Mathematical Modelling
Lecture 2 – Dimensional Analysis

Phil Hasnip
phil.hasnip@york.ac.uk
Overview of Course

- Model construction \rightarrow dimensional analysis
- Experimental input \rightarrow fitting
- Finding a ‘best’ answer \rightarrow optimisation
- Tools for constructing and manipulating models \rightarrow networks, differential equations, integration
- Tools for constructing and simulating models \rightarrow randomness
- Real world difficulties \rightarrow chaos and fractals

Aim

To identify the relevant parameters and relationships for real-world problems and hence guide experimental design
Functions of several variables

Suppose we have a function of x, y and z and we know that it is linear in x, y and z – i.e. if we fix y and z, and plot f against x we get a straight line; and the same if we fix x and z and vary y etc. How many different terms are there?

$$f(x) = mx + c$$

A straight line has 2 parameters (slope and intercept), and we have 3 variables (x,y,z). Does this mean we have $2 \times 3 = 6$ parameters in total?
Functions of several variables

Suppose we have a function of x, y and z and we know that it is linear in x, y and z – i.e. if we fix y and z, and plot f against x we get a straight line; and the same if we fix x and z and vary y etc. How many different terms are there?

$$f(x) = mx + c$$

A straight line has 2 parameters (slope and intercept), and we have 3 variables (x,y,z). Does this mean we have $2 \times 3 = 6$ parameters in total?
Functions of several variables

\[f(x, y, z) = a_1 + a_2 x + a_3 y + a_4 z + a_5 xy + a_6 xz + a_7 yz + a_8 xyz \]

We have \(2^3 = 8 \).

This gets worse very quickly if it isn’t linear, but quadratic (\(3^3 = 27 \)), cubic (\(4^3 = 64 \)) or even higher order.

To get these parameters from experiment, we need at least one experimental measurement per parameter.
Functions of several variables

\[f(x, y, z) = a_1 + a_2x + a_3y + a_4z + a_5xy + a_6xz + a_7yz + a_8xyz \]

We have \(2^3 = 8\).

This gets worse very quickly if it isn’t linear, but quadratic \((3^3 = 27)\), cubic \((4^3 = 64)\) or even higher order.

To get these parameters from experiment, we need at least one experimental measurement per parameter.
You are feeling very sleepy...

What affects the period τ of the pendulum?
You are feeling very sleepy...

Perhaps $\tau = f(l, m, g, \theta)$. What is f?
Pendula

\[\tau = f(l, m, g, \theta) \]

Could use experiments to determine \(f \). How many measurements do we need?

- Quadratic \(\Rightarrow \) 3 parameters
- 4 independent variables
- \(\Rightarrow 3^4 = 81 \) total parameters
- \(\Rightarrow 81 \) expt measurements!
P parameters per variable, V variables $\Rightarrow P^V$ total parameters.

But what if we can reduce the number of variables that need to be studied? Then we have a big saving!

Dimensional analysis does this by considering *dimensionless products*.

NB Dimensions are not the same as units!
Dimensional analysis

Dimensions M, L, T (and K, C, etc)

Product (includes quotients) e.g. [area] = L^2
[energy] = ML^2T^{-2}, etc.

Dimensionless product = combination s.t. dimensions are $M^0L^0T^0$
Dimensional compatibility

When adding terms in an equation they must all have the same dimension.

\[s = ut + \frac{1}{2}at^2 \]

- \(u \) is a velocity, \(LT^{-1} \), \(t \) is a time \(T \)
 \(\Rightarrow \) \(ut \) is \(LT^{-1} \cdot T = L \), i.e. a length

- \(a \) is acceleration, \(LT^{-2} \)
 \(\Rightarrow \) \(at^2 \) is also a length

You cannot add apples and oranges! Terms must be **dimensionally compatible**.
Dimensional homogeneity

The equation should be true regardless of units. This is achieved if the left- and right-hand sides have the same dimensions.

- \(s = \frac{1}{2} gt^2 \)

 \(g \) is an acceleration \(LT^{-2} \), so \(\frac{1}{2} gt^2 \) is \(L \)

 \(\rightarrow \) dimensionally homogeneous

- \(s = 4.6 t^2 \)

 Dimensionally inhomogeneous \(\rightarrow \) different answer if measure time in seconds, minutes, hours...
Dimensionless products

Products of variables which are dimensionless are always dimensionally homogeneous.

If a real world problem can be modelled by a dimensionally homogeneous equation (and no logarithms) then we can find the form of that equation using dimensional analysis.
What are the dimensions of a general product $m^\alpha g^\beta \tau^\gamma l^\delta \theta^\epsilon$?

