. These parameters will be stored in

the internal memory of the FPGA. In the recognition pro-

cess, one inner product between obtained MHI and w will

be calculated and added to b for each SVM classifier. Then

the final predicted label for the action video will go to the

class with the maximum one in the computed six values.

2.5 Performance evaluation

For the evaluation, we use a challenging human action

recognition database recorded by Schuldt et al. [25]. It

contains six types of human actions (walking, jogging,

running, boxing, hand waving and hand clapping) per-

formed several times by 25 subjects in four different

scenarios: outdoors (s1), outdoors with scale variation (s2),

outdoors with different clothes (s3) and indoors (s4).

This database contains 2,391 sequences. All sequences

were taken over homogeneous backgrounds with a static

camera with frame rate of 25 frames/s. The sequences were

downsampled to the spatial resolution of 160 x 120 pixels

and have a length of 4 s on average. To the best of our

knowledge, this is the largest video database with

sequences of human actions taken over different scenarios.

All sequences were divided with respect to the subjects into

a training set (eight persons), a validation set (eight per-

sons) and a test set (nine persons).

Figure 3 shows examples of each type of human action

in this dataset and their associate MHI motion features. In

order to compare our results with those in papers [14, 25],

we use the exact same training set and testing set in our

experiments. The only difference is that we did not use the

validation dataset in training. In the same manner as paper

[14], each sequence is treated individually during the

training and classification process.

In our system, the SVM was trained based on features

obtained from human action video clips in a training

dataset. Generally, we can have several types of actions in

a video dataset. These video clips have their own labels

such as ‘‘walking’’, ‘‘running’’ and so on. In classification,

we actually have a six-class classification problem. At first,

we create six binary SVM classifiers and each of them is

related to one of the six classes. For example, there is one

SVM classifier related to the class ‘‘walking’’, one for

‘‘jogging’’ and so on. In the training dataset, the video clips

with label ‘‘walking’’ will have a label ‘‘1’’ in the ‘‘walk-

ing’’ SVM classifier while video clips belonging to all

other classes have a label ‘‘-1’’. Secondly, we train these

SVM classifiers on the training dataset. The SVM training

can be implemented using programs freely available on the

web, such as SVMlight by Joachims [13]. Finally, we

obtained several SVM classifiers with their associated

parameters.

Our experiments are carried out on the all four different

scenarios: outdoors, outdoors with scale variation, outdoors

with different clothes and indoors. In the same manner as

166 J Real-Time Image Proc (2008) 3:163–176

123

paper (8), each sequence is treated individually during the

training and classification process.

For the whole dataset, the classification confusion

matrix is a good measure for the overall performance in

this multiclass classification problem. Table 1 shows the

classification confusion matrix based on the method pro-

posed in paper [14]. Table 2 shows the confusion matrix

obtained by our system, which uses the MHI. The confu-

sion matrices show the motion label (vertical) versus the

classification results (horizontal). Each cell (i,j) in the table

shows the percentage of class i action being recognized as

class j. Thus the main diagonal of the matrices show the

percentage of correctly recognized actions, while the

remaining cells show the percentages of misclassification.

The mean recognition rate for our system is 63.5%, which

is very similar to Ke’s result of 63%.

From these two tables, we can see that in this six classes

human action classification problem, our method did very

well in distinguishing the last three classes ‘‘boxing’’,

‘‘handclaping’’ and ‘‘handwaving’’. But it is not effective in

distinguishing the first three classes ‘‘walking’’, ‘‘jogging’’

and ‘‘running’’. The reason is that this dataset is really a

challenging dataset. Some actions in these three classes

‘‘walking’’, ‘‘jogging’’ and ‘‘running’’ are very difficult to

classify even by a human observer, for example, some

subjects ‘‘jogging’’ actions are even slower other object’s

‘‘running’’ action. However, in comparison with Ke’s

method, we use a simple MHI rather than volumetric fea-

tures in which the dimension of feature vector might be a

billion and our performance is a little bit better on this

dataset.

3 Reconfigurable video processing architecture

Developments in AmI and ubiquitous computing have lead

to the concept of disappearing computing [29], with a user

being unaware that they are interacting with a collection of

Fig. 3 Six types of human actions in the database: a walking, b jogging, c running, d boxing, e handclapping and f handwaving. The frames of

