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Overview of Course

Model construction −→ dimensional analysis
Experimental input −→ fitting
Finding a ‘best’ answer −→ optimisation
Tools for constructing and manipulating models −→
networks, differential equations, integration
Tools for constructing and simulating models −→
randomness
Real world difficulties −→ chaos and fractals

A First Course in Mathematical Modeling by Giordano, Weir &
Fox, pub. Brooks/Cole. Today we’re in chapter 3.
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Aim

There are two main aims:

To fit a model to experimental data, or to choose which
model best fits the data −→ Model fitting.
To use given experimental data with a model to predict
other experimental results −→ Model interpolation.
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Aim

The difference between these two aims is one of emphasis:

Model fitting: we expect some scatter in the experimental
data, we want the best model of a given form – ‘theory
driven’
Model interpolation: the existing data is good, model is
less important – ‘data driven’

Today we’ll be focussing on the first aim: model fitting.
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Model fitting

What do we mean by model fit-
ting? Suppose we know

f (x) = a + bx + cx2

If we knew f (x) at three different
points precisely then we could
compute a, b and c.
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Model fitting

In practice there is always ex-
perimental error, so we make
several measurements and try
to find the values of a, b and c
that fit the data best. How do we
do that?
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Least-squares

We define the residual Ri as the difference between the data yi
and our model’s prediction f (xi),

Ri = yi − f (xi)

Choose the coefficients of the model so as to minimise the sum
of the squared residuals of model from data.

i.e. minimise

S =
N∑

i=1

(yi − f (xi))
2
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Least-squares

Suppose our model is a straight line: f (x) = mx + c.

S =
N∑

i=1

(yi −mxi − c)2

And at the minimum of S we have

∂S
∂m

= 0

∂S
∂c

= 0

Phil Hasnip Mathematical Modelling



Data fitting
Model fitting

Least-squares
Comparing models

Least-squares

m =
N

∑N
i=1 xiyi −

(∑N
i=1 xi

) (∑N
i=1 yi

)
N

∑N
i=1 x2

i −
(∑N

i=1 xi

)2

c =

(∑N
i=1 x2

i

) (∑N
i=1 yi

)
−

(∑N
i=1 xiyi

) (∑N
i=1 xi

)
N

∑N
i=1 x2

i −
(∑N

i=1 xi

)2

Similar process for other forms of f (xi), though more
parameters!
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Least-squares

S =
N∑

i=1

(yi − f (xi))
2

S measures the absolute error, but we could also measure the
relative error:

SR =
N∑

i=1

(yi − f (xi))
2

f (xi)
2

These are both closely related to χ2, another measure of
‘goodness of fit’:

χ2 =
N∑

i=1

(yi − f (xi))
2

f (xi)
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Data transformations

What about transforming the data? E.g.

y = αeβx

⇒ ln y = ln α + βx

we could then fit a straight line to ln y .

Not a good idea! See spreadsheet...
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Goodness of fit

We’ve already mentioned some ways to measure how well a
model fits the experimental data.

S =
N∑

i=1

(yi − f (xi))
2

χ2 =
N∑

i=1

(yi − f (xi))
2

f (xi)

There are many others. One interesting method is to just look
at the maximum deviation of the model.
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Different models

Once we have decided on our measure of ‘goodness of fit’, we
can decide which of several models is the best.

BUT we need to be careful...
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Different models
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Different models
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Different models

A model with more parameters is much more likely to fit the
data well, regardless of whether it is actually better or not.

Adding another term to a model usually improves the fit
Is this improvement ‘real’, or chance?
Is it worth adding the extra parameter?
Occam’s razor −→ simpler is better!
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Degrees of freedom

If N data points, and p model parameters, then can think of the
fitting process as:

Use first p data points to determine model parameters
Use remaining N − p points to calculate error

The N − p points represent the freedom we have in fitting a
model of this form. We say there are N − p degrees of freedom.
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F-test

We look at the fractional improvement in goodness of fit, and
we do this by calculating F ,

F =
χ2

2

χ2
1

(label models such that F ≥ 1).

What F could just be chance? Decide what probability to reject:
e.g. if probability of F by chance is ≤ 5% then it is unlikely to
happen accidentally, so decide model 2 is better than model 1.

The probability we choose to reject (e.g. 5%) is called the
significance level – we usually use 5% or 1%.
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Critical F-values

The maximum likely improvement of F due to chance at various
significance levels can be found in tables of F values. It
depends on the degrees of freedom of each model, so our
procedure for testing is:

Work out degrees of freedom for each model
Decide significance level (usually 5% or 1%)
Consult a table to find critical F -value, Fc

If F ≥ Fc then the addition of extra parameters in model 2
is worth it
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Critical F-values at 5% level

N − p1
N − p2 1 2 3 4 5

1 161.448 199.500 215.707 224.583 230.162
2 18.513 19.000 19.164 19.247 19.296
3 10.128 9.552 9.277 9.117 9.013
4 7.709 6.944 6.591 6.388 6.256
5 6.608 5.786 5.409 5.192 5.050
6 5.987 5.143 4.757 4.534 4.387
7 5.591 4.737 4.347 4.120 3.972
8 5.318 4.459 4.066 3.838 3.687
9 5.117 4.256 3.863 3.633 3.482
10 4.965 4.103 3.708 3.478 3.326
11 4.844 3.982 3.587 3.357 3.204
12 4.747 3.885 3.490 3.259 3.106

Phil Hasnip Mathematical Modelling



Data fitting
Model fitting

Least-squares
Comparing models

Back to the drawing board

Sometimes we find the model works significantly better under
some circumstances than others. Examine the residuals

Ri = yi − f (xi)

Are there points a long way from the model prediction?

Suspect data – measure again
Suspect model – fit again, or re-check assumptions
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Errors

Two main kinds of experimental error:

Systematic
e.g. your tape measure has stretched over time
Random
Measure several times, get slightly different results
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Errors

The model can also introduce errors:

Formulation
Assumptions made in model may not be strictly correct
Truncation
Might make approximations to series, e.g.
cos(x) ≈ 1− 1

2x2

Round-off
Computers, calculators etc. can’t represent numbers
exactly
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Errors

Want fitting procedure to care less about data points with
greater error, so could use

S =
N∑

i=1

(
yi − f (xi)

δyi

)2

(where δyi is error in measurement yi )
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Summary

When fitting models to experimental data:

Choose a measure of the difference between the model
prediction and the experimental data

Absolute residual-squared
Relative residual-squared
χ2

Worst error (Chebyshev)
Divided by experimental error

For similar models, choose the one that minimises your
measure of difference
Only choose more complex models if the improvement is
worth it (F-test)
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