$M^{\alpha} L^{\beta+\delta} T^{\gamma-2\beta}$
Pendulum analysis

\[M^\alpha L^{\beta+\delta} T^{\gamma-2\beta} \] is dimensionless iff

\[
\begin{align*}
M : & \quad \alpha = 0 \\
L : & \quad \beta + \delta = 0 \\
T : & \quad \gamma - 2\beta = 0
\end{align*}
\]

which gives an infinite set of solutions – not enough equations!

- \(\alpha = 0 \implies m \) cannot appear in the model
- \(\theta \) has no units \(\implies \) value is arbitrary
Dimensionless products

There are three basic rules when forming dimensionless products:

1. Choose the dependent variable to appear once
2. Choose any variable that always appears in each dimensional equation
3. Choose any variable that always has zero exponent (e.g. θ)
Our dependent variable is τ, so choose $\gamma = 1$

But $\gamma - 2\beta \implies \beta = \frac{1}{2}$

$\delta = -\beta = -\frac{1}{2}$

ϵ is arbitrary, so choose $\epsilon = 0$

Thus our first dimensionless product is

$$\Pi_1 = m^0 g^{\frac{1}{2}} \tau^{\frac{1}{2}} l^{-\frac{1}{2}} \theta^0 = \tau \sqrt{\frac{g}{l}}$$
Pendulum – dimensionless product 2

- Already have τ in first product
- For second product choose $\gamma = 0$
- $\implies \beta = 0$
- $\implies \delta = 0$
- ϵ arbitrary – choose $\epsilon = 1$ (already used $\epsilon = 0$)

Thus our second dimensionless product is

$$\Pi_2 = m^0 g^0 \tau^0 l^0 \theta^1 = \theta$$
Pendulum analysis

Our dimensionless pendulum equation will relate the dps in some way

\[\Pi_1 = f(\Pi_2) \]

\[\Rightarrow \tau \sqrt{\frac{g}{l}} = f(\theta) \]

\[\tau = \sqrt{\frac{l}{g} f(\theta)} \]

Quick check:

- LHS has dimension \(T \)
- RHS has dimension \(\sqrt{\frac{L}{LT^{-2}}} = T \)
- Equation is \textit{dimensionally homogeneous}
Pendulum analysis

\[\tau = \sqrt{\frac{l}{g}} f(\theta) \]

What have we learned?

- \(\tau \) does not depend on \(m \) \(\Rightarrow \) ‘only’ \(5^3 = 125 \) experiments
- changing units of time cannot change the actual period \(\tau \) – there’s a corresponding change in ‘\(g \)’ \(\Rightarrow \) equation is dimensionally homogeneous.

We shall make this a bit more rigorous in a moment.

But for now...
Pendulum analysis

\[\tau = \sqrt{\frac{l}{g}} \cdot h(\theta) \]

If we keep \(\theta = \theta_0 = \text{constant} \) and vary \(l \) then

\[\frac{\tau_1}{\tau_2} = \sqrt{\frac{l_1}{l_2}} \]

i.e.

- \(\tau \propto \sqrt{l} \) \textit{regardless of} \(h \).
- \(\Rightarrow \) graph of \(\tau \) against \(\sqrt{l} \) should be linear
- \(\Rightarrow \) simple test requiring only 5 points!

If test fails, we go back and check our assumptions...
Pendulum analysis

What about $h(\theta)$? Fix $l = l_0$ and vary θ:

$$\frac{\tau_1}{\tau_2} = \frac{h(\theta_1)}{h(\theta_2)}$$

⇒ plot a graph of τ vs. θ (or better, $\tau \sqrt{\frac{g}{l}}$ vs. θ)

- Can get $h(\theta)$ directly! Another insight gained ...

NB Whilst can do SHO analytically, cannot do the general case for arbitrary θ as it is non-linear ...
A pendulum

t\left(\frac{g}{l}\right)^{1/2}

\begin{align*}
\text{SHO} \\
\theta
\end{align*}
Original problem had 1 dependent and 4 independent variables

We had 3 dimensional constraints

Hence need $5 - 3 = 2$ dimensionless products

Result was an equation determined up to an unknown function of 1 dimensionless product
A problem with \(n \) variables and \(m \) independent dimensional constraints can be written in dimensionally homogeneous form using \((n - m)\) dimensionless products (dps) as

\[
f (\Pi_1, \Pi_2, \ldots \Pi_{n-m}) = 0
\]
Example 1

\[n = 4, \ m = 3 \]

- ⇒ need 1 product including the dependent variable
- ⇒ \(f (\Pi_1) = 0 \) so can solve to get \(\Pi_1 = \text{constant} \)
- ⇒ can get dependent variable = (unknown constant) \(\times \) (other variables)
Example 2

\[n = 5, \ m = 3 \]

- ⇒ need 2 products
- ⇒ \(f (\Pi_1, \Pi_2) = 0 \)
- can solve to get \(\Pi_1 = h(\Pi_2) \)
- ⇒ can get equation up to an unknown function of a single dimensionless product, as with the pendulum
Example 3

\[n = 6, \ m = 3 \]

- need 3 products
- \(f (\Pi_1, \Pi_2, \Pi_3) = 0 \)
- so can solve to get \(\Pi_1 = h (\Pi_2, \Pi_3) \)
- can get equation up to an unknown function of two dimensionless products, etc.