the actions and their associate MHI features

Table 1 Ke’s confusion matrix, trace = 377.8, mean = 63%

Walk Jog Run Box Clap Wave

Walk 80.6 11.1 8.3 0.0 0.0 0.0

Jog 30.6 36.2 33.3 0.0 0.0 0.0

Run 2.8 25.0 44.4 0.0 27.8 0.0

Box 0.0 2.8 11.1 69.4 11.1 5.6

Clap 0.0 0.0 5.6 36.1 55.6 2.8

Wave 0.0 5.6 0.0 2.8 0.0 91.7

Table 2 MHI’s confusion matrix, trace = 381.2, mean = 63.5%

Walk Jog Run Box Clap Wave

Walk 53.5 27.1 16.7 0.0 0.0 2.8

Jog 46.5 34.7 16.7 0.7 0.0 1.4

Run 34.7 28.5 36.1 0.0 0.0 0.7

Box 0.0 0.0 0.0 88.8 2.8 8.4

Clap 0.0 0.0 0.0 7.6 87.5 4.9

Wave 0.0 0.0 0.0 8.3 11.1 80.6

J Real-Time Image Proc (2008) 3:163–176 167

123

computing nodes. Such devices have been termed context

aware applications [24], smart devices that sense the real

world they are operating in and use this information

combined with a set of rules to enhance their operation. To

continue to expand the functionality available from such

devices, improved sensor technologies must be incorpo-

rated into these systems. The Amadeus Videoware project

[23] aims to develop a hardware video processing archi-

tecture, which will support visually driven human

interaction with a wide range of ubiquitous devices. These

objectives require that computing technology is seamlessly

integrated into an environment. This has become a reality

with the ever decreasing cost, size and power requirements

of embedded processors. However, an alternative approach

to this traditional processor based solution is considered in

this research. Instead of using a general purpose processor,

a more hardware-based solution is taken, with the devel-

opment of application specific intellectual property cores

(IP cores) for FPGA or application-specific integrated cir-

cuit (ASIC) devices that can be optimized for the desired

application. The main aim of this approach is to minimize

power requirements and component costs by designing

system on a chip (SOC) based systems. These reductions in

power requirements and production costs are two of the

main driving forces in current electronic system design,

illustrated by the move away from board level design [with

standard components, ASICs and application-specific

standard products (ASSPs)] to SOC architectures. This

trend has continued within the FPGA and ASIC design

flows. Following Moore’s law, the ever increasing amounts

of resources available within these devices has allowed the

designer to move away from ‘‘simple’’ SOC designs to

multiprocessor SOC (MPSOC) and network on a chip

(NOC) designs as illustrated in Fig. 4.

The traditional SOC design is based around a top level

processor core, controlling the allocation of processing

tasks to a set of data processing, hardware accelerators.

These IP-cores are typically hardwired, i.e. control struc-

tures are implemented as hard coded state machines with

highly pipelined or replicated data paths to improve

processing performance. The resulting IP-core can obtain

very high levels of processing performance, however, they

tend to be inflexible, being optimized for a specific appli-

cation. The development of these IP-cores is very labour

intensive, taking a significant amount of time to design and

debug when compared to a software implementation. With

the increasing amounts of silicon area available to the

designer, general purpose and application specific proces-

sor cores are replacing these hardware accelerator IP-cores,

leading to the development of MPSOC and NOC designs.

The type and number of processor cores chosen is highly

dependent on the application’s real time processing per-

formance requirements, however, these can include RISC

[5, 19], DSP or configurable processor cores [4, 27]. The

per-unit processing performance of such systems when

compared to a purely hardware implementation will of

course be lower, however, the key advantage of this type of

system is its flexibility, allowing a single design to be

reconfigured for different applications via firmware modi-

fications. Therefore, modern SOC designs will typically

include multiple processor cores, each being allocated one

or more tasks to improve parallelism within the system.

Those functions requiring very high levels of processing

performance which cannot be achieved by a software based

implementation will of course still need to be implemented

as hardware accelerator IP-cores, i.e. to allow the system to

meet its real time processing deadlines.

A central aim of the Videoware project is to implement

a video component library (VCL) of generic image pro-

cessing, computer vision and pattern recognition

algorithms in an FPGA based architecture. The low level,

high bandwidth processes, such as smoothing and feature

extraction, will be implemented as hardware IP-cores,

whilst higher level, lower bandwidth processes, such as

task-oriented combination of visual cues, is implemented in

a software architecture as shown schematically in Fig. 5.

The advantage of this modular approach is that a system’s

processing performance can be reconfigured for a particu-

lar application, with the addition of new or replicated

processing cores. This being simplified by using a MPSOC

design with only those functions required for low level

hardware interfacing or high levels of processing perfor-

mance being implemented purely in hardware.

The hardware architecture shown in Fig. 5 has been

implemented on a custom made FPGA board, the Amadeus

ubiquitous system environment (USE) board [3]. This

board is based on a Xilinx Spartan-III device [34], with

2 MB of external RAM and 8 MB of external ROM (this

memory is also used to configure the FPGA via a complex

programmable logic device (CPLD) configuration engine).

