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Abstract

The specification of an optimizing model of the monetary transmission mechanism requires

selecting a policy regime, commonly commitment or discretion. In this paper we propose a

new procedure for testing optimal monetary policy, relying on moment inequalities that nest

commitment and discretion as two special cases. The approach is based on the derivation of

bounds for inflation that are consistent with optimal policy under either policy regime. We

derive testable implications that allow for specification tests and discrimination between the

two alternative regimes. The proposed procedure is implemented to examine the conduct of

monetary policy in the United States economy.
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1 Introduction

This paper proposes new methods for the evaluation of monetary policy within the framework

set by the New Keynesian model. Since the work of Kydland and Prescott (1977), the theory of

optimal monetary policy is aware of the time inconsistency problem. An optimal state contingent

plan announced ex-ante by the monetary authority may fail to steer private sector expectations

because, ex-post, past commitments are ignored. The theoretical literature has considered two

alternative characterizations of optimal monetary policy: commitment, whereby the optimal plan

is history dependent and the time-inconsistency problem is ignored; and discretion, whereby the

monetary authority re-optimizes each period. We propose a method for estimating and testing a

structural model of optimal monetary policy, without requiring an explicit choice of the relevant

equilibrium concept. Our procedure considers a general specification, that nests optimal policy

under commitment and discretion. The approach is based on the derivation of bounds for the

inflation rate that are consistent with both forms of optimal policy and yield set identification of

the economy structural parameters. We derive testable implications that allow for specification

tests and discrimination between the monetary authority’s modes of behavior.

Under discretion there exists a state-contingent inflation bias resulting from the fact that the

monetary authority must set policy independently of the history of shocks (Svensson, 1997). The

upshot of this state-contingent bias is that, when the output gap is negative, the inflation rate

under discretion in the following period is higher than what it would be if the monetary authority

was able to commit to history-dependent plans. This state-contingent inflationary bias allows

for the derivation of an inflation lower-bound (obtained under commitment) and an upper-bound

(obtained under discretion), based on the first order conditions that characterize optimal monetary

policy under each policy regime.

More generally, our framework applies to the optimal linear regulator problem, and relies on

state-contingent bounds for a target variable that are used to derive moment inequality conditions

associated with optimal policy, and to identify the set of structural parameters for which the

moment inequalities hold, i.e. the identified set. We characterize the identified set implied by

optimal monetary policy using inference methods developed in Chernozhukov, Hong, and Tamer

(2007). We then test whether the moment restrictions implied by a specific policy regime are

satisfied.
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Assuming a specific policy regime enables point identification of the underlying structural pa-

rameters. Thus, parameters can be consistently estimated and standard tests of overidentifying

restrictions (Hansen, 1982) can be performed. However, if our objective is to test for discretion or

commitment under the maintained assumption of optimal monetary policy, the standard Hansen’s

J–test does not make use of all the available information. Instead, we propose a test for discretion

and a test for commitment which explore the additional information obtained from the moment

inequality conditions associated with the inflation bounds implied by optimal monetary policy.

Formally, the test is implemented using the criterion function approach of Chernozhukov et al.

(2007) and an extension of the Generalized Moment Selection method of Andrews and Soares

(2010), that takes into account the contribution of parameter estimation error on the relevant

covariance matrix.

In addition, the moment inequality conditions implied by optimal monetary policy under discretion

and commitment, respectively, can be used to perform a model selection test to discriminate

between the two alternative policy regimes, maintaining the assumption of optimal monetary

policy. Following Shi (2015), we compare the two models and select the one that is closer to the

truth in terms of a pseudo-distance measure based on the Kullback-Leibler divergence measure.

We apply our testing procedure to investigate whether the time-series of inflation and output gap

in the United States are consistent with the New Keynesian model of optimal monetary policy

that has been widely used in recent studies of monetary policy, following the work of Rotemberg

and Woodford (1997), Clarida, Gaĺı, and Gertler (1999), and Woodford (2003). Using the sample

period running from 1983Q1 until 2008Q3, we find evidence in favor of discretionary optimal

monetary policy, and against commitment. In contrast, the standard J–test of overidentifying

restrictions lacks power and fails to reject either policy regime.1 Thus, by making use of the full

set of implications of optimal monetary policy, we construct a more powerful model specification

test, allowing the rejection of commitment but not discretion. This finding is further supported

by the model selection test based on Shi (2015).

The importance of being able to discriminate between different policy regimes on the basis of the

observed time-series of inflation and output is well recognized. In pioneering work, Baxter (1988)

1The lack of power of the J–test in the context of forward-looking models estimated using GMM is discussed
in Mavroeidis (2005). Our test of the monetary policy regime explores a larger set of moment inequality restrictions
implied by optimal monetary policy and, therefore, contributes to increasing the power of the specification test.
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calls for the development of methods to analyze policy making in a maximizing framework, and says

that “what is required is the derivation of appropriate econometric specifications for the models, and

the use of established statistical procedures for choosing between alternative, hypothesized models of

policymaking”.2 This paper seeks to provide such an econometric specification. Our paper is also

related to work by Ireland (1999), that tests and fails to reject the hypothesis that inflation and

unemployment form a cointegrating relation, as implied by the Barro and Gordon model when the

natural unemployment rate is non-stationary. Ruge-Murcia (2003) estimates a model that allows

for asymmetric preferences, nesting the Barro and Gordon specification as a special case, and

fails to reject the model of discretionary optimal monetary policy. Both these papers assume one

equilibrium concept (discretion), and test whether some time-series implications of discretionary

policies, are rejected or not by the data. Our framework instead derives a general specification of

optimal policy, nesting the commitment and the discretion solutions as two special cases.

Using a full-information maximum-likelihood approach, Givens (2012) estimates a New Keynesian

model for the US economy in which the monetary authority conducts optimal monetary policy.

The model is estimated separately under the two alternatives of commitment and discretion, using

quarterly data over the Volcker–Greenspan–Bernanke era; a comparison of the log-likelihood of the

two alternative models based on a Bayesian information criterion (to overcome the fact that the two

models are non-nested) strongly favors discretion over commitment. A similar Bayesian approach

has been used by Kirsanova and Le Roux (2013), who also find evidence in favor of discretion

for monetary and fiscal policy in the UK. Debortoli and Lakdawala (2015) estimate a medium-

scale DSGE model allowing for deviations from commitment plans that follow a regime switching

process. They reject both the full commitment and the discretion model, which are nested special

cases of their model. The partial identification framework that we propose in this paper also

constitutes a general econometric specification that nests commitment and discretion as two special

cases. Unlike full-information methods, our approach does not require strong assumptions about

the nature of the forcing variables (shock processes).

Simple monetary policy rules are often prescribed as guides for the conduct of monetary policy.

For instance, a commitment to a Taylor rule (Taylor, 1993), according to which the short-term

policy rate responds to fluctuations in inflation and some measure of the output gap, incorporates

several features of an optimal monetary policy, from the standpoint of at least one simple class

2Baxter (1988, p.145).
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of optimizing models. Woodford (2001) shows the response prescribed by these rules tends to

stabilize inflation and the output gap, and stabilization of both variables is an appropriate goal,

as long as the output gap is properly defined. Furthermore, the prescribed response to these

variables guarantees determinate rational expectations equilibrium, and so prevents instability

due to self-fulfilling expectations.

Under certain simple conditions, a feedback rule that establishes a time-invariant relation between

the path of inflation and of the output gap and the level of nominal interest rates can bring about

an optimal pattern of equilibrium responses to real disturbances. Giannoni and Woodford (2010)

show that it is possible to find simple target criteria that are fully optimal across a wide range of

specifications of the economy stochastic disturbance processes. To the extent that the systematic

behavior implied by simple rules takes into account private sector expectations, commitment-

like behavior may be a good representation of monetary policy. Therefore, as McCallum (1999)

forcefully argues, neither of the two modes of central bank behavior has as yet been established as

empirically relevant. Our framework develops a new testing procedure for hypotheses concerning

these two alternative policy regimes.

This paper also contributes to a growing literature that proposes partial identification methods to

overcome lack of information about the economic environment. For instance, Manski and Tamer

(2002) examine inference on regressions with interval outcomes. Haile and Tamer (2003) use partial

identification to construct bounds on valuation distributions in second price auctions. Blundell,

Browning, and Crawford (2008) derive bounds that allow set-identification of predicted demand

responses in the study of consumer behavior. Ciliberto and Tamer (2009) propose new methods for

inference in entry games without requiring assumption about the equilibrium selection. Galichon

and Henry (2011) derive set-identifying restrictions for games with multiple equilibria in pure and

mixed strategies.

The rest of the paper is organized as follows. Section 2 describes the class of optimal linear

regulator problems to which out framework applies. Section 3 derives the bounds for inflation

implied by optimal monetary policy and outlines the inference procedure. Section 4 describes the

proposed test for optimal monetary policy. Section 5 describes the model selection test. Section 6

presents Montecarlo evidence on the small sample performance of the tests. Finally, Section 7

reports the empirical findings and Section 8 concludes.
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2 Optimal monetary policy

Our methodology applies to the optimal linear regulator problem obtained when the policymaker’s

objective function is quadratic and the structural equations describing the economy’s equilibrium

dynamics are linear. This framework is widely used to study optimal monetary policy in the New

Keynesian model with staggered prices and monopolistic competition.3 The objective function of

the monetary authority, which in the canonical case is derived as a second order approximation to

the utility of a stand-in agent around the stable equilibrium with zero inflation (Woodford, 2003),

takes the form

U = E0

[
−1

2

∞∑
t=0

βt (y′tWyt)

]
,

= E0

[
−1

2

∞∑
t=0

βt
(
π2
t + s′tQst + x′tRxt

)]
,

(1)

where Et denotes agents’s expectations at date t, yt = [πt, st, xt]
′ is a n × 1 vector of endogenous

variables with n ≥ 2; πt is a scalar random variable (the inflation rate in our benchmark example),

st is an m×1 vector, with m ≥ 1, and xt is of dimension (n−m− 1)×1; β ∈ (0, 1) is a parameter

scalar representing the discount factor. The matrix W is a n× n symmetric positive semidefinite

matrix containing the weights on the individual target variables, with the following block diagonal

structure

W =


1 0 0

0 Q 0

0 0 R

 , (2)

with Q and R conformable square matrices.

The constraints on possible equilibrium outcomes (the structural equations) are represented by

the following m-dimensional system

ut = Ayt−1 + Byt + βCEt (yt+1) ,

=
[
a As Ax

]

πt−1

st−1

xt−1

+
[
b Bs Bx

]

πt

st

xt

+ β
[
c Cs Cx

]
Et


πt+1

st+1

xt+1

 , (3)

3See Woodford (2003) for a detailed description of this class of structural models.
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for all t, where ut is a vector of exogenous disturbances, A, B and C are m×n matrices, a, b and

c are m× 1 vectors, and As, Ax, Bs, Bx, Cs and Cx are conformable matrices.4 In particular, Bs

is an m×m square matrix.

