SECOND INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS

Proceedings

Image Understanding
Motion, Tracking and Stereo Vision

BARCELONA, SPAIN • MARCH 8-11, 2007

INSTICC PRESS

CO-ORGANIZED BY

and

PRACTICAL SINGLE VIEW METROLOGY FOR CUBOIDS

Nick Pears, Paul Wright and Chris Bailey
Department of Computer Science, University of York, UK
Email contact: nep@cs.york.ac.uk

Keywords: Single View Metrology. 3D measurement. Feature detection. Planar homographys. Projective invariants.

Abstract

Generally it is impossible to determine the size of an object from a single image due to the depth-scale ambiguity problem. However, with knowledge of the geometry of the scene and the existence of known reference dimensions in the image, it is possible to infer the real world dimensions of objects with only a single image. In this paper, we investigate different methods of automatically determining the dimensions of cuboids (rectangular boxes) from a single image, using a novel reference target. In particular, two approaches will be considered: the first will use the cross-ratio projective invariant and the other will use the planar homography. The accuracy of the measurements will be evaluated in the presence of noise in the feature points. The effects of lens distortions on the accuracy of the measurements will be investigated. Automatic feature detection techniques will also be considered.

1 INTRODUCTION

Historically, many package delivery companies have priced the delivery of packages mainly by weight. However, increasingly, tariffs are related to the size of the package being delivered, as the cost of shipping the package is more closely related to how much space it takes up in the delivery chain. If there were a simple and fast method to establish and log into the company's IT system the size of a package, then great benefits in terms of the whole system's efficiency can be achieved. We note that, already, package handling staff often carry around mobile computer devices called PDAs (personal digital assistants) to log packages into the IT system and such devices are now easily and readily equipped with cameras. This paper aims to prove the principle that it is possible to measure the dimensions of a package from a single image (for example, taken by a camera-equipped handheld PDA), given a simple, portable reference target.

Measurement using images is termed visual metrology and this has been studied extensively in the computer vision literature (Criminisi et al., 1999), (Criminisi, 2001), (Chen et al., 2006). In this paper, we aim to automatically measure the dimensions of cuboids (rectangular boxes) from a single image, using a simple, novel reference object attached to one
corner of the cuboid. The term automatically is used here to mean that the only piece of information that should be given to the system is the image of the scene containing a box.

Several problems need to be addressed to build such a measurement system. These include the removal of distortions caused by the lens of the camera, feature detection and identification, and dimension measurement. Each problem will need to be solved to produce a system that can provide accurate, automatic measurements.

This paper will look at two particular methods to compute the dimensions of a box: the cross-ratio invariant and the planar homography. For this type of measuring system to be of practical use, as is the case with all measuring systems, the results it returns have to be accurate and reliable. It is therefore important to assess the reliability of both techniques being investigated.

The remainder of the paper is structured as follows. In section 2, we describe the two measurement techniques, which we aim to compare. In section 3, we describe the implementation of our measurement system. In section 4, we present results of both simulations and real measurements and a final section is used for conclusions.

Figure 1: Cross ratio based measurement.

2 MEASUREMENT TECHNIQUES

The reference target used consists of three mutually orthogonal, equally sized square faces, coloured with a 2×2 chessboard pattern on each face, as shown in fig 1 . The size of the squares within the pattern are 40 mm . Our target is constructed of cardboard, but in a practical PDA-based system, we envisage that a rugged and foldable plastic target may be used.

The colours within the reference target were carefully selected, so that adjacent squares in the pattern have high contrast in greyscale, which allows, for example, reliable corner detection. Target corners are identified from their normalised colour histograms within a local circular neighbourhood. If all the corners in the target are detected, this gives rise to nine points on each target plane and three points along each axis.