The FPGA size can be selected to match a system’s

requirements, the board accepting three alternative devices:

XC3S1500 (1.5M gates), XC3S2000 (2M gates) andFig. 4 Simple SOC (left) and MPSOC designs (right)

168 J Real-Time Image Proc (2008) 3:163–176

123

XC3S4000 (4M gates). In addition to this a number of

interface boards have also been developed to allow the easy

connection of a camera [15], communications interfaces,

e.g. LEDs, RS232 and additional external memory mod-

ules, e.g. SDRAM and SRAM.

4 Implementation of human action recognition on the

reconfigurable architecture

4.1 System design and implementation

To minimize development time, i.e. the number of different

hardware components that need to be developed, processor

instruction sets and software developments tools that need

to be learnt, each processing core is based on the same

processor architecture. For the Xilinx Spartan-III device

this means selecting from the Xilinx PicoBlaze (8 bit) [32],

Xilinx MicroBlaze (32 bit) [33] or a third party processor

IP-Core (not considered due to size constraints). When

selecting a processor core, the data width, memory archi-

tecture and instruction set need to be matched to the

application. In this case the majority of data sources use

either an unsigned 8bit integer value, i.e. grey scale images,

or a signed 8.8 fixed point representation (8 bit integer,

8 bit fraction). A 32 bit processor would require significant

increases in both memory and logic. Therefore, it was

decided that the 8 bit Xilinx PicoBlaze processor would be

used. This decision does reduce the processing perfor-

mance of these cores, e.g. operations requiring 16 or 32 bit

operands require multiple instructions. The PicoBlaze

processor is also not designed to be a raw ‘‘number

cruncher’’ with an average performance of approximately

50 MIPS. Therefore, to compensate for this, a co-processor

interface was added to the system bus allowing identified

software bottlenecks to be moved into hardware, e.g.

signed 8.8 fixed point multiplication, signed 24.8 fixed

point accumulator, etc. In addition to this, operand pointer

management has been moved out of software into dedi-

cated hardware within the processor-to-wishbone bridge.

This functionality was identified from the convolution

operators required in a number of the video processing

algorithms. Read and write pointers are now implemented

in hardware being automatically updated when a value has

been fetched from or written to memory. The processor can

request either a single or block of data from a base address

with a selected offset, greatly simplifying code structure

and reducing code size. In general a software biased design

approach was taken when developing each processing core,

i.e. a co-processor was only added if a software based

implementation does not achieve the required processing

performance.

The block diagram of the FPGA motion recognition

system is shown in Fig. 6. Each functional unit being

implemented as hardware components written in VHDL.

Control and IO tasks are centralized in the top level pro-

cessor module. This module contains:

• PicoBlaze processor: top level control software, on

boot-up initializes camera interface, etc., synchronizing

and allocating tasks to processing cores to fulfil the

system’s processing requirements.

• Look up table ROM: configuration data used to

initialize the system, e.g. camera control register

values, frame size, etc.

• Scratch pad RAM: temporary storage for intermediate

results. The inclusion of this memory is dependent on

the variant of PicoBlaze processor used, i.e. the

PicoBlaze KCPSM3 includes 64 B of internal scratch

pad memory within its architecture.

• PicoBlaze to Wishbone bridge: the PicoBlaze processor

does not support wait states, i.e. delayed read or write

operations to memory, therefore, a bridge is required to

interface the PicoBlaze to the Wishbone system bus

Fig. 5 Videoware processing architecture, VCL configured to form a virtual processing pipeline

J Real-Time Image Proc (2008) 3:163–176 169

123

[26]. The processor requests read or write operations

from the bridge, data being stored in internal FIFO

buffers.

• Input port: simple push buttons used to start system

operations, DIP switch bank selects what configuration

data should be used, e.g. camera sensitivity, etc.

• Serial port: displays result and debug information on

PC based serial terminal.

• Interrupt handler: controls servicing of multiple

interrupts.

The functionality required to implement the action

recognition system is distributed between two processing

modules, processing module 0 and 1. Processing

module 0 is assigned low level, high bandwidth

image capture and communication tasks. This module

contains:

• Intel hex upload/download engine: allows data to be

uploaded to and downloaded from the FPGA using the

extended Intel hex format. This allows the contents of

the status and control registers of the various compo-

nents on the system bus to be read and written to,

simplifying testing. This interface can also be used to

replace the top level processor module, allowing the

user to send configuration and control packets to the

FPGA.

• DMA engine: direct memory access controller, can be

configured to transfer blocks of data from memory to

memory, FIFO to memory, memory to FIFO, or clear a

block of memory.

• External synchronous SRAM: 2,048 kB of memory

used as a frame buffer storing image data and

intermediate results.