In the sequel, we restrict attention to models admitting a representation such that a = 0 and

As = 0, so that the vector of target variables [πt, st]
′ does not include predetermined variables, with

all the endogenous predetermined variables included in xt. Moreover, we require that Cs = 0 and

the matrix Bs to be nonsingular. These restrictions allow the Lagrange multipliers associated with

each of the m constraints to be mapped into the contemporaneous values of st. Many influential

models used to study optimal monetary policy satisfy these restriction. For example, Clarida et al.

(1999), Svensson and Woodford (2004) and Giannoni and Woodford (2004) model of inflation

inertia, all admit such representation.

The problem of the monetary authority under commitment is to choose bounded state contingent

sequences {yt}t≥0 to maximize (1) subject to (3). The Lagrangian formulation of this problem is

given by

E0

{
−1

2

∞∑
t=0

βt
[
π2
t + s′tQst + x′tRxt − λ′t (Ayt−1 + Byt + βCyt+1)

]}
, (4)

where λt is a h-dimensional vector of Lagrange multipliers, with initial condition λ−1 = 0. The

first order conditions solving the monetary authority’s problem under commitment are

πt − c′λt−1 − b′λt = 0, (5)

Qst −B′sλt = 0, (6)

Rxt −C′xλt−1 −B′xλt − βA′xEt (λt+1) = 0, (7)

for all t ≥ 0, together with the constraint (3) and the initial condition λ−1 = 0. From equation (5)

the necessary conditions for optimal policy under commitment require that the target variable πt

satisfies the condition

πt = c′λt−1 + b′λt. (8)

However, the commitment solution is time inconsistent in the Kydland and Prescott (1977) sense:

each period t, the monetary authority is tempted to behave as if λt−1 = 0, ignoring the impact of

4This formulation follows Dennis (2007) and Debortoli and Lakdawala (2015). The matrix C in the system of
equations (3) is premultiplied by the discount factor β for convenience, without any loss of generality.
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its current actions on the private sector expectations. Under discretion, the policymaker acts as if

λt−1 = 0, and the resulting path for target variable πt satisfies the condition

πt = b′λt. (9)

Finally, both under discretion and commitment, from equation (6) it is possible to obtain the

Lagrange multipliers as follows

λt = B′s
−1

Qst,

= Dst,
(10)

In what follows, we define the sublist of structural parameters φ = {b, c,D}, and let φ0 =

{b0, c0,D0} denote the “true” value of φ. In addition, we define πct (φ0) as the inflation in period

t consistent with the first order conditions for optimal policy under commitment, given knowledge

of st and the structural parameters in φ0. In the same way, πdt (φ0) is the inflation in period t

consistent with the first order conditions under discretion. Making use of (8), (9) and (10), πct (φ0)

and πdt (φ0) are, respectively, given by

πct (φ0) = c′0D0st−1 + b′0D0st, (11)

πdt (φ0) = b′0D0st. (12)

To model optimal monetary policy requires a decision about whether the first order conditions of

the policy maker are represented by (11) or, instead, by (12). But how does one decide whether

the behavior of the monetary authority should be classified as discretion or commitment-like? We

propose a general characterization of optimal monetary policy nesting both modes of behavior.

The approach is based on the derivation of bounds for the inflation rate under the maintained

assumption that the monetary authority implements optimal monetary policy, in the sense that

at any point in time either (11) or (12) is satisfied.

3 Bounds for inflation

Under a specific equilibrium concept, commitment or discretion, it is in principle possible to identify

φ0 from observed data for inflation and the output gap using, respectively, equation (11) or (12).
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Thus, lack of knowledge about the equilibrium concept is what prevents exact identification. A

general specification for optimal monetary policy, nesting the two alternative characterizations of

optimality follows from the next simple result.

Lemma 1. Consider an economy whose structural equations can be represented by the system (3),

with a = 0, As = 0, Cs = 0 and Bs a nonsingular matrix. Optimal policy implies that

Pr
(
πct (φ0) ≤ πt (φ0) ≤ πdt (φ0)

∣∣∣c′0D0st−1 ≤ 0
)

= 1,

Pr
(
πdt (φ0) ≤ πt (φ0) ≤ πct (φ0)

∣∣∣c′0D0st−1 > 0
)

= 1,

where πt (φ0) is the actual inflation rate in period t.

The bounds for inflation in Lemma 1 follow immediately from equations (11) and (12).

In the sequel, we assume that the observed inflation rate differs from the actual inflation rate

chosen by the monetary authority only through the presence of a measurement error with mean

Π̄0, possibly different from zero, thus allowing for the presence of a trend in measured inflation.5

Assumption 1. Let πt (φ0) be the actual inflation rate in period t. The observed inflation rate is

Πt = πt (φ0) + vt, where vt has mean Π̄0 and variance σ2
v.

3.1 Moment inequalities

The upshot of Lemma 1 is that we are able to derive moment inequality conditions implied by

optimal monetary policy and nesting commitment and discretion as two special cases. From

Lemma 1 it is immediate to see that

Pr
(
πct (φ0) + vt ≤ Πt ≤ πdt (φ0) + vt

∣∣∣c′0D0st−1 ≤ 0
)

= 1,

Pr
(
πdt (φ0) + vt ≤ Πt ≤ πct (φ0) + vt

∣∣∣c′0D0st−1 > 0
)

= 1,
(13)

which establishes a lower and upper bound for the observed inflation rate, Πt.

We assume that enough is known about the structural parameters of the economy so that the

sign of each element of φ0 is known with certainty, and denote S = sign (c′0D0) the 1 × p vector

5For instance, studies for the United States estimate the overstatement of true inflation to be in the range of
0.5 to 2.0 percentage points per year (Bernanke and Mishkin, 1997).
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which is obtained after applying the sign function to each element of c′0D0. Then, we define the

p-dimensional vector St = S′ ◦ st, where ◦ denotes the Schur product (element by element vector

multiplication). Next, we obtain 1 (St−1 ≤ 0) and 1 (St−1 > 0), the indicator functions taking value

one when, respectively, each element of St−1 is non-positive and each element of St−1 is positive,

and zero otherwise. We are thus able to derive the following moment inequalities that are implied

by optimal monetary policy

Proposition 1. Under Assumption 1, the following moment inequalities

E


− (Πt − b′0D0st − vt) 1 (St−1 ≤ 0)

(Πt − b′0D0st − vt) 1 (St−1 > 0)

(Πt − c′0D0st−1 − b′0D0st − vt) 1 (St−1 ≤ 0)

− (Πt − c′0D0st−1 − b′0D0st − vt) 1 (St−1 > 0)

 ≥ 0, (14)

are implied by optimal monetary policy under either commitment or discretion, where {b0, c0,D0}

denote the “true” structural parameter and E is the unconditional expectation operator.

Proposition 1 follows immediately from (13) and the fact that 1 (St−1 ≤ 0) = 1 is a sufficient

condition for c′0D0st−1 ≤ 0 and, similarly, that 1 (St−1 > 0) = 1 is a sufficient condition for

c′0D0st−1 > 0.6

Next, we define the following set of instruments

Assumption 2. Let Zt denote a p-dimensional vector of instruments such that

1. Zt has bounded support;

2. E [vt1 (St−1 ≤ 0)Zt] = Π̄E [1 (St−1 ≤ 0)Zt], and E [vt1 (St−1 > 0)Zt] = Π̄E [1 (St−1 > 0)Zt];

3. E
[(

Πt − Π̄
)

1 (St−1 ≤ 0)Zt
]
6= 0, E [st1 (St−1 ≤ 0)Zt] 6= 0, E [st−11 (St−1 ≤ 0)Zt] 6= 0.

Assumption 2.1. guarantees that, without loss of generality, the vector of instruments can be

restricted to have positive support. Assumption 2.2 requires the instrumental variables to be

uncorrelated with the measurement error vt. Finally, Assumption 2.3 requires that the instruments

are relevant.
6We construct the moment functions in 14 using 1 (St−1 ≤ 0) instead of 1 (c′0D0st−1 ≤ 0) to obtain moment

functions which are differentiable in the parameters φ (and in fact linear given an appropriate reparameterization),
thus avoiding complications to do with non-smooth moment functions. In particular, we explore the fact that
1 (St−1 ≤ 0) = 1 is a sufficient condition for 1 (c′0D0st−1 ≤ 0)=1.
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3.2 The identified set

Given Assumption 2, the moment inequalities in Proposition 1 can be written as

E
[
md,t

(
φ0, Π̄0

)]
≡ E

 − (Πt − Π̄0 − b′0D0st
)

1 (St−1 ≤ 0)Zt(
Πt − Π̄0 − b′0D0st

)
1 (St−1 > 0)Zt

 ≥ 0, (15)

E
[
mc,t

(
φ0, Π̄0

)]
≡ E

 (
Πt − Π̄0 − c′0D0st−1 − b′0D0st

)
1 (St−1 ≤ 0)Zt

−
(
Πt − Π̄0 − c′0D0st−1 − b′0D0st

)
1 (St−1 > 0)Zt

 ≥ 0. (16)

We use θ =
(
φ, Π̄

)
∈ Θ to denote a representative value of the parameter space. The “true”

underlying vector value of θ in the model is denoted θ0 which, in general, is not point identified by

the conditions (15) and (16). Thus, we define the identified set consistent with optimal monetary

policy as follows

Definition 1. Let θ =
(
φ, Π̄

)
∈ Θ. The identified set is defined as

ΘI ≡
{
θ ∈ Θ : such that E [mt (θ)] ≥ 0

}
with mt (θ) ≡

[
md,t

(
φ, Π̄

)
, mc,t

(
φ, Π̄

)]′
.

Under optimal monetary policy, ΘI is never empty. From the linearity of the moment functions

E [mt (θ)] = E [m (θ0)] +∇θm
′ (θ − θ0) , (17)

where ∇θm denotes the gradient of the moment functions. The first terms on the RHS of (17) is

non-negative because of (15) and (16). Hence, by construction θ0 ∈ ΘI . On the other hand, ΘI

may be non-empty even if (13) does not hold. In fact, violation of (13) does not necessary imply

a violation of (15) and/or (16). Thus, θ0 may belong to the identified set even in the case of no

optimal monetary policy. In this sense, a non-empty identified set, while necessary for optimal

monetary policy, is not sufficient.