2.1 Metrology Using Invariants

Figure 1 shows an image of a box to be measured, with the reference target in-situ. The reference points that need to be detected in the image are shown by white dots along three mutually orthogonal axes. These image points are labelled $\left(a_{i}-d_{i}\right)$, as shown, where i is the one of the dimensions (x, y, z).

If we represent world coordinates as $\left(A_{i}, B_{i}, C_{i}, D_{i}\right)$, corresponding to image points $\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$ along dimension i, then we can write an equation for the invariance of the cross-ratio under the imaging process. Using the notation $d(.,$.$) to$ represent the Euclidean distance between a pair of points, then (Hartley and Zisserman, 2000)

$$
\begin{equation*}
\frac{d\left(a_{i}, c_{i}\right) d\left(b_{i}, d_{i}\right)}{d\left(b_{i}, c_{i}\right) d\left(a_{i}, d_{i}\right)}=\frac{d\left(A_{i}, C_{i}\right) d\left(B_{i}, D_{i}\right)}{d\left(B_{i}, C_{i}\right) d\left(A_{i}, D_{i}\right)} \tag{1}
\end{equation*}
$$

If one of the four squares on a target face has dimension α, then

$$
\begin{equation*}
I_{i}=\frac{2 \alpha\left(M_{i}-\alpha\right)}{\alpha M_{i}} \tag{2}
\end{equation*}
$$

Figure 2: Homography based measurement.
where I_{i} is the invariant computed from image measurements along the i dimension and M_{i} is the unknown measurement of the box in the i dimension, expressed in the same units as α (typically we use millimetres). Rearranging this equation, we have

$$
\begin{equation*}
M_{i}=\frac{\alpha}{\left(1-0.5 I_{i}\right)} \tag{3}
\end{equation*}
$$

2.2 Metrology Using Homographys

The second method of calculating the box dimensions uses the planar homography approach, and in particular, the normalised Direct Linear Transformation method is used (Hartley and Zisserman, 2000).

In contrast to the cross ratio invariant, which uses three edges of the box, the planar homography instead uses planes of the box. Since each plane is bounded by two axes of the box, each plane can provide a maximum of two dimensions of the box. Therefore a minimum of two planes need to be visible in order to calculate all three dimensions of the box from a single image as shown in Figure 2.

Since two planes are required for all three dimensions of the box to be recovered, this means that two homographies will need to be calculated, due to each plane of the box undergoing a different projective transformation during the imaging process.

The relative world position of the reference target corners are known, and through feature detection, their corresponding image positions can be extracted from the image. This means that the target can provide nine point correspondences per plane - more than the minimum of four (no three collinear) required to calculate a planar homography.

Once the homographies have been calculated, the real world position of any point on either plane of the box can be determined. Since the external corners of the box lie on these planes, their real world position can be determined through the homography. The corner relating to the height exists on both planes, so either plane can be used to calculate this dimension, or alternatively, an average taken.

Figure 3: Feature points required for the cross ratio.

3 IMPLEMENTATION

Our system is implemented in MATLAB with the following the main stages:
(i) Image acquistion: A Kodak LS743 digital camera was used to collect images, using the wide angle lens setting. After capture, images are reduced from 2304×1728 down to 800×600 to reduce image processing time.
(ii) Camera Distortion Correction: The MATLAB Camera Calibration Toolkit (Bouguet, 2005) was used to correct the radial distortions in the input images. Our calibration results showed that radial distortion has the greatest effect towards the corners of the image where there are displacements of up to 50 pixels. The effects of tangential distortions are much smaller with only a maximum displacement of 2 pixels. With the camera intrinsics calculated, any image can then be corrected by the toolkit.
(iii) Corner Detection: The implementation of the Harris corner detector (Harris and Stephens, 1988) by Peter Kovesi (Kovesi, 2000) was used. Other interest point detectors could also be used such as the SUSAN detector (Smith and Brady, 1995).
(iv) Feature Point Recognition: Figure 3 illustrates the points required to calculate the cross ratios.