• Parallel port: primarily used to transfer image data back

to the host PC for SVM training and hardware debugging.

• Camera I2C port: synchronous serial port allowing the

FPGA to configure the camera’s control registers.

• Camera parallel port: the camera is configured to

constantly stream image data to the FPGA. This slave

port captures image data, configured with dual 32 kB

frame buffers allowing the previous image to be

processed whilst the current image is captured. This

component also supports Bayer pattern to greyscale

conversion and down sampling to lower image

resolutions.

• Seven segment display: two seven segment LED

displays used to display the motion recognition result

and debugging.

• Wishbone to Wishbone bridge: to enable different

processing cores to operate in parallel without impact-

ing on system bus bandwidth, functionality can be

spread across a number of system buses, i.e. high

Fig. 6 System block diagram

170 J Real-Time Image Proc (2008) 3:163–176

123

bandwidth data accesses are isolated to the local system

bus.

• Processing core 0: difference operator, used to generate

the MHI.

• Processing core 1: sub-sample operator, used to down

sample image data to lower resolutions, using pixel

interpolation or selection.

Processing module 1 is assigned high level, lower

bandwidth data processing tasks. To maximize system

performance access to data is localized to the current

system bus, i.e. additional memory is attached to each bus

minimizing Wishbone-to-Wishbone bridge transfers. Alter-

natively, internal dual port BlockRam can also be used to

transfers data across systems bus boundaries. This module

contains:

• External asynchronous SRAM: edge detection frame

buffers

• Internal RAM: intermediate result buffer used in the

calculation of the MHI

• Internal ROM: SVM classification data sets, inner

product of this data and the MHI is performed to

identify motion.

• Processing core 2: inner product, signed 8.8 fixed point

multiplication with a signed 24.8 fixed point

accumulator.

• Processing core 3: filter, Gaussian or mean smoothing

of image data

• Processing core 4: rotate, image orientation about its

centre

• Processing core 5: edge detector, Robert’s cross or

Sobel edge detector operators.

Note that processing cores 3–5 are not used in the motion

recognition system, but have been developed as part of the

VCL. The processing cores used in processing module 0

and 1 are based on the same hardware architecture as

shown in Fig. 7. This greatly simplifies hardware devel-

opment and testing, allowing the same component to be

used for a number of different tasks through firmware

modifications. Each processing core contains:

• PicoBlaze processor: depending on the algorithm used

(instruction code size), the KCPSM, KCPSM2 or

KCPSM3 PicoBlaze processor core can be used.

• Co-processor interface: a generic co-processor interface

supporting eight parameter registers, four result regis-

ters, control and status registers.

• Look up table ROM: system constants, e.g. sine lookup

table, size 16–64 B.

• Scratch pad RAM: intermediate results, size 16–128 B

• Processing core to Wishbone bridge: this bridge has

more functionality than the PicoBlaze to Wishbone

bridge, supporting automatic read and write pointer

updates and offset calculations from these base

pointers.

The Amadeus USE board and action recognition process-

ing pipeline is shown in Fig. 8. A difference operator is

performed on the current and previous frames, updating a

MHI. The inner product of the MHI and the SVM

classification data sets is then performed, the result of

each accumulator then has a specific offset applied before a

threshold is performed, selecting the stored action that most

closely matches the observed motion. In the current

implementation this process is operated in a one shot

mode, however, this could be easily expanded to include

motion detection to start and stop this process, i.e. when the

difference between two frames exceeds a threshold the

MHI is generated, when it falls below this threshold the

inner product and threshold operations are then performed.