Although our moment inequalities are linear in the transformed parameter space θ̃ =
{
φ†, φ‡, Π̄

}
,

with φ† = c′D and φ‡ = b′D, our set-up is rather different from Bontemps, Magnac, and Maurin

(2012). In their case, lack of point identification arises because one can observe only lower and

upper bounds for the dependent variable. In our case, we observe Πt, st and st−1, and lack
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of identification arises because we do not know which model generated the observed series. In

particular, their characterization of the identified set relies on the boundedness of the intervals

defined by the upper and lower bound of the observed variables, and thus does not necessarily

apply to our set-up.7 Beresteanu and Molinari (2008) random set approach also applies to models

which are incomplete because the dependent variable and/or the regressors are interval-valued.

For this reason, in the sequel we use the criterion function of Chernozhukov et al. (2007).

Before proceeding, notice that one may be tempted to reduce the moment inequalities (15) and (16)

into a single moment equality condition, given by

E
[ (

Πt − Π̄0 − ϕtc′0D0st−1 − b′0D0st
)
Zt

]
= 0,

where ϕt ∈ {0, 1} is a random variable taking value 1 in the case of commitment and 0 in the case

of discretion. If ϕt is degenerate, it may be treated as a fixed parameter ϕ and the model can be

estimated by GMM, provided appropriate instruments are available. This is an application of the

conduct parameter method (CPM) sometimes used in the industrial organization literature. But,

this approach is problematic since optimal monetary policy is characterized by either commitment

or discretion, and the standard regularity condition for consistency are violated.8

3.3 Preliminaries on inference

Before describing the model specification test in Section 4, we describe some preliminary notions

related to inference on the identified set ΘI . The basic idea underlying the specification tests is

to use the bounds for the observed inflation rate derived above to generate a family of moment

inequality conditions that are consistent with optimal policy. These moment inequality conditions

may be used to obtain a criterion function whose set of minimizers is the estimated identified set.

If the estimated identified set is non-empty, we construct the corresponding confidence region.

7In the Appendix E.3, included as supplementary material, we show how to adapt our framework to provide an
interpretation of the model specification test based on the set-up developed by Bontemps et al. (2012).

8In the IO literature, the CPM methods is usually applied to obtain an average estimate of market power across
segmented markets with different structures (Corts, 1999, for a discussion of existing applications). Only in this
context it is possible to interpret an estimator for ϕ with continuous support.
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We define the following 4p moment functions associated with (15) and (16)

m−i,d,t
(
φ, Π̄

)
= −

(
Πt − Π̄− b′Dst

)
1 (St−1 ≤ 0)Zi

t ,

m+
i,d,t

(
φ, Π̄

)
=

(
Πt − Π̄− b′Dst

)
1 (St−1 > 0)Zi

t ,

m−i,c,t
(
φ, Π̄

)
=

(
Πt − Π̄− c′Dst−1 − b′Dst

)
1 (St−1 ≤ 0)Zi

t ,

m+
i,c,t

(
φ, Π̄

)
= −

(
Πt − Π̄− c′Dst−1 − b′Dst

)
1 (St−1 > 0)Zi

t ,

with Zi
t the ith element of Zt. The corresponding sample moment functions are

m−i,d,T
(
φ, Π̄

)
= T−1

T∑
t=1

m−i,d,t
(
φ, Π̄

)
, m+

i,d,T

(
φ, Π̄

)
= T−1

T∑
t=1

m+
i,d,t

(
φ, Π̄

)
,

m−i,c,T
(
φ, Π̄

)
= T−1

T∑
t=1

m−i,d,t
(
φ, Π̄

)
, m+

i,c,T

(
φ, Π̄

)
= T−1

T∑
t=1

m+
i,c,t

(
φ, Π̄

)
,

and are collected in the 4p-dimensional vector of sample moment functions

mT (θ) =



(
m−1,d,T

(
φ, Π̄

)
, . . . ,m−p,d,T

(
φ, Π̄

))′(
m+

1,d,T

(
φ, Π̄

)
, . . . ,m+

p,d,T

(
φ, Π̄

))′(
m−1,c,T

(
φ, Π̄

)
, . . . ,m−p,c,T

(
φ, Π̄

))′(
m+

1,c,T

(
φ, Π̄

)
, . . . ,m+

p,c,T

(
φ, Π̄

))′

 . (18)

We let mi,T (θ) denote the i-th element of mT (θ), and define V (θ), the asymptotic variance of
√
TmT (θ), and V̂T (θ) the corresponding heteroscedasticity and autocorrelation consistent (HAC)

estimator.9 Finally, we impose the following assumption

Assumption 3. The following conditions are satisfied

1. Wt = (Πt, st, Zt) is a strong mixing process with size −r/(r − 2), where r > 2;

2. E
(
|Wi,t|2r+ι

)
<∞, ι > 0 and i = 1, 2, . . . , p+ 2;

3. plimT→∞ V̂T (θ) = V (θ) is positive definite for all θ ∈ Θ, where Θ is compact;

4. supθ∈Θ |∇θmT (θ)−D (θ)| pr→ 0, where D (θ) is full rank.

9 This is obtained as V̂T (θ) = 1
T

∑sT
k=−sT

∑T−sT
t=sT

λk,T (mt (θ)−mT (θ)) (mt+k (θ)−mT (θ))
′
, sT is a lag trun-

cation parameter such that sT = o(T 1/2) and λk,T = 1− k/ (sT + 1).
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The criterion function we use for the inferential procedure is

QT (θ) =

4p∑
i=1

[mi,T (θ)]2−
v̂i,i (θ)

, (19)

where [x]− = x 1 (x ≤ 0), and v̂i,i (θ) is the i−th element on the diagonal of V̂T (θ). The probability

limit of QT (θ) is given by Q (θ) = p limT→∞QT (θ). The criterion function Q has the property

that Q(θ) ≥ 0 for all θ ∈ Θ and that Q(θ) = 0 if and only if θ ∈ ΘI , where ΘI is as in Definition 1.

Under Assumptions 1–3 a consistent estimator of the identified set Θ̂I
T can be obtained as

Θ̂I
T =

{
θ ∈ Θ s.t. TQT (θ) ≤ d2

T

}
, (20)

where dT satisfies the conditions
√

ln lnT/dT → 0 and dT/
√
T → 0. In Appendix B we show

how to obtain an estimator for the identified set and construct a confidence region C1−α
T that

asymptotically contains the identified set ΘI with probability 1− α.

4 Specification tests

The next step in our analysis is to test for the null hypothesis of discretion (commitment), taking

into account the lower (upper) bound imposed by optimal monetary policy. Heuristically, this

implies testing whether there is a θ in the identified set for which the moment inequality conditions

associated with either discretion or commitment hold as equalities. If there is such θ, then we have

evidence in favor of discretion (commitment). The test consists of a two-step procedure: in the first

step the structural parameters are estimated under either discretion or commitment; in the second

step we test if the estimated parameters are in the identified set implied by optimal monetary

policy under either discretion or commitment.

In the sequel we consider our benchmark application, the New Keynesian model with staggered

prices and monopolistic competition that has become widely used to study optimal monetary

policy.10 As is well known, the optimizing model of staggered price-setting proposed by Calvo

(1983) results in the following equation relating the inflation rate to the economy-wide real marginal

10See Appendix A for a more detailed description of the structural model.
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cost and expected inflation

πt = βEtπt+1 + ψst + ut, (21)

where ψ and β are positive parameters related to technology and preferences, πt is the inflation rate,

st the real marginal cost in deviation from the flexible-price steady state, and ut is an exogenous

stochastic shock resulting from time-varying markups and other distortions.

The objective function of the monetary authority is derived as a second order approximation to

the utility of a stand-in agent around the stable equilibrium associated with zero inflation, and

takes the form

U = E0

[
−1

2

∞∑
t=0

βt
(
π2
t + ζs2

t

)]
, (22)

with α a positive parameter that relates to technology and preferences. Thus, in the benchmark

model we obtain b = 1, Bs = −ψ, c = −1, Q = α, and D = − (ζ/ψ), and the moment inequality

conditions that characterize optimal monetary policy corresponding to (15) and (16) specialize as

follows

E
[
md,t

(
D, Π̄

)]
≡ E

 − (Πt − Π̄−Dst
)

1 (st−1 ≤ 0)Zt(
Πt − Π̄−Dst

)
1 (st−1 > 0)Zt

 ≥ 0, (23)

E
[
mc,t

(
D, Π̄

)]
≡ E

 (
Πt − Π̄−D∆st

)
1 (st−1 ≤ 0)Zt

−
(
Πt − Π̄−D∆st

)
1 (st−1 > 0)Zt

 ≥ 0, (24)

with θ =
{
D, Π̄

}
, the parameter space. In more general applications, the parameter vectors in b

and c may be unknown, and θ =
{
b, c,D, Π̄

}
. In such cases, b and c may be pre-estimated from

the system (3) as they are invariant across policy regimes, and the covariance estimator V̂T (θ)

needs to capture the estimation error due to the estimators b̂ and ĉ.

4.1 Testing for discretion

If the monetary authority implements optimal policy under discretion the joint path of actual

inflation and the economy-wide real marginal cost satisfies the moment conditions

E
[
m0
d,t (θ0)

]
= E

[(
Πt − Π̄0 −D0st

)
Zt
]

= 0, (25)
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E [mc,t (θ0)] = E

 (
Πt − Π̄0 −D0∆st

)
1 (St−1 ≤ 0)Zt

−
(
Πt − Π̄0 −D0∆st

)
1 (St−1 > 0)Zt

 ≥ 0, (26)

with m0 denoting the moment functions that do not include the indicator on st−1. The moment

equality conditions in (25) follow from the assumption of discretion and the moment inequality

conditions (26) impose a lower bound to the observed inflation rate as implied by optimal monetary

policy. As already mentioned, conditions (25) point identify θ0, provided we can find at least one

instrument, in addition to the intercept, satisfying Assumption 2. We define the following test for

optimal monetary policy under discretion.

Definition 2. Let θ0 ≡
(
D0, Π̄0

)
∈ Θ. We define the null hypothesis of discretion and optimal

monetary policy as,

Hd
0 : θ0 satisfies conditions (25)–(26),

against the alternative Hd
1 : θ0 does not satisfy conditions (25)–(26).