The first feature we try to identify is the central point of the reference target, using the surrounding colours. Colour modelling is an area that has been researched extensively in computer vision (Alexander, 1999). The approach used here is similar to that used by Coughlan et al (Coughlan et al., 2005). For each candidate corner, three points p_{1}, p_{2} and p_{3} are specified at fixed offsets, separated by 120 degrees, such that each point is positioned in a region of red, green or blue colour. If the letters R_{i}, G_{i} and B_{i} represent the red, green and blue intensity values at point p_{i}, then the colour target is detected if the following
four inequalities are met: $R_{1}>R_{2}+T, G_{1}+T<G_{2}$, $G_{2}>G_{3}+T, \quad R_{1}>R_{3}+T$, where T is a threshold value used to control the detection. It should be noted that use of this technique does require the reference target to be placed on the box in a specific way such that the red region is always at the top. This approach produces accurate and reliable detection of the target. Once the centre of the reference target has been identified, the next step is to search for the surrounding three points of the target that sit on the axes of the box. These can be used to determine the direction of the three axes of the box. These points are found in a similar way to finding the centre of the reference target, although different colour regions need to be specified for each of the points.

Along each axis, the location of two points is now known, so an approximate direction of each axis can be calculated. The placement of the reference target on the corner of the box is unlikely to be perfect due to deformations of the box. Thus a search region along each axis is determined in which to find the other required points. This search region narrows down the number of corners that will have to be investigated. The third point on the reference target can now be located, again using the colour region method.

The external corner of the box is found by analysing the colour in the region next to each corner detected in the search region. It is assumed that close to the edge of a box, the colour and texture of the box should remain roughly the same. It is also assumed that the box colour should be markedly different to that of its background. The image is first converted from RGB space to HSI space. A histogram of the hue for a small region next to the final point detected on the reference target is then obtained.

For each corner detected in the search region, a histogram for the surrounding region is obtained. This corner histogram is then compared to the histogram of the region next to the target previously stored. If the two histograms are different by some margin, then the detected corner is likely to be a corner of the box.
(v) Metrology Calculations: The cross ratio method was straightforward to implement. From the set of image point coordinates, the distances between them were calculated and the values put into equation 3 to obtain each dimension of the box. The planar homography method used the normalised DLT algorithm to estimate a homography matrix for each plane. Then the image coordinates of the box corners were converted into the real world coordinates, which was used to compute the length of a side of a box. Both planes can be used to obtain the height measurement of the box, so the average of the two values obtained from both planes is used as the height measurement.

Figure 4: Th effect of radial distortion.

4 RESULTS AND EVALUATION

4.1 Radial Distortion Correction

To what extent does radial distortion affect the measurements and do the correction techniques employed reduce these errors? To answer these questions, a marked calibration plane was set up in front of the camera so that it almost entirely filled the captured image. The image was then corrected for radial distortion and both the uncorrected and corrected images were stored. The position in the image of each 30 mm graduation along both the x and y axes was selected by eye. Each 30 mm graduation is considered to be the box corner, allowing the trend in measurement error across the image to be observed. For each graduation mark in both the uncorrected and corrected image, its estimated position was calculated and stored using both the cross ratio and planar homography methods.

The error in the measurements for both methods in both the uncorrected and corrected images are shown in Figure 4. Both the results in the x and y axis of the plane were very similar, so Figure 4 only shows the results obtained from the x axis. From this graph it is clearly visible that radial distortion has a noticeable effect on the accuracy of the results obtained from both methods. For the uncorrected cases, the errors start low, but increase rapidly to as much as 3.75%. Note, however, that the radial distortion correction significantly improves the accuracy of the results and, for both the planar homography and cross ratio techniques, the measurement errors stay relatively constant across the entire calibration grid.