The processing performance for each of these system

functions is shown in Fig. 9. These results are for a soft-

ware only implementation, i.e. no co-processor support is

incorporated in any of the processing cores. The current

hardware implementation uses a 20 MHz system clock and

can capture image data at 12 frames/s, i.e. one frame every

80 ms. To allow the system to process data at this frame

rate, the inner product calculation performance must be

improved. To achieve this level of performance the system

can be reconfigured, replicating this processing core

improving parallelism. Performance can also be improved

through the use of co-processors, moving the signed 8.8

fixed point multiplication operation out of software into

dedicated hardware. This hardware was constructed using

Fig. 7 Processing core block diagram

J Real-Time Image Proc (2008) 3:163–176 171

123

Xilinx’s Logicore IP core generator architectural wizard to

produce a pipelined multiplier unit. The result of these

improvements for an 100 x 80 image can be seen in

Figs. 10 and 11. Figure 10 shows the processing perfor-

mance of a software only implementation performing six

inner product calculations using one to six processing

cores, i.e. one to six copies of processing core 2 are added

to the system bus. Figure 11 shows the processing perfor-

mance of the same system but with hardware support

through the inclusion of a co-processor in processing core

2. Using these techniques the required processing perfor-

mance can be achieved. The system’s main bottleneck is

now the camera’s interface, limiting image transfers to

12 frames/s. If an improved PCB layout could be

supported, additional processing cores would be required to

match these new processing requirements. However, these

scaling techniques are limited by area and system bus

bandwidth restrictions. An alternative solution to increase

processing performance would be to ‘‘un-roll’’ the inner

product calculation to maximize the available parallelism,

i.e. processing multiple vector elements in parallel. Possi-

ble co-processor architectures to support these operations

are discussed in [12]. It should be noted that the number of

processing cores that can be replicated is dependent on the

system bus and memory bandwidth since, as more

processing cores are added, a point will be reached where

processing on these cores will be stalled until data band-

width is freed. The performance of these processing cores

is also dependent on image size. In the present system, the

camera interface captures Bayer pattern images at a reso-

lution of 640 9 480. This is then converted to a greyscale

image and down sampled to either 200 9 160 or

100 9 80, as defined via the camera’s control registers.

The camera input frame rate is therefore constant, however,

Fig. 8 Amadeus ubiquitous system environment (USE) board and motion recognition processing pipeline

Fig. 9 System function

processing performance at

20 MHz

Fig. 10 Software inner product performance

Fig. 11 Co-processor inner product performance

172 J Real-Time Image Proc (2008) 3:163–176

123

the image size can vary from 8 to 32 kB. This increase in

data will of course affect the system’s processing require-

ments, e.g. 200 9 160 difference operator’s processing

requirements increases by a factor of 4. To increase pro-

cessing performance, the difference operator processing

core can be replicated. However, multiple image pairs

cannot be processed in parallel due to a data hazard (read

after write) on the MHI, i.e. the reader, writer problem. To

remove this hazard, the current and previous MHI are

divided into segments, with a single processing core allo-

cated to each segment, removing the data hazard problem,

as shown in Fig. 12. The processing performance of this

system for an image resolution of 200 9 160 with one to

six processing cores is shown in Fig. 13. These results

highlight the difference between task level parallelism

(Figs. 10, 11) and data level parallelism (Fig. 13) when

using replicated processing cores. The parallel inner

product system uses task level parallelism. In such systems,

the number of tasks can be greater than the number of

processing cores with tasks being allocated to each pro-

cessing core as they become available. As a result,

processing performance is limited by the maximum num-

ber of tasks that can be allocated during each time slice,

e.g. with four processing cores and six tasks two time slices

will be required, four tasking being processed in the first

time slice and two in the second. This granularity is

illustrated by the flat regions in Figs. 10 and 11, i.e. for a

system with three to five processing cores. In these systems

two time slices will be required, resulting in some pro-

cessing cores remaining idle during these periods. The

parallel difference operator system uses data level paral-

lelism. In such systems the number of tasks is equal to the

number of processing cores, i.e. the number of segments is

matched to the number of processing cores available. As a

result, processing performance shows an incremental

improvement with the number of processing cores added to

the system.

This ability to scale a design to match an application

allows the designer to trade off speed and area require-

ments. In addition to this, each hardware component can

also be optimized for speed, size and power considerations,

giving a designer greater flexibility in distributing the

required processing capabilities amongst the selected pro-

cessing cores.

4.2 Performance testing of the stand-alone system

In order to test the performance of the FPGA implemen-

tation of our human action recognition system, we recorded

a hand motion dataset. In this dataset, there are only three

type of hand motions: horizontal motion, vertical motion

and ‘‘other motion’’. We also recognize a ‘‘no-motion’’

case as an extra class.

For each class, we recorded 20 video samples, with the

frame size set to 100 x 80 pixels. We recorded the video

clips with a variety of backgrounds to test the system

robustness to this variability. Figure 14 shows some sam-

ples in this dataset.

One of the simplest multiclass classification schemes

built on top of real-valued binary classifiers is to train M

different binary classifiers, each one trained to distinguish

the examples in a single class from the examples in all

remaining classes. When it is desired to classify a new

example, the M classifiers are run, and the classifier which

outputs the largest (most positive) value is chosen. This

scheme is referred to as the ‘‘one-versus-all’’ rule.

In our experiment, 15 samples were randomly chosen

from each class for training and the other five were used for

testing. We repeated the experiments ten times. We carried

out the training on a PC using SVMlight (the default values

were used for all the parameters in this software). Firstly,

we extracted MHI features from each video clip. Then we

trained three binary linear SVM classifiers based on these

features to give a three parameter matrix containing the

weight vector w and bias b. These parameters were stored

in the internal memory of the FPGA chip and were used for

gesture classification. During the classification, three val-

ues were obtained from each SVM classifier and the one

with the largest (most positive) value is used to label the

motion.