To test the null hypothesis of discretion we follow a two-step procedure. Under the null hypothesis,

the structural parameter vector θ0 is point-identified and it can be consistently estimated via the

optimal GMM estimator using the moment conditions (25).11 Thus, to test the null hypothesis of

discretion we first obtain an estimate for the structural parameter vector using the optimal GMM

estimator, denoted θ̂d. In the second step, we construct the following test statistic

TQd
T

(
θ̂d

)
= T

 p∑
i=1

m0
i,d,T

(
θ̂d

)2

v̂i,i
(
θ̂d

) +

2p∑
i=1

[
mi,c,T

(
θ̂d

)]2

−

v̂i,i
(
θ̂d

)
 , (27)

where v̂i,i
(
θ̂d

)
is the i-th diagonal element of V̂T

(
θ̂d

)
, the HAC estimator of the asymptotic

variance of
√
T
[
m0
d,T

(
θ̂d

)
,mc,T

(
θ̂d

)]
, which takes into account the estimation error in θ̂d.

12

Notice that since the first p moment conditions hold with equality, they all contribute to the

asymptotic distribution of TQd
T

(
θ̂d

)
. Thus, we apply the Generalized Moment Selection (GMS)

11If we assume that θ0 satisfies (25)–(26), then it is possible to obtain an estimator using the approach of Moon
and Schorfheide (2009), who consider the case in which the set of moment equalities point identify the parameters
of interest, and use the additional information provided by the set of moment inequalities to improve efficiency.
However, our objective is to test whether there exists θ0 satisfying (25)–(26).

12See Appendix C for the definition of V̂T

(
θ̂d

)
.

16



procedure introduced by Andrews and Soares (2010) only to the inequality conditions.13 Andrews

and Soares (2010) study the limiting distribution of the statistic in (27) evaluated at a fixed θ. In

our case, due to the two-step testing procedure, we need to take into account the contribution of

the estimation error to the asymptotic variance of the moment conditions, and compute bootstrap

critical values that properly mimic the contribution of parameter estimation error. The first order

validity of the bootstrap percentiles is established in the following Proposition.

Proposition 2. Let Assumptions 1, 2 and 3 hold. Let cdB,α be the (1−α) percentile of the empirical

distribution of TQ∗dT

(
θ̂∗d

)
, the bootstrap counterpart of TQd

T

(
θ̂d

)
, which is defined in the proof of

the Proposition. Then, as T →∞, B →∞, l→∞, and l2/T → 0, we have that:

(i) under Hd
0 , lim sup

T,B→∞
Pr
(
TQd

T

(
θ̂d

)
> cdB,α

)
= α,

(ii) under Hd
1 , lim

T,B→∞
Pr
(
TQd

T

(
θ̂d

)
> cdB,α

)
= 1,

where B denotes the number of bootstrap replications.

4.2 Testing for commitment

If the monetary authority implements optimal policy under commitment, the joint path of actual

inflation and the economy-wide real marginal cost is given by

E [md,t (θ0)] = E

 − (Πt − Π̄0 −D0st
)

1 (St−1 ≤ 0)Zt(
Πt − Π̄0 −D0st

)
1 (St−1 > 0)Zt

 ≥ 0, (28)

E
[
m0
c,t (θ0)

]
= E

[(
Πt − Π̄0 −D0∆st

)
Zt
]

= 0, (29)

where the moment equality condition (29) follows from the assumption of commitment and the

moment inequality condition (28) imposes an upper bound to the observed inflation rate, as implied

by optimal monetary policy. We define the following test for optimal policy under commitment.

Definition 3. Let θ0 ≡
(
D0, Π̄0

)
∈ Θ. We define the null hypothesis of commitment and optimal

monetary policy as,

Hc
0 : θ0 satisfies conditions (28)–(29).

13See Appendix B for details on the GMS method.
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against the alternative Hc
1 : θ0 does not satisfy conditions (28)–(29).

The test of optimal monetary policy under commitment has the same structure as the test under

discretion, with an analogous test statistic, given by

TQc
T

(
θ̂c

)
= T

 2p∑
i=1

[
mi,d,T

(
θ̂c

)]2

−

v̂i,i
(
θ̂c

) +

p∑
i=1

m0
i,c,T

(
θ̂c

)2

v̂i,i
(
θ̂c

)
 , (30)

with θ̂c the optimal GMM estimator under commitment. We establish the following Proposition.

Proposition 3. Let Assumptions 1, 2 and 3 hold. Let ccα,B be the (1−α) percentile of the empirical

distribution of TQ∗cT

(
θ̂∗c

)
, the bootstrap counterpart of TQc

T

(
θ̂c

)
. Then, as T → ∞, B → ∞,

l→∞, and l2/T → 0, we have that:

(i) under Hc
0, lim sup

T,B→∞
Pr
(
TQc

T

(
θ̂c

)
> ccα,B

)
= α,

(ii) under Hc
1, lim

T,B→∞
Pr
(
TQc

T

(
θ̂c

)
> ccα,B

)
= 1,

where B denotes the number of bootstrap replications.

5 Model selection

The moment conditions (25), (26), (28) and (29) can also be used to perform model selection

tests to discriminate between discretion and commitment, maintaining the assumption of optimal

monetary policy. Following Shi (2015), we construct a quasi likelihood ratio test for the null

hypothesis that both models (discretion and commitment) are equally close to the true data. If

the null hypothesis is rejected, we select the one closer to the true model in terms of a pseudo-

distance measure.

We test the following null hypothesis

H0 : d(D, µ) = d(C, µ), (31)

against the alternative H1 : d(D, µ) < d(C, µ), where D is the model for discretion and optimal

policy in (25) and (26), C is the model for commitment and optimal policy in (28) and (29), and
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µ is the true model. To test the null hypothesis in (31), we construct the test statistic

QLRT = max
θ∈Θ

1

T

T∑
t=1

Md
t (θ, γ̂d (θ))−max

θ∈Θ

1

T

T∑
t=1

Mc
t (θ, γ̂c (θ)) , (32)

where Md
t (θ, γ (θ)) = exp

γ (θ) ′

m0
d,t (θ)

mc,t (θ)

, Mc
t (θ, γ (θ)) = exp

γ (θ) ′

m0
c,t (θ)

md,t (θ)

, and

γ̂i (θi) = arg min
γ∈Rp×R2p

+

T−1

T∑
t=1

Mi
t (θi, γ) , (33)

with i ∈ {d, c}. In turn, the pseudo true set of parameters can be estimated as

Θ̂i
T = arg max

θ∈Θ
T−1

T∑
t=1

Mi
t (θ, γ̂i (θ)) . (34)

Under discretion and optimal policy the conditions (25) and (26) point identify θ̂dT and, similarly,

under commitment and optimal policy, the conditions (28) and (29) point-identify θ̂cT . Having the

estimated parameters, we define

T ω̂2
T

(
θ̂d, θ̂c

)
=

sT∑
k=−sT

T−sT∑
t=sT

λk,T
(
∆t − ∆̄

) (
∆t+k − ∆̄

)′
, (35)

with ∆t = Md
t

(
θ̂d, γ̂d

(
θ̂d

))
−Mc

t

(
θ̂c, γ̂c

(
θ̂c

))
, ∆̄ = T−1

T∑
t=1

∆t, and where sT and λk,T are as

defined in footnote 9.

Shi (2015) shows that under H0 we have that

√
T

QLRT

ω̂T

(
θ̂d, θ̂c

) →d N(0, 1), (36)

and, therefore, we reject the null hypothesis (31) in favor of the alternative at the 1 − α level if
√
TQLRT/ω̂T

(
θ̂d, θ̂c

)
> zα, where zα is the 1− α quantile of the standard normal distribution.
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6 Montecarlo experiments

In this section, we perform Montecarlo simulations to analyze the small sample properties of the

model specification test presented in Section 4. The data generating process (DGP) used in the

Montecarlo experiment is described in Appendix D. We simulate 1,000 vectors of time-series, each

with 1,100 observations and we discard the first 1,000 observations to eliminate the influence of the

initial values. The resulting time-series length is 100, which is similar to our empirical application

and a typical sample size in empirical studies of monetary policy using quarterly observations. We

consider both discretion and commitment, and we seek to analyze the size and power properties

of the tests described in Propositions 2 and 3. We also examine how the performance of the

proposed tests varies with the strength of the instruments, by varying the length of the lags used

as instruments. In particular, the instrumental variables used in the Monte Carlo are lagged

values of inflation and the labor income share, and we look at the performance of the test when

the instrument list includes the lags: (t− 2, t− 3, t− 4); (t− 3, t− 4, t− 5); (t− 4, t− 5, t− 6);

and (t− 5, t− 6, t− 7).

For each sample, we obtain the critical values cdα,B and ccα,B following the bootstrap procedure

described in Propositions 2 and 3. Table 1 reports the percentage of times the null hypothesis is

rejected, obtained from the critical values based on the nominal level α = 0.10. The results show

that our test is undersized, rejecting the true DGP about 1% of the times instead of 10%. The

power properties of the test are good. When the DGP is discretion, the false model is rejected

very frequently, with rejection rates ranging between 99%, when instruments are strong, and 33%,

for the weakest set of instruments. In turn, when the DGP is commitment, the rejection rates for

the false model range between 76% and 10%. As expected, the power of the test declines as the

instruments become weaker. However, the test is found to still perform well when very long lags

are used as instrumental variables.

7 Empirical application

In this section, we apply the model specification and model selection tests proposed above to study

the monetary policy in the United States since the start of the 1980s, and using the benchmark

model of optimal monetary policy described in Section 6. The sample spans a period in which
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Table 1: Monte Carlo experiments: rejection rates (nominal level α = 0.10)

DGP: Discretion (T = 250)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 0.118 0.112 0.126
H0: commitment 1.000 1.000 0.992

DGP: Commitment (T = 250)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 0.980 0.954 0.926
H0: commitment 0.148 0.192 0.174

DGP: Discretion (T = 500)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 0.086 0.092 0.122
H0: commitment 1.000 1.000 1.000

DGP: Commitment (T = 500)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 1.000 0.994 1.000
H0: commitment 0.126 0.160 0.152

The table reports the rejection rates of the test statistics TQT , in (27) and (30), with
10% nominal level. Each Monte Carlo simulation has T observations and “burn-in”
sample of size 1,000. The critical values cdα,B and ccα,B are based on 500 block-bootstrap
replications of block size 4.

monetary policy has been perceived as good (Clarida, Gali, and Gertler, 2000).14

7.1 Data and sample

We use quarterly time-series for the US economy over the sample period 1983Q1 to 2008Q3.

Following Gaĺı and Gertler (1999) and Sbordone (2002), we exploit the proportional relationship

between the output gap and the labor income share (equivalently, real unit labor costs). Hence, we

use the labor income share in the non-farm business sector, detrended using a quadratic polynomial,

to measure st. The measure of inflation is the percentage change in the GDP deflator.