4.2 Comparison of Methods

Twenty two boxes were selected, ensuring a mixture of small and large boxes and boxes with different aspect ratios. Images of each were captured from three

Figure 5: Comparison of actual and computed measurements for 22 boxes in view 1 .
views, the first of which (view 1) was such that the camera was pointing directly through the diagonal of the box. Each captured image was corrected for radial distortion and feature points on the reference target and the box corners were selected. The dimensions of the box were then obtained from both the cross ratio and planar homography methods. Firstly, the accuracy of both methods will be compared. Figure 5 shows the difference between the real measurement and the measurements estimated by both techniques for just the width of the box. The central diagonal (black) line shows the ideal situation where the visual metrology is perfect and there are no errors in the measurements. The points with square markers (green) show the measurements made using the cross ratio for each of the 22 boxes. The points with triangular markers (red) show the measurements made using the planar homography technique. Linear least squares trend lines for both sets of measurements are shown.

Note that the measurements obtained are in general close to the correct value, although they suffer from both systematic and random error. In many ways it is unreasonable to expect highly accurate answers, since it can be difficult to position the reference target on the box so that it lies flat on the plane. This is due to the fact that the boxes are not perfectly cuboid and the corners can be deformed. Interestingly, the systematic errors show a definite trend for the cross ratio to overestimate the measurement whereas the planar homography underestimates, although both of these effects can be calibrated out, such that the trend lines for both methods are coincident with the true measurements.

From the graph, the repeatability of the measurements made by both the cross ratio and planar homography methods can be compared. This can be achieved by looking at the spread of points from their trend line. The planar homography method produces more stable estimations since the points are situated

Figure 6: Effect of noise on planar homography measurements.

Figure 7: Effect of noise on cross ratio measurements.
closer to its trend line. However, for the cross ratio method, the points are often situated further from the trend line, with their distance increasing further from the trend line as the size of the box increases and the relative size of the imaged reference target decreases.

4.3 Noise Sensitivity

Within the context of this work, noise will be defined as movements of the detected feature points from their expected (ideal) positions. A noise sensitivity experiment was conducted as follows. For each of the 22 undistorted test box images, the points of the reference target and the box corners were subjected to Gaussian noise with a certain variance. The dimensions of the box were then calculated using both the cross ratio and the planar homography techniques. These measurements were stored and the feature points subjected to a new set of noise. This was repeated 10,000 times, so 20,000 measurements were recorded in total. This whole procedure was then repeated for noise variances of $0.1,0.25,0.5,0.75,1$, $2,4,6,8$ and 10 . (Note that only the width measurement is used in this experiment.) For each set of measurements, a series of statistics were generated such as the average, variance and standard deviation. In the following figures the noise variance is in (pixel

Figure 8: Effect of low variance noise on the cross ratio measurements.

Figure 9: Histogram comparing effect of noise on the two methods.
position) ${ }^{2}$ and the measurement variance is in $(\mathrm{mm})^{2}$.
The effects of noise on the planar homography method will first be considered. Figure 6 shows the variance of the width measurement as a function of noise variance. We note that, although the planar homography is definitely susceptible to the effects of noise, its effects are predictable. The difference in the curves for the three views can be attributed to the fact that going from view one (camera pointing along box diagonal) to view 2 (camera pointing at front edge, no top plane, width and depth have equal image size) to view three (as view 2, but width has larger image size than depth) favours more accurate measuring of the width of the box.

Figure 7 shows the effects of noise on the cross ratio method. Here the noise presents a much more serious problem. Not only is the variance in the measurements much greater now than for the planar homography, the relationship between the amount of noise and measurement variance is significantly more nonlinear. This is seen clearly in Figure 8 which shows the effects of low variance noise only.

Another way in which the data from this experiment can be analysed is using a histogram to show the spread of the results obtained from both methods. Figure 9 shows the histogram of the results obtained from the width measurement of a particular box. The mean position of the two histograms is different due
to the difference in the systematic error of the underlying measurement made by both techniques (see Figure 5). However, this graph shows a clear difference in the repeatability of the two methods in the presence of noise. Whereas the planar homography histogram is tall and narrow, the cross ratio histogram is short and wide. This indicates that planar homography is less sensitive to noise that the cross ratio method.