Fig. 12 Allocation of replicated difference operators

Fig. 13 Software difference operator performance

J Real-Time Image Proc (2008) 3:163–176 173

123

Table 3 shows the average classification rate. The

average rate of correct classification for all gestures is 80%.

We have compared the outputs of the three binary classifier

from both software case (on PC) and hardware case (on

FPGA). Note that there is very little differences between

the values. The reason for the small difference is that we

chose to limit the number of bits in the FPGA implemen-

tation. However, the differences do not affect the

classification results at all and these results are identical on

the PC implementation and the embedded implementation.

Using the system architecture shown in Fig. 6, two

hardware configurations can be achieved through firmware

modifications, as shown in Table 4. Both of these systems

operate in a one shot mode, capturing approximately 5 s of

video, i.e. 60 frames at 12 frames/s, at a resolution of at

100x80. The first of these is a test configuration, where

each stage of the processing pipeline is performed

sequentially, i.e. video capture, difference operator, inner

product, offset addition and thresholding. At each stage,

intermediate results can be downloaded using the Intel Hex

upload/download IP-core and compared to results produced

by a Matlab implementation running on a PC. As the

results in Table 4 show, this implementation may not be

suitable for some real time applications, having an output

latency of approximately 2.5 s. The final implementation is

constructed to form a virtual pipeline, as illustrated in

Fig. 8. To allow this pipeline to operate at 12 frames/s,

each stage must be performed within 80 ms. From exper-

imental evaluation of the initial test configuration, it was

determined that the final system would require four inner

product (with co-processor support) and four difference

operator processing cores. To further increase processing

performance, the difference operator is overlapped with the

video capture. This significantly reduces output latency.

Due to internal memory limitations, the final system was

limited to three-class classification data sets. However, as

Fig. 11 shows, if memory resources were available a sys-

tem with six inner product processing cores could meet

processing requirements.

5 Discussion and conclusions

In this paper, we proposed a system for fast human action

recognition. It has applications in security systems, man–

machine communication, and other cases of AmI. The

proposed method does not rely on accurate tracking as

most other works do, since most of the tracking algorithms

may incur prohibitive computational cost for the system.

Our system achieves a competitive performance with other

temporal template based methods, which use representa-

tions such as the MHI.

The use of standard processor cores to replace hardware

accelerator IP-Cores greatly simplifies system design, i.e.

both in terms of component development and debugging.

When compared to equivalent systems testing times are

significantly reduced, through the use of existing pre-tested

processor and peripheral IP-cores and software simulators.

The disadvantage of a multiple processor based design is

the reduction in unit processing performance when com-

pared to an optimized application specific IP-Core. To

Fig. 14 Some samples in the

hand motion dataset and their

MHI features

Table 3 Hand motion recognition average confusion matrix

Horizontal Vertical Others

Horizontal 94 2 4

Vertical 18 70 12

Others 4 18 76

Table 4 Hardware performance

Video capture (s) Output latency (s)

Sequential 5 2.514

Pipelined 5 0.064

174 J Real-Time Image Proc (2008) 3:163–176

123

compensate for this, processing cores can be replicated to

increase system performance. The advantage of this design

approach is that the number of new hardware components

that need to be designed is greatly reduced, a common

processing core can be used for a number of different tasks

through firmware changes. These design advantages come

at the cost of increased silicon area, however, with the ever

increasing resources available to the designer within

modern FPGAs this tradeoff is becoming more acceptable

when compared to increasing development costs.

Our embedded human action recognition system per-

formed reliably at 12 frames/s and gave an average action

classification rate of 80% over three types of hand gesture.

Recognition performance may be improved by recording

more data for training.

Our recent work [17, 18] has improved the system

classification performance by introducing novel motion

features and combinations of motion features, although this

is currently only implemented in Matlab on a PC. Imple-

mentation of these improved approaches on our

reconfigurable video processing architecture is the focus of

our future work.

Acknowledgments The authors would like to thank DTI and

Broadcom Ltd. for the financial support for this research.

References

1. Aggarwal, J.K., Cai, Q.: Human motion analysis: a review.

Comput. Vis. Image Underst. 73(3), 428–440 (1999). doi:

http://dx.doi.org/10.1006/cviu.1998.0744

2. Aizerman, A., Braverman, E.M., Rozoner, L.I.: Theoretical

foundations of the potential function method in pattern recogni-

tion learning. Autom. Remote Control 25, 821–837 (1964)

3. Amadeus.: Use—ubiquitous system explorer (fpga development

platform). http://www.cs.york.ac.uk/amadeus/projects/centre-use/

(2004)

4. ARC.: Products and solutions: arc configurable cpu/dsp cores.

http://www.arc.com/configurablecores/ (2007)

5. ARM.: Processor overview. http://www.arm.com/products/CPUs/

(2007)

6. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.:

Actions as space-time shapes. In: ICCV, pp. 1395–1402 (2005)

7. Bobick, A.F., Davis, J.W.: The recognition of human movement

using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell.