14The term “good” is used loosely to describe a period in which monetary policy is consistent with achieving
stable and low inflation. Clarida et al. (2000) argue that this is due to a stronger systematic reaction of monetary
policy to changes in expected inflation.
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Figure 1: labor share and inflation in the US, 1983Q1–2008Q3.
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The econometric framework developed in this paper is for stationarity data (see Assumption 3).

Halunga, Osborn, and Sensier (2009) show that there is a change in inflation persistence from I (1)

to I (0) dated at June 1982. This result is related to the study of Lubik and Schorfheide (2004)

who estimate a structural model of monetary policy for the US using full-information methods,

and find that only after 1982 the estimated interest-rate feedback rule that characterizes monetary

policy is consistent with equilibrium determinacy. Moreover, following the analysis in Clarida et al.

(2000), we study the sample starting from 1983Q1, that removes the first three years of the Volcker

era. Clarida et al. (2000) offer two reasons for doing this. First, this period was characterized

by a sudden and permanent disinflation episode bringing inflation down from about 10 percent

to 4 percent. Second, over the period 1979Q4 – 1982Q4, the operating procedures of the Federal

Reserve involved targeting non-borrowed reserves as opposed to the Federal Funds rate. Thus,

our empirical analysis focuses on the sample period 1983Q1 to 2008Q3, which spans the period

starting after the disinflation and monetary policy shifts that occurred in the early 1980s and

extends until the period when the interest rate zero lower bound becomes a binding constraint.15

Figure 1 plots the time-series of the US labor income share and inflation for the sample period

1983Q1 to 2008Q3.

15After 2008Q3, the federal funds rate rapidly fell toward the lower bound, signaling a period of unconventional
monetary policy for which our econometric specification may be inadequate.
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Following standard practice in the literature (see, for example, Gaĺı and Gertler, 1999), we include

in the instrument set lagged values of the labor income share and inflation, assumed to be orthog-

onal to the measurement error in inflation (Assumption 2.2). The instrument set used comprises

the first, second and third-order lags of the labor income share and inflation. These instrumental

variables are adjusted using the transformation Z+ = Z − min (Z), guaranteeing positiveness.

Notice that Assumption 2.1 guarantees this transformation always exists.

The complete instrument set also includes the unit vector, yielding p = 7 instruments and 28

moment conditions overall. Of course, weak instruments are a potential problem given that the

first step in our test requires a consistent estimator of the structural parameter vector θ0. For

example, when we are testing discretion we require that

E
[
m0
d,t (θ0)

]
= E

[(
Πt − Π̄0 −D0st

)
Zt
]

= 0, (37)

holds at the “true” value θ0 =
(
D0, Π̄0

)′
and no other value of θ. If the instrument is irrelevant,

in the sense that the correlation between Πt and Zt is zero (or weakly different from zero), then

θ0 =
(
D0, Π̄0

)′
is not identified since, given Π̄0, any value of D satisfies the moment condition.

Thus, instrument relevance requires the correlation between Πt and Zt to be strong, as indicated

by Assumption 2.3.

Reassuringly, the instruments used (which include lags of inflation and of the real marginal cost)

pass the standard tests of weak instruments. In particular, the Kleibergen and Paap (2006) Wald

statistic (the robust counterpart of the Cragg-Donald Wald statistic) is 14.079, which suggests

that weak identification should not be considered a problem. Finally, the null hypothesis of

underidentification is confortably rejected based on the Kleibergen and Paap (2006) rank test,

that yields a p-value of 0.001.

7.2 Baseline empirical results

We first examine the formal test statistics developed in sections 4.1 and 4.2 to test for discretion

and commitment, under the maintained assumption of optimal monetary policy. The tests are

based on a two-step procedure. In particular, to test discretion we first estimate the parameter

vector θd via optimal GMM from condition (25). Next, using the estimated vector of parameters
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Table 2: model specification and model selection tests

Panel A: model specification tests

H0: discretion H0: commitment

J–test 11.730 11.637

p–val (0.14) (0.20)

TQT 16.900 21.830

p–val (0.40) (0.04)

Panel B: model selection test

H0 : d(D, µ) = d(C, µ)

QLRT 4.916
p–val (0.00)

The p–values for the J test and for TQT are obtained
from 1,000 block-bootstrap replications with blocks of
size 4. The J test is based on the moment condi-
tion (25) for discretion, and (29) for commitment. The
test statistics TQT correspond to (27) and (30). The
test statistic QLRT is given by (32). The instrument
list includes Πt−1,Πt−2,Πt−3, and st−1, st−2, st−3.

θ̂d we construct the test statistic for discretion TQd
T

(
θ̂d

)
and compute the bootstrap critical value.

To test commitment, we proceed in an analogous way, making use of condition (29) to obtain θ̂c.

The results are reported in the Panel A of Table 2. Since we use enough instrumental variables

for overidentification, we start by obtaining results from the standard Hansen J–test statistic for

overidentifying restrictions. The table reports the J–tests and the corresponding p–values, for the

null hypotheses of discretion (first column) and commitment (second column) based, respectively,

on the moment conditions in (25) and (29). The p–value of the J–test for discretion is 14% and

that for commitment is 21%. Thus, the standard test for overidentifying restrictions fails to reject

either model.

By not making use of the full set of implications of optimal monetary policy, we are unable to

reject either policy regimes. However, using the additional information implied by the maintained

assumption of optimal monetary policy, we can test the composite null hypothesis of optimal

monetary policy and a specific policy regime, discretion or commitment, by constructing the

test statistic TQT . The test statistic is based on equation (27) for the case of discretion and
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equation (30) for the case of commitment. For the case of discretion, the p–value associated with

the test statistic is 40%. Instead, for the case of commitment, the p–value is 4%, allowing for

rejection of the null hypothesis of optimal policy under commitment at the 5% level. Thus, we

reject commitment but fail to reject discretion at all conventional levels.

Finally, Panel B of Table 2 reports the results from the Shi (2015) model selection test presented

in Section 5. We consider the null hypothesis that the distance between the commitment and

discretion model is zero, against the two-sided alternative, and construct the test statistic so that

a positive realization of QLRT constitutes a rejection of the null hypothesis in favor of discretion.

The test statistic is indeed positive, with QLRT = 4.916 and the p-value is less than 1%. Thus,

the null hypothesis is rejected decisively in favor of the alternative of discretion.

7.3 Inflation indexation

Our baseline model corresponds to a simple version of the NK model. However, it is possible

to apply the specification test proposed in this paper to more general versions of the model that

include sources of endogenous persistence that have been found to be empirically relevant. To

illustrate this point, we now consider a version of the NK model that includes inflation inertia.16

We incorporate inflation inertia by considering a variant of the Calvo model in which firms

index to lagged inflation if they cannot re-optimize their price, as in Giannoni and Woodford

(2004) and Christiano, Eichenbaum, and Evans (2005). The optimizing model of staggered price-

setting with partial indexation results in the following equation relating the rate of inflation to the

economy-wide real marginal cost, lagged inflation and expected inflation

πt − γπt−1 = βEt (πt+1 − γπt) + ψst + ut, (38)

where γ ∈ [0, 1] indicates the degree of indexation. This hybrid version of the NK Phillips Curve

is widely used in empirical work. Giannoni and Woodford (2004) show that the welfare-theoretic

stabilization objective function that corresponds to the formulation of the Phillips Curve with

16In Appendix E.1 (available as supplementary material), we show how our methodology can be applied to a
special (but empirically salient) case of the Erceg, Henderson, and Levin (2000) model with sticky wages as well as
prices.
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inflation indexation includes as a target variable the “quasi-differenced” inflation, given by

π̃t = πt − γπt−1. (39)

Thus, the policymaker’s problem is to maximize

U = −E0

[
1

2

∞∑
t=0

βt
(
π̃2
t + ζs2

t

)]
. (40)

subject to the Phillips Curve (38), which can be written in terms of π̃t as follows

π̃t = βEtπ̃t+1 + ψst + ut, (41)

This model is analogous to our baseline model, except that πt is everywhere replaced by the

quasi-differenced inflation rate π̃t. Therefore, the moment inequality conditions that characterize

optimal monetary policy are given by the moment conditions analogous to (15) and (16), but with

Π̃t = Πt − γ0Πt−1 in place of Πt and (1− γ0) Π̄0 in place of Π̄0, as follows

E
[
md,t

(
D0, γ0, Π̄0

)]
≡ E

 −(Π̃t − (1− γ0) Π̄0 −D0st

)
1 (st−1 ≤ 0)Zt(

Π̃t − (1− γ0) Π̄0 −D0st

)
1 (st−1 > 0)Zt

 ≥ 0, (42)

E
[
mc,t

(
D0, γ0, Π̄0

)]
≡ E

 (
Π̃t − (1− γ0) Π̄0 −D0∆st

)
1 (st−1 ≤ 0)Zt

−
(

Π̃t − (1− γ0) Π̄0 −D0∆st

)
1 (st−1 > 0)Zt

 ≥ 0. (43)

Given Asumption 1, the measurement error in quasi-differenced inflation is given by the first-order

moving average ṽt = vt − γvt−1, and has mean (1− γ) Π0 and variance (1 + γ2)σ2
v . Therefore, the

instrumental variables in Zt should not include the first lag of measured inflation, since they need

to be independent from vt−1.

In Table 3 we show results for the standard J-test, our model specification test and the model

selection test of Shi (2015) constructed based on the moment inequality conditions (42) and (43).

The results are shown for different levels of inflation indexation, including γ = 0.2, 0.4, 0.6 and 0.8,

for discretion (Panel A) and commitment (Panel B). We notice first that the J-test fails to reject

at the 10% level any of the 8 models considered. Instead, our test fails to reject discretion for each

level of indexation considered but rejects commitment for γ = 0.2 and γ = 0.4.
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Table 3: specification test (model with inflation indexation)

Panel A: H0 is Discretion

indexation: γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

J-test (p–val) 0.223 0.195 0.141 0.100

TQT (p–val) 0.279 0.248 0.276 0.403

Panel B: H0 is Commitment

indexation: γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

J-test (p–val) 0.433 0.392 0.405 0.314

TQT (p–val) 0.068 0.073 0.130 0.160

Panel C: model selection test

indexation: γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

QLRT (p–val) 0.008 0.019 0.026 0.010

The p–values for the J test and for TQT are obtained from 1,000 block-
bootstrap replications with blocks of size 4. The instrument list includes
Πt−2,Πt−3,Πt−4, and st−2, st−3, st−4.

Another important finding is that it becomes more difficult to reject optimal policy (either discre-

tion or commitment) as the degree of inflation indexation is increased. This finding has a natural

interpretation. When there is no inflation indexation, optimal policy yields a process for inflation

which has a low degree of persistence. This counterfactual feature leads to the empirical rejection

of the model. Instead, with higher degrees of inflation indexation, optimal policy is consistent

with some persistency in the level of inflation. Thus, it is harder to reject both discretion and

commitment if we allow for a high degree of inflation indexation.