5 CONCLUSIONS

We have presented a novel reference target method for the measurement of cuboid (box) dimensions, with a view to producing a PDA-based system in the near future. Using corner features on this target, we have outlined two methods that can be used to measure box dimensions from a single image: the cross ratio invariant and planar homography. Accuracies of around 5.3% show that, although our prototype is not highly precise, it has sufficient accuracy for logging approximate parcel dimensions in a parcel delivery IT system, which can greatly improve resource planning in the delivery chain. We conclude by answering five important questions.

1. How accurately can box measurements be made? For view 2, average errors of 6.7% for the cross-ratio method and 5.3% for the homography method were measured. This is a reasonable level of accuracy to expect considering that it is difficult to align the reference target on the corner of a possibly non-cuboid box. Furthermore, accuracy may be improved by calibrating out systematic errors in each method.
2. Can the required features of a box be detected reliably? We have not fully answered the question of whether completely automatic measurements can be made. It is accepted that the feature detection methods used in this project are basic in comparison to others available, which, could for example involve SIFT features (Lowe, 2004) and pay more attention to colour modelling (Alexander, 1999). However, for the cross ratio method it has been shown that it is possible to detect the required feature points automatically, although this is only reliable on plain boxes (no patterns or text).
3. What are the ideal conditions for measurements? For the most accurate measuring, the three lines required for the cross ratio or the two planes required for the planar homography should occupy as large an area of the image as possible.
4. How are the measurements altered in the presence of noise in the input? The measurements made by
both the cross ratio and the planar homography methods have been investigated when the positions of the feature points are subject to noise. We found that the cross ratio method is much more sensitive to the effects of noise than the planar homography method.
5. Do the effects of camera distortion affect the accuracy of the measurements and can the effects of the distortions be corrected or minimised? The problems of radial distortion have been investigated and it has been shown that this form of distortion has an effect on the accuracy of the measurements. Radial distortion can be corrected and performing this operation removes significant inaccuracy in the measurements (as much as 3% error). It is therefore imperative that radial distortion is corrected before a measurement is made from the image.

REFERENCES

Alexander, D. (1999). Advances in daylight statistical colour modelling. In Proc. Conf. Computer Vision and Pattern Recognition, pages 313-318.
Bouguet, J. (2005). Camera calibration toolbox for matlab 2005. url: http://www.vision.caltech.edu/bouguetj/calib-doc/.
Chen, Z., Pears, N. E., and Liang, B. (2006). A method of visual metrology from uncalibrated images. Pattern Recognition Letters, 27(13):1447-1456.
Coughlan, J., Manduchi, R., Mutsuzaki, M., and Shen, H. (2005). Rapid and robust algorithms for detecting colour targets. In Proc. 10th Congress of the International Colour Association.
Criminisi, A. (2001). Accurate visual metrology from single and multiple uncalibrated images. Springer.
Criminisi, A., Reid, I., and Zisserman, A. (1999). Single view metrology. In Proc. 7th Int. Conf. on Computer Vision, pages 434-442.
Harris, C. J. and Stephens, M. (1988). A combined corner and edge detector. In 4th Alvey Vision Conference Manchester, pages 147-151.
Hartley, R. I. and Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cambridge University Press.
Kovesi, P. D. (2000). Matlab and octave functions for computer vision and image processing. url: http://www.csse.uwa.edu.au/ pk/research/matlabfns/.
Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 2(60):91-110.
Smith, S. M. and Brady, J. M. (1995). Susan-a new approach to low-level image processing. Int. Journal of Computer Vision, 23(1):45-78.

Proceedings of the
2nd International Conference on Computer Vision Theory and Applications
ISBN: 978-972-8865-74-0
http://www.visapp.org