23(3), 257–267 (2001)

8. Bradski, G.R., Davis, J.W.: Motion segmentation and pose rec-

ognition with motion history gradients. Mach. Vis. Appl. 13(3),

174–184 (2002)

9. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented

histograms of flow and appearance. In: ECCV, vol. 2, pp. 428–

441 (2006)

10. Davis, J.W.: Hierarchical motion history images for recognizing

human motion. In: IEEE Workshop on Detection and Recogni-

tion of Events in Video, pp. 39–46 (2001)

11. Farnell, B.: Moving bodies, acting selves. Annu. Rev. Anthropol.

28, 341–373 (1999)

12. Freeman, M.: Evaluating dataflow and pipelined vector process-

ing architectures for FPGA co-processors. In: IEEE 9th

Euromicro Conference on Digital System Design, Croatia (2006)

13. Joachims, T.: Making large-scale SVM learning practical. In:

Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel

Methods—Support Vector Learning. MIT-Press, USA. http://

www.svmlight.joachims.org/, oikonomopoulos (1999)

14. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event

detection using volumetric features. In: ICCV, Beijing, China,

October 15-21, 2005, pp. 166–173 (2005)

15. Kodak.: Kodak kac-9628 image sensor 648(h) x 488(v) color

cmos image sensor. http://www.kodak.com/ezpres/business/

ccd/global/plugins/acrobat/en/productsummary/CMOS/KAC-

9628ProductSummaryv2.0.pdf (2006)

16. Meng, H., Pears, N., Bailey, C.: Recognizing human actions

based on motion information and SVM. In: 2nd IET International

Conference on Intelligent Environments, IET, Athens, Greece,

pp. 239–245 (2006)

17. Meng, H., Pears, N., Bailey, C.: A human action recognition

system for embedded computer vision application. In: The 3rd

IEEE Workshop on Embeded Computer Vision, Minneapolis,

USA (2007a)

18. Meng, H., Pears, N., Bailey, C.: Motion information combination

for fast human action recognition. In: 2nd International Confer-

ence on Computer Vision Theory and Applications (VISAPP07),

Barcelona, Spain (2007b)

19. MIPS (2007) Architectures. http://www.mips.com/products/

architectures/

20. Moeslund, T., Hilton, A., Kruger, V.: A survey of advances in

vision-based human motion capture and analysis. Comput. Vis.

Image Underst. 103(2–3), 90–126 (2006)

21. Ogata, T., Tan, J.K., Ishikawa, S.: High-speed human motion

recognition based on a motion history image and an eigenspace.

IEICE Trans. Inf. Syst. E89(1), 281–289 (2006)

22. Oikonomopoulos, A., Patras, I., Pantic, M.: Kernel-based recog-

nition of human actions using spatiotemporal salient points. In:

Proceedings of CVPR Workshop 06, vol. 3, pp. 151–156 (2006)

23. Pears, N.: Projects: Videoware—video processing architecture.

http://www.cs.york.ac.uk/amadeus/videoware/ (2004)

24. Schmidt, A., Laerhoven, K.V.: How to build smart appliances.

IEEE Personal Commun. 8(4), 66–71. http://www.citeseer.

ist.psu.edu/schmidt01how.html (2001)

25. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a

local SVM approach. In: ICPR, Cambridge, UK (2004)

26. Silicore.: Wishbone system-on-chip (soc) interconnection archi-

tecture for portable ip cores. http://www.opencores.org/

projects.cgi/web/wishbone/wbspec_b3.pdf (2002)

27. Tensilica.: Xtensa configurable processors—overview. http://

www.tensilica.com/products/xtensa_overview.htm (2007)

28. Weinland, D., Ronfard, R., Boyer, E.: Motion history volumes for

free viewpoint action recognition. In: IEEE International Work-

shop on Modeling People and Human Interaction (PHI’05).

http://www.perception.inrialpes.fr/Publications/2005/WRB05

(2005)

29. Wejchert, J.: ‘‘The disappearing computer’’, information docu-

ment, ist call for proposals, european commission, future and

emerging technologies. http://www.disappearing-computer.

net/mission.html (2000)

30. Wong, S.F., Cipolla, R.: Real-time adaptive hand motion recog-

nition using a sparse bayesian classifier. In: ICCV-HCI, pp. 170–

179 (2005)