In these circumstances, the model selection test of Shi (2015) presented in Section 5 is specially

relevant. Results are reported in Panel C of Table 3. We consider the null hypothesis that the

distance between the commitment and discretion model is zero, against the two-sided alternative,

and construct the test statistic so that a positive realization of QLRT constitutes a rejection of

the null hypothesis in favor of discretion. For all four levels of inflation indexation considered, the

p-value is less than 5%. Thus, the null hypothesis is rejected decisively in favor of the alternative

of discretion, no matter the level of inflation indexation.
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8 Conclusion

This paper develops a methodology for estimating and testing a model of optimal monetary policy

without requiring an explicit choice of the relevant equilibrium concept. The procedure considers

a general specification of optimal monetary policy that nests discretion and commitment as two

special cases. The general specification is obtained by deriving bounds for inflation that are

consistent with both forms of optimal policy. This allows for the construction of a test statistic

based on the combination of moment equality and inequality conditions that incorporate a wider set

of implications of optimal monetary policy and, therefore, provides a more powerful specification

test. Yet, unlike full-information methods, our approach does not require strong assumptions

about the nature of the forcing variables.

We apply our method to investigate if the behavior of the United States monetary authority is

consistent with the New Keynesian model of optimal monetary policy. Our test fails to reject

the null hypothesis of discretion but rejects the null hypothesis of commitment. In contrast, the

standard J–test of overidentifying restrictions fails to reject either policy regime. Thus, by making

use of the full set of implications of optimal monetary policy, we are able to discriminate across

policy regimes, rejecting commitment but not discretion.

Our two-step testing procedure can be used more generally to test the validity of models that

combine moment equality and inequality conditions, when the parameters of the model can be

consistently estimated under the null hypothesis.
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Appendix

A Benchmark structural model

The framework is the New Keynesian forward-looking model with monopolistic competition and

Calvo price-setting described in Clarida et al. (1999) and Woodford (2010), with an efficient steady

state. In the log-linear form model, the inflation rate πt, the economy’s log average real marginal

cost in deviation from its flexible price steady state st, and the output gap xt, are determined by

an aggregate supply and an aggregate demand relation, as follows

πt = βEtπt+1 + ψst + ut, (A.1)

zt = Etzt+1 − σ (it − Etπt+1) + νt, (A.2)

where zt = ln (Yt/Y
n
t ) is the output gap , it ≥ −i? denotes the nominal interest rate in deviation

from its steady state i?, ut is an exogenous stochastic shock resulting from time-varying desired

markups and other distortions, νt captures shocks to the natural real interest rate, β is the agent’s

discount factor, σ > 0 is the elasticity of intertemporal substitution and ψ is a nonlinear function

of the relevant structural parameters, given by

ψ =
(1− α) (1− αβ)

α (1 + ϑς)
, (A.3)

with α ∈ (0, 1) the fraction of prices that are not reset optimally each period, ϑ > 1 the elasticity

of substitution across differentiated goods, and ς > 0 the elasticity of each firm’s real marginal

cost with respect to its own output level.

In turn, the relation between the output gap and the economy’s log average real marginal cost is

given by

st =
(
ς + σ−1

)
zt, (A.4)

and the aggregate supply relation can be written as

πt = βEtπt+1 + κzt + ut, (A.5)
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with

κ = ψ
(
ς + σ−1

)
=

(1− α) (1− αβ)

α

ς + σ−1

1 + ϑς
. (A.6)

Finally, the second order approximation to the utility of a stand-in agent around the steady state

equilibrium associated with zero inflation takes the form

U = E0

[
−1

2

∞∑
t=0

βt
(
π2
t + (κ/ϑ) z2

t

)]
, (A.7)

and, using (A.4) to substitute for the output gap, yields

U = E0

[
−1

2

∞∑
t=0

βt
(
π2
t + ζs2

t

)]
, (A.8)

with

ζ =
κ

(ς + σ−1)2 ϑ
=

ψ

(ς + σ−1)ϑ
, (A.9)

the relative target weight on the log average real marginal cost.

B An estimator of the identified set

The following result establishes that, under Assumptions 1–3, the estimator Θ̂I is a consistent

estimator of the identified set.

Proposition B.1. Let Assumptions 1–3 hold. If
√

ln lnT/dT → 0 and dT/
√
T → 0, we have:

P
(

lim
T→∞

inf
{

ΘI ⊆ Θ̂I
T

})
= 1,

and ρH

(
Θ̂I
T ,Θ

I
)

= Op

(
dT√
T

)
.17

Proof of Proposition B.1

It is easy to see that Proposition B.1 holds for example with dT =
√

lnT . This follows from

17The Hausdorff distance between two sets A and B, is defined as

ρH (A,B) = max

[
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

]
,

with d(a,B) = infb∈B ‖b− a‖.
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Theorem 3.1 in Chernozhukov et al. (2007, CHT), with ĉ = d2
T , aT = T , γ = 2, once we show

that Assumptions 1, 2 and 3 imply the satisfaction of Conditions 1 and 2 in CHT. Condition 1(a)

holds as θ =
(
φ, Π̄

)
lies in a compact subset of Θ. Assumptions 1 and 2 allow to state the sample

objective function as QT (θ) in (19). Given Assumption 3, as a straightforward consequence of the

uniform law of large numbers for strong mixing processes, QT (θ) satisfies Condition 1(b)–(e) with

bT =
√
T and aT = T . Finally, it is immediate to see that QT (θ) in (19) satisfies Condition 2.18

To conduct inference, we construct a set C1−α
T that asymptotically contains the identified set ΘI

with probability 1− α. This constitutes the confidence region.

Definition 4. The (1− α) confidence region for the identified set C1−α
T is given by

lim
T→∞

P
(
ΘI ⊆ C1−α

T

)
= 1− α,

where C1−α
T = {θ ∈ Θ : TQT (θ) ≤ cα}, and cα is the (1 − α) percentile of the distribution of

supθ∈ΘI TQT (θ).

To compute the critical value cα,T of the distribution of supθ∈ΘI TQT (θ), we replace the unknown

set ΘI by its consistent estimator Θ̂I
T and we use bootstrap critical values.19 In order to reproduce

the serial correlation of the moment conditions, we rely on block-bootstrap. In particular, let

T = bl, where b denotes the number of blocks and l the block length, let (Π∗t , s
∗
t , Z

∗
t ) denote the

18The moment conditions (23) and (24) are linear in the parameters. Thus the identified set is convex. When
the identified set is convex, one can rely on the result of Kaido and Santos (2014) in order to obtain a more efficient
estimation of the identified set. The key point, is that in the convex case there is a one to one correspondence
between the support function and the identified set ΘI , with the support function defined as

δ?
(
q|ΘI

)
= sup
θ∈ΘI

(q′θ)

for all q, such that || q || = 1. For ΘI convex,

θ ∈ ΘI if and only if for all q, q′θ ≤ δ?
(
q|ΘI

)
,

so identification of ΘI is equivalent to the identification of its support function. The support function can be
estimated at a parametric rate. Now, in the general convex case estimation of the support function is not straight-
forward, as it requires a rather complex constrained optimization. But, for linear moment conditions and exact
identification, the estimation of the support function can be implemented as detailed in Bontemps et al. (2012).

19Andrews and Soares (2010) and Bugni (2010) suggest the use of bootstrap percentiles over subsample based
and asymptotic percentiles.

31



resampled observations. For each θ ∈ Θ̂I
T , we construct

TQ∗T (θ) =

4p∑
i=1

√T
m∗i,T (θ)−mi,T (θ)√

v̂i,i∗ (θ)


−

1

[
mi,T (θ)√
v̂i,i (θ)

≤
√

2 ln lnT/T

]
2

, (B.1)

where m∗i,T (θ) is the bootstrap analog of the sample moment conditions mi,T (θ), constructed

using the bootstrapped data (Π∗t , s
∗
t , Z

∗
t ), and v̂i,i∗ (θ) is the i−th element on the diagonal of the

bootstrap analog of the variance of the moment conditions V̂ ∗T (θ). The indicator function in

(B.1) implements the Generalized Moment Selection (GMS) procedure introduced by Andrews

and Soares (2010), that uses information about the slackness of the sample moment conditions to

infer which population moment conditions are binding, and thus enter into the limiting distribution.

We perform B bootstrap replications of supθ∈Θ̂I TQ∗T (θ), and obtain the (1− α) percentile, cB,α.

The following proposition can be established:

Proposition B.2. Let Assumptions 1, 2 and 3 hold, and let Θ̂I
T be defined as in (20). Then as

T →∞, B →∞, l→∞, and l2/T → 0, we have that

lim
T,B→∞

P
(
ΘI ⊆ C1−α

T,B

)
= 1− α,

where C1−α
T,B = {θ ∈ Θ : TQT (θ) ≤ cB,α} .

Proof of Proposition B.2

The events
{

ΘI ⊆ C1−α
T

}
and {supθ∈ΘI TQT (θ) ≤ cα,T} are equivalent, and thus

Pr
(
ΘI ⊆ CT (1− α)

)
= Pr

(
sup
θ∈ΘI

TQT (θ) ≤ cα,T

)
,

where cα,T is the (1− α)−percentile of the limiting distribution of supθ∈ΘI TQT (θ).

Given Assumptions 1–3, by Theorem 1 of Andrews and Guggenberger (2009), for any θ ∈ ΘI ,

TQT (θ)
d→

4p∑
i=1

[ 4p∑
j=1

ωi,j (θ)Zi + hi (θ)

]
−

2

32



where Z = (Z1, . . . ,Z4p) ∼ N(0, I2p) and ωi,j is the generic element of the correlation matrix

Ω (θ) = D−1/2 (θ)V (θ)D−1/2 (θ) ,

with D (θ) = diag (V (θ)) and V (θ) = p limT→∞ V̂T (θ) , as defined in footnote 9. Finally, h (θ) =

(h1 (θ) , ..., h4p (θ))′ is a vector measuring the slackness of the moment conditions, given by

hi (θ) = lim
T→∞

√
T E

(
mi,T (θ) /

√
vi,i (θ)

)
.