We always need to construct \((n-m)\) independent dps, with the dependent variable only appearing once, e.g. in \(\Pi_1 \).

NB Good to put the most sensitive variables into the dp with the independent variable (e.g. \(\Pi_1 \)) to minimise the amount of unknown behaviour and simplify experiments.
Buckingham’s Π-Theorem Example

Predict the period of 2 masses \((m_1 & m_2)\) orbiting each other at a distance \(R\) apart, in vacuum

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>(T)</td>
</tr>
<tr>
<td>(m_1)</td>
<td>(M)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>(M)</td>
</tr>
<tr>
<td>(R)</td>
<td>(L)</td>
</tr>
<tr>
<td>(G)</td>
<td>(L^3M^{-1}T^{-2})</td>
</tr>
</tbody>
</table>

So we have 5 variables and 3 dimensions \(\Rightarrow\) need 2 dps
Buckingham’s Π-Theorem Example

General form of dp:

$$\Pi = \tau^\alpha m_1^\beta m_2^\gamma R^\delta G^\epsilon$$
$$= T^\alpha M^\beta M^\gamma L^\delta L^{3\epsilon} M^{-\epsilon} T^{-2\epsilon}$$
$$= M^{\beta + \gamma - \epsilon} L^{3\epsilon + \delta} T^{\alpha - 2\epsilon}$$

i.e. coefficients:

- $T: \alpha - 2\epsilon = 0$
- $M: \beta + \gamma - \epsilon = 0$
- $L: \delta + 3\epsilon = 0$
Buckingham’s Π-Theorem Example

\[T : \quad \alpha - 2\epsilon = 0 \]
\[M : \quad \beta + \gamma - \epsilon = 0 \]
\[L : \quad \delta + 3\epsilon = 0 \]

\(\Pi_1 : \) include \(\tau \) once \(\Rightarrow \alpha = 1 \Rightarrow \epsilon = \frac{1}{2} \Rightarrow \delta = -\frac{3}{2} \Rightarrow \beta + \gamma = \frac{1}{2} \)

so free choice, e.g. \(\beta = 1/2 \) and \(\gamma = 0 \)

\(\Rightarrow \Pi_1 = \tau m_1^{1/2} R^{-3/2} G^{1/2} = \tau \sqrt{\frac{m_1 G}{R^3}} \)
Buckingham’s Π-Theorem Example

\[T : \quad \alpha - 2\epsilon = 0 \]
\[M : \quad \beta + \gamma - \epsilon = 0 \]
\[L : \quad \delta + 3\epsilon = 0 \]

\(\Pi_2 : \) set \(\alpha = 0 \) \(\Rightarrow \epsilon = 0 \) \(\Rightarrow \delta = 0 \) \(\Rightarrow \beta + \gamma = 0 \) so free choice except must not choose same as before, e.g. \(\beta = 1 \) and \(\gamma = -1 \)

\[\Rightarrow \Pi_2 = \frac{m_1}{m_2} \]
Buckingham’s Π-Theorem Example

Hence \(f (\Pi_1, \Pi_2) = 0 \)

\[\Rightarrow \tau = \sqrt{\frac{R^3}{m_1 G}} \cdot h \left(\frac{m_1}{m_2} \right) \]

Exact analytic answer: \(\tau = 2\pi \sqrt{\frac{R^3}{G(m_1+m_2)}} \)

\[\Rightarrow h \left(\frac{m_1}{m_2} \right) = \frac{1}{\sqrt{1 + \frac{m_1}{m_2}}} \]
Summary of Methodology

1. Decide your \(n \) variables, hence \(m \) dimensional constraints.
2. Form complete set of \((n - m)\) dimensionless products (dps):
 - dependent variable only appears once (e.g. in \(\Pi_1 \))
 - put most sensitive variables into same dp
 - check each dp found has no dimensions!
3. Apply Buckingham’s \(\Pi \)-Theorem and hence solve for dependent variable.
4. Test assumptions made (e.g. \(\tau \propto \sqrt{l} \) for pendulum).
5. Conduct further experiments necessary to find any unknown functions, or further computations based upon the dps found.