31. Wong, S.F., Cipolla, R.: Continuous gesture recognition using a

sparse bayesian classifier. In: ICPR, vol. 1, pp. 1084–1087 (2006)

32. Xilinx.: Microblaze processor. http://www.xilinx.com/ipcenter/

processor_central/picoblaze/picoblaze_user_resources.htm (2007a)

J Real-Time Image Proc (2008) 3:163–176 175

123

http://dx.doi.org/http://dx.doi.org/10.1006/cviu.1998.0744
http://www.cs.york.ac.uk/amadeus/projects/centre-use/
http://www.arc.com/configurablecores/
http://www.arm.com/products/CPUs/
http://www.svmlight.joachims.org/, oikonomopoulos
http://www.svmlight.joachims.org/, oikonomopoulos
http://www.kodak.com/ezpres/business/ccd/global/plugins/acrobat/en/productsummary/CMOS/KAC-9628ProductSummaryv2.0.pdf
http://www.kodak.com/ezpres/business/ccd/global/plugins/acrobat/en/productsummary/CMOS/KAC-9628ProductSummaryv2.0.pdf
http://www.kodak.com/ezpres/business/ccd/global/plugins/acrobat/en/productsummary/CMOS/KAC-9628ProductSummaryv2.0.pdf
http://www.mips.com/products/architectures/
http://www.mips.com/products/architectures/
http://www.cs.york.ac.uk/amadeus/videoware/
http://www.citeseer.ist.psu.edu/schmidt01how.html
http://www.citeseer.ist.psu.edu/schmidt01how.html
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf
http://www.tensilica.com/products/xtensa_overview.htm
http://www.tensilica.com/products/xtensa_overview.htm
http://www.perception.inrialpes.fr/Publications/2005/WRB05
http://www.disappearing-computer.net/mission.html
http://www.disappearing-computer.net/mission.html
http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.htm
http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.htm

33. Xilinx.: Microblaze soft processor core. http://www.xilinx.

com/xlnx/xebiz/designResources/ip_product_details.jsp?key=

micro_blaze (2007b)

34. Xilinx.: Spartan-3 fpga family complete data sheet.

http://www.direct.xilinx.com/bvdocs/publications/ds099.pdf

(2007c)

Author Biographies

Hongying Meng received his BSc (1991), MSc (1994) in applied

mathematics and PhD (1998) in Electronics Engineering all from

Xi’an Jiaotong University, Xi’an, China. Since then, he worked at

Tsinghua University in China, Dundee University, Southampton

University and York University in UK. His research area includes

wavelet transform, image compression, medical signal processing,

image categorization, computer vision, machine learning and real-

time systems. His current work is focus on machine learning based

real-time embedded computer vision system.

Michael J. Freeman received the BEng in Electronics Engineering

(1995) and PhD in Electronics (1999) from the University of York.

He is currently a research fellow in the Department of Computer

Science at the University of York. His research interests include

hardware architectures for high speed text and vector processing,

system on chip and multiprocessor system on chip design for FPGA

based systems.

Nick Pears was awarded both a BSc (1985) in Engineering Science

and a PhD in Robotics (1989) by Durham University, UK. He then

worked as a post-doctoral researcher in the Robotics Research Group,

University of Oxford where he developed novel laser range sensors.

In 1994, he was elected a fellow of Girton College, University of

Cambridge, where he worked on feature extraction and tracking

algorithms for scanning range sensors. In 1998 he joined the Com-

puter Science Department University of York, UK. His current

research interests are in Computer Vision and Pattern Recognition

and include visual navigation, 3D face recognition, visual human–

computer interaction and real-time embedded vision.

Chris Bailey is a lecture in Microelectronics and Computer Systems,

in the University of York’s Department of Computer Science. Prior to

1999, He obtained a PhD degree in stack based Microprocessor

design, at the University of Teesside, where he then worked as a

Teaching Research Fellow, and a Senior Lecturer. His research

interests include ubiquitous systems, image processing hardware,

novel processor design, and program optimisation techniques. He has

collaborated and co-published work with leading industry partners

such as Infineon Uk Ltd. Most recently he led the AMADEUS

research initiative with a DTI funded research centre for hardware

development in ubiquitous systems.

176 J Real-Time Image Proc (2008) 3:163–176

123

http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
http://www.direct.xilinx.com/bvdocs/publications/ds099.pdf

	Real-time human action recognition on an embedded, reconfigurable video processing architecture
	Abstract
	Introduction
	Human motion recognition system
	Related works on human action recognition
	MHI/SVM based recognition system
	Motion features
	Support vector machine
	Performance evaluation

	Reconfigurable video processing architecture
	Implementation of human action recognition on the reconfigurable architecture
	System design and implementation
	Performance testing of the stand-alone system

	Discussion and conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