Given the stochastic equicontinuity on ΘI of TQT (θ), because of Proposition 2, it also follows that

sup
θ∈Θ̂I

T

TQT (θ)
d→ sup

θ∈ΘI

4p∑
i=1

[ 4p∑
j=1

ωi,j (θ)Zi + hi (θ)

]
−

2

. (B.2)

We need to show that the (1− α)-percentile of the right-hand side of (B.2), cα,T , is accurately

approximated by the (1− α)-percentile of the bootstrap limiting distribution supθ∈Θ̂I
T
TQ∗T (θ) ,

c∗α,T , conditional on the sample. By the law of the iterated logarithm as T →∞ and for i = 1, ..., 4p,

we have that, almost surely,

(
T

2 ln lnT

)1/2
mi,T (θ)√
vi,i (θ)

≤ 1 if mi (θ) = 0,(
T

2 ln lnT

)1/2
mi,T (θ)√
vi,i (θ)

> 1 if mi (θ) > 0.

As supθ∈ΘI |v̂i,i (θ)− vi,i (θ)| = op (1) , it follows that

lim
T→∞

Pr

((
T

2 ln lnT

)1/2
mi,T (θ)√
v̂i,i (θ)

> 1

)
= 0 if mi (θ) = 0

lim
T→∞

Pr

((
T

2 ln lnT

)1/2
mi,T (θ)√
v̂i,i (θ)

> 1

)
= 1 if mi (θ) > 0.

Hence, as T gets large, only the moment conditions that hold with equality contribute to the

bootstrap limiting distribution, and the probability of eliminating a non-slack moment condition

approaches zero.

Further, given the block resampling scheme, for all i, E∗
(√

T
(
m∗i,T (θ)−mi,T (θ)

))
= Op

(
l/
√
T
)
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and var∗
(√

T
(
m∗i,T (θ)

))
= v̂i,i (θ)+Op

(
l/
√
T
)

, where E∗ and var∗ denote the mean and variance

operator under the probability law governing the resampling scheme. Since l = o
(√

T
)
, as

T →∞, conditional on the sample,((
m∗1,T (θ)−m1,T (θ)

)√
v̂1,1 (θ)

, ...,

(
m∗4p,T (θ)−m4p,T (θ)

)√
v̂4p,4p (θ)

)
' N

(
0, Ω̂T (θ)

)
.

Hence, conditionally on the sample, for all samples except a set of probability measure approaching

zero, supθ∈Θ̂I
T
TQT (θ) and supθ∈Θ̂I

T
TQ∗T (θ) have the same limiting distribution, and so c∗α,T−cα,T =

op(1). The statement in the Proposition then follows.

C Additional proofs

Proof of Lemma 1

Immediate from the definition of πct (φ0) and πdt (φ0) , Equations (11) and (12).

Proof of Proposition 1

Given Assumption 1, it follows immediately from Equation (13) and the fact that 1 (St−1 ≤ 0) = 1

is a sufficient condition for c′0D0st−1 ≤ 0 and, similarly, that 1 (St−1 > 0) = 1 is a sufficient

condition for c′0D0st−1 > 0.

Proof of Proposition 2

Letting θ =
(
φ, Π̄

)
, we construct the optimal GMM estimator

θ̂d = arg min
θ∈Θ

m0
d,T (θ)′ Ω̂dd,T

(
θ̃d

)−1

m0
d,T (θ) ,

where θ̃d = arg minθm
0
d,T (θ)′m0

d,T (θ), and Ω̂dd,T

(
θ̃d

)
is the HAC estimator of the variance of

√
Tm0

d,T (θ0). If we knew θ0 =
(
φ0, Π̄0

)
, the statement would follow by a similar argument as

in the proof of Proposition B.2, simply comparing TQd
T (θ0) with the (1 − α)-percentile of the

empirical distribution of TQ∗dT (θ0). However, as we do not know θ0 we replace it with the optimal

GMM estimator, θ̂d. Thus, the parameter estimation error term,
√
T
(
θ̂d − θ0

)
, contributes to the
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limiting distribution of the statistics, as it contributes to its variance. Hence, we need a bootstrap

procedure which is able to properly mimic that contribution. Now, via usual mean value expansion,

√
Tm0

d,T

(
θ̂d

)
=
√
Tm0

d,T (θ0) +Dd,T

(
θd
)√

T
(
θ̂d − θ0

)
(C.1)

√
Tmc,T

(
θ̂d

)
=
√
Tmc,T (θ0) +Dc,T

(
θd
)√

T
(
θ̂d − θ0

)
(C.2)

with θd ∈
(
θ̂d, θ0

)
, Dd,T (θ) = ∇θm

0
d,T (θ) and Dc,T (θ) = ∇θmc,T (θ). From (C.1) it follows that

avar
(√

Tm0
d,T

(
θ̂d

))
= avar

(√
Tm0

d,T (θ0)
)

+ avar
(
Dd,T

(
θ̂d

)√
T
(
θ̂d − θ0

))
+

+2 acov
(√

Tm0
d,T (θ0) , Dd,T

(
θ̂d

)√
T
(
θ̂d − θ0

))
. (C.3)

The asymptotic variance of the moment conditions
√
TmT (θ0) can be estimated by

Ω̂T

(
θ̂d

)
=

 Ω̂dd,T

(
θ̂d

)
Ω̂dc,T

(
θ̂d

)
Ω̂cd,T

(
θ̂d

)
Ω̂cc,T

(
θ̂d

)
 .

Via a mean value expansion of the GMM first order conditions around θ0,

√
T
(
θ̂d − θ0

)
= −B̂d,TDd,T

(
θ̂d

)′
Ω̂dd,T

(
θ̂d

)−1√
Tm0

d,T (θ0) , (C.4)

with

B̂d,T =

(
D′d,T

(
θ̂d

)
Ω̂dd,T

(
θ̂d

)−1

Dd,T

(
θ̂d

))−1

,

hence, given Assumptions 1–3, B̂
−1/2
d,T

√
T
(
θ̂d − θ0

)
d→ N (0, I2) . We define the estimator of the

asymptotic variance of the moment conditions evaluated at the optimal GMM,
√
TmT

(
θ̂d

)
, as

V̂T

(
θ̂d

)
=

 V̂dd,T

(
θ̂d

)
V̂dc,T

(
θ̂d

)
V̂cd,T

(
θ̂d

)
V̂cc,T

(
θ̂d

)
 ,

where the first entry can be computed using (C.3) and (C.4), as follows

V̂dd,T

(
θ̂d

)
= Ω̂dd,T

(
θ̂d

)
−Dd,T

(
θ̂dT

)
B̂d,TD

′
d,T

(
θ̂dT

)
.
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Also,

V̂cc,T

(
θ̂d

)
= Ω̂cc,T

(
θ̂d

)
+Dc,T

(
θ̂d

)
B̂d,TD

′
c,T

(
θ̂d

)
−Ω̂cd,T

(
θ̂d

)
Ω̂dd,T

(
θ̂d

)−1

Dd,T

(
θ̂d

)
B̂d,TD

′
c,T

(
θ̂d

)
−Dc,T

(
θ̂d

)
B̂d,TD

′
d,T

(
θ̂d

)
Ω̂dd,T

(
θ̂d

)−1

Ω̂cd,T

(
θ̂d

)
.

Note that, for the computation of the test statistic we need only an estimate of the diagonal

elements of the asymptotic variance of the moment conditions, hence we do not need a closed-form

expression for V̂dc,T

(
θ̂d

)
. Let

Vdd (θ0) = plimT→∞V̂dd,T

(
θ̂d

)
, Vcc (θ0) = plimT→∞V̂cc,T

(
θ̂d

)
.

Since Vdd (θ0) is of rank p− 2, while Vcc (θ0) is of full rank 2p, the asymptotic variance covariance

matrix V (θ0) is of rank 3p− 2. However, this is not a problem, as we are only concerned with the

elements along the main diagonal.

We now outline how to construct bootstrap critical values. The bootstrap counterpart of TQd
T

(
θ̂d

)
writes as

TQ∗dT

(
θ̂∗d

)
= T

p∑
i=1

m0∗
i,d,T

(
θ̂∗d

)
−m0

i,d,T

(
θ̂d

)
√
v̂i,i∗
(
θ̂∗d

)


2

+ T

2p∑
i=1

m∗i,c,T
(
θ̂∗d

)
−mi,c,T

(
θ̂d

)
√
v̂i,i∗
(
θ̂∗d

)


2

−

1

[
mi,c,T

(
θ̂d

)
≤
√
v̂i,i
(
θ̂d

)√
2 ln lnT/T

]
,

where m∗T (θ) denote the moment conditions computed using the resampled observations, and θ̂∗d

is the bootstrap analog of θ̂d, given by

θ̂∗d = arg min
θ∈Θ

(
m0∗
d,T (θ)−m0

d,T

(
θ̂d

))′
Ω̂∗dd,T

(
θ̃∗d

)−1 (
m0∗
d,T (θ)−m0

d,T

(
θ̂d

))
,
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with θ̃∗d = arg min
θ∈Θ

(
m0∗
d,T (θ)−m0

d,T

(
θ̂d

))′ (
m0∗
d,T (θ)−m0

d,T

(
θ̂d

))
, and

Ω̂∗dd,T

(
θ̃∗d

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
m0
d,Ik+i

(
θ̃∗d

)
−m0

d,T

(
θ̂d

))(
m0
d,Ik+j

(
θ̃∗d

)
−m0

d,T

(
θ̂d

))′
, (C.5)

where Ii is an independent, identically distributed discrete uniform random variable on [0, T−l−1].

Finally, v̂i,i∗
(
θ̂∗d

)
is the i−th element on the diagonal of of V̂ ∗T

(
θ̂∗d

)
, the bootstrap counterpart of

V̂T

(
θ̂d

)
, given by

V̂ ∗T

(
θ̂∗d

)
=

 V̂ ∗dd,T

(
θ̂∗d

)
V̂ ∗dc,T

(
θ̂∗d

)
V̂ ∗cd,T

(
θ̂∗d

)
V̂ ∗cc,T

(
θ̂∗d

)
 .

As for the computation of the bootstrap critical values, we need only the elements along the main

diagonal, below we report only the expressions for V̂ ∗dd,T

(
θ̂∗d

)
and V̂ ∗cc,T

(
θ̂∗d

)
, which are

V̂ ∗dd,T

(
θ̂∗d

)
= Ω̂∗dd,T

(
θ̂∗d

)
− D̂∗d,T

(
θ̂∗d

)
B̂∗d,T D̂

∗′
d,T

(
θ̂∗d

)
,

where

B̂∗d,T =

(
D̂∗′d,T

(
θ̂∗d

)
Ω̂∗dd,T

(
θ̂∗d

)−1

D̂∗d,T

(
θ̂∗d

))−1

,

with D̂∗d,T

(
θ̂∗d

)
= ∇θm

0∗
d,T

(
θ̂∗d

)
and where Ω̂∗dd,T

(
θ̂∗d

)
is defined as in (C.5), but with θ̃∗d replaced

by θ̂∗d, also

V̂ ∗cc,T

(
θ̂∗d

)
= Ω̂∗cc,T

(
θ̂∗d

)
+ D̂∗c,T

(
θ̂∗d

)
B̂∗d,T D̂

∗′
c,T

(
θ̂∗d

)
− Ω̂∗cd,T

(
θ̂∗d

)
Ω̂∗dd,T

(
θ̂∗d

)−1

D̂∗d,T

(
θ̂∗d

)
B̂∗d,T D̂

∗′
c,T

(
θ̂∗d

)
− D̂∗c,T

(
θ̂∗d

)
B̂∗d,T D̂

∗′
d,T

(
θ̂∗d

)
Ω̂∗dd,T

(
θ̂∗d

)−1

Ω̂∗cd,T

(
θ̂∗d

)
,

with D̂∗d,T

(
θ̂∗d

)
= ∇θm

∗
c,T

(
θ̂∗d

)
and

Ω̂∗cc,T

(
θ̂∗d

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
mc,Ik+i

(
θ̂∗d

)
−mc,T

(
θ̂d

))(
mc,Ik+j

(
θ̂∗d

)
−mc,T

(
θ̂d

))′
,

Ω̂∗cd,T

(
θ̂∗d

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
mc,Ik+i

(
θ̂∗d

)
−mc,T

(
θ̂d

))(
m0
d,Ik+j

(
θ̂∗d

)
−m0

d,T

(
θ̂d

))′
.
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We compute B bootstrap replication of TQ∗dT

(
θ̂∗d

)
, say TQ∗dT,1

(
θ̂∗d

)
, ..., TQ∗dT,B

(
θ̂∗d

)
, and compute

the (1− α)−th percentile of its empirical distribution, c∗dT,B,α

(
θ̂∗d

)
. We now need to establish the

first order validity of the suggested bootstrap critical values. Broadly speaking, we need to show

that to (do not) reject Hd
0 whenever TQd

T

(
θ̂d

)
is larger than (smaller than or equal to) c∗dT,B,α

(
θ̂∗d

)
provides an asymptotically non conservative test and unit asymptotic power. To this end, we show

that, under Hd
0 , TQ

∗d
T

(
θ̂∗d

)
has the same limiting distribution as TQd

T

(
θ̂d

)
, conditionally on the

sample, and for all samples except a set of probability measure approaching zero. On the other

hand, under Hd
1 , TQ

∗d
T

(
θ̂∗d

)
has a well defined limiting distribution, while TQd

T

(
θ̂d

)
diverges to

infinity.

Now, a mean value expansion of the bootstrap GMM first order conditions around θ̂d, gives

√
T
(
θ̂∗d − θ̂d

)
= −B̂∗d,T D̂∗d,T

(
θ̂∗d

)
Ω̂∗dd,T

(
θ̂∗d

)√
T
(
m0∗
d,T

(
θ̂d

)
−m0

d,T

(
θ̂d

))
√
T
(
m0∗
d,T

(
θ̂∗d

)
−m0

d,T

(
θ̂d

))
=
√
T
(
m0∗
d,T

(
θ̂d

)
−m0

d,T

(
θ̂d

))
+ D̂∗d,T

√
T
(
θ̂∗d − θ̂d

)
.

Recalling that l = o
(
T 1/2

)
, straightforward arithmetics gives that

E∗
(√

T
(
m0∗
d,T

(
θ̂∗d

)
−m0

d,T

(
θ̂d

)))
= Op

(
l√
T

)
= op(1),

var∗
(√

T
(
m0∗
d,T

(
θ̂∗d

)
−m0

d,T

(
θ̂d

)))
= V̂T

(
θ̂d

)
+Op

(
l√
T

)
= V̂T

(
θ̂d

)
+ op(1),

and

V̂ ∗T

(
θ̂∗d

)
− V̂T

(
θ̂d

)
= op∗ (1) .

Thus, under both hypotheses,
√
T
(
m0∗
d,T

(
θ̂∗d

)
−m0

d,T

(
θ̂d

))
has a limiting distribution which is

well defined, and coincides with that of TQd
T

(
θ̂d

)
under the null.

As for the moment conditions under commitment, they contribute to the limiting distribution only

when mi,c,T

(
θ̂d

)
≤
√
v̂i,i
(
θ̂d

)√
2 ln lnT/T , and hence they mimic the limiting distribution of

2p∑
i=1

[
mi,c,T

(
θ̂d

)]2

−

v̂i,i
(
θ̂d

) .
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The statement in the Proposition then follows.

Proof of Proposition 3

The proof is analogous to that of Proposition 2.

D DGP used in the Montecarlo

The data generating process (DGP) for the inflation rate πt and log average real marginal cost

in deviation from the flexible-price steady state st used for the Montecarlo simulations is the NK

model described in Appendix A. In particular, the DGP under commitment is given by

πt = βEtπt+1 + ψst + ut, (D.1)

φπt = −∆st, (D.2)

with ut an AR (1) process; φ = (ψ/ζ) where ζ is the target weight on st relative to inflation in the

loss function of the central bank. The DGP under discretion is the same, except that equation (D.2)

is replaced with

φπt = −st. (D.3)

The choice of parameter values is guided by evidence reported in the NK business cycle literature.

In particular, we set ψ = 0.0230 and β = 0.9420, based on Gaĺı and Gertler (1999). As shown

in Appendix A, from the theoretical foundations of the loss function (22), ζ = (ς + σ−1)
−1

(ψ/ϑ)

and, hence, φ = (ψ/ζ) = (ς + σ−1)ϑ. We set ϑ = 7, a value for the elasticity of substitution across

goods which is commonly found in the business cycle literature (Golosov and Lucas, 2007), and

we set σ = 1 and ς = 1.25, following the baseline calibration in Chari, Kehoe, and McGrattan

(2000). Thus, the implied value for φ is 15.75.

Finally, both DGP include measurement error in inflation, so that measured inflation is given by

Πt = πt + vt, with vt ∼ N
(
Π0, σ

2
v

)
. (D.4)

The mean of the measurement error is set to Π0 = 0.005, which corresponds to annual inflation
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being overstated on average by 2% (as reported in Bernanke and Mishkin, 1997), and the variance

is set to σ2
v = 0.001.

In turn, the stochastic process for the cost-push shock is given by

ut = ρut−1 + εt. (D.5)

We set ρ = 0.8 and choose the variance of εt, σ
2
ε to match exactly the volatility of the real marginal

cost, st. We use the volatility of st as a target, because the real marginal cost is assumed to be

measured without error.
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E Supplementary material

E.1 An example with sticky wages and prices

We consider the model of sticky wages and prices of Erceg et al. (2000). When both wages and

prices are sticky, the objective function of the policymaker is

U = −E0

[
1

2

∞∑
t=0

βt
(
ζpπ

2
p,t + ζwπ

2
w,t + ζxx

2
t

)]
, (E.1)

and the relevant structural equations of the economy are

πp,t = βEtπp,t+1 + κpxt + ξp (ωt − ωnt ) , (E.2)

πw,t = βEtπw,t+1 + κwxt + ξw (ωt − ωnt ) , (E.3)

ωt = ωt−1 + πw,t − πp,t, (E.4)

where xt is the output gap, πp,t and πw,t are the price and wage inflation, respectively, ωt is the

log of the real wage, and ωnt is the natural real wage (the real wage in the absence of nominal

rigidities), and is an exogenous process that depends on technology, preferences and other such

disturbances. Equations (E.2) and (E.3) are the price and wage Phillips Curves, and (E.4) captures

the real wage dynamics.

Of course, this model has an endogenous predetermined variable (real wage ωt) and, hence,

Lemma 1 cannot be applied immediately. However, as shown in Woodford (2003, chapter 3)

and Giannoni and Woodford (2004), for the special case in which κp = κw, the evolution of the

real wage is independent of monetary policy. To see this, let κp = κw = κ > 0, and subtract (E.2)

from (E.3), to obtain

πw,t − πp,t = βEt (πw,t+1 − πp,t+1) + (ξw − ξp) (ωt − ωnt ) , (E.5)

where the output gap, xt, no longer appears. Using (E.4) to substitute in (E.5), yields

∆ωt = βEt∆ωt+1 + (ξp − ξw) (ωt − ωnt ) , (E.6)
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implying a unique bounded solution for the path of the real wage, independent of monetary policy,

given a bounded process for the exogenous disturbance ωnt .

Thus, for the special case κp = κw = κ, the structural equations that represent the economy’s

equilibrium conditions may be written in a form which does not include endogenous predetermined

variables, as follows 1 0 −κ

0 1 −κ

 yt +

−β 0 0

0 −β 0

Etyt+1 =

 εp,t

εw,t

 , (E.7)

where yt =
[
πp,t, πw,t, xt

]′
is the vector of target variables and

 εp,t

εw,t

 =

ξp (ωt − ωnt )

ξw (ωt − ωnt )

 , (E.8)

are exogenous disturbances to the real wage, independent of monetary policy, given by (E.6). In

turn, the objective function of the policy maker is given by (1), with the matrix W of policy

weights which is diagonal, with diagonal elements
[
ζp ζw ζx

]′
≥ 0.

The first-order conditions solving for optimal policy under commitment are
ζp 0 0

0 ζw 0

0 0 ζx



πp,t

πw,t

xt

+ β−1


−β 0

0 −β

0 0


λ1

t−1

λ2
t−1

+


1 0

0 1

−κ −κ


 λ1

t

λ2
t

 = 0, (E.9)

with λt =
[
λ1
t λ2

t

]′
, the Lagrange multipliers. Instead, optimal policy under discretion requires


ζp 0 0

0 ζw 0

0 0 ζx



πp,t

πw,t

xt

+


1 0

0 1

−κ −κ


 λ1

t

λ2
t

 = 0. (E.10)
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Finally, consider the vector T =
[
γ, γ, 0

]′
; then we have that

nt = T ′Wyt =
[
γ, γ, 0

]
ζp 0 0

0 ζw 0

0 0 ζx



πp,t

πw,t

xt

 ,
= γ (ζpπp,t + ζwπw,t) = ψt,

(E.11)

with γ = (ζp + ζw)−1, so that ψt is a weighted average of price and wage inflation. By applying

Lemma 1 we obtain the following bounds for this target variable

Pr
(
ψct ≤ ψt ≤ ψdt

∣∣∣γλ1
t−1 + γλ2

t−1 ≤ 0
)

= 1, (E.12)

Pr
(
ψdt ≤ ψt ≤ ψct

∣∣∣γλ1
t−1 + γλ2

t−1 > 0
)

= 1, (E.13)

with

ψct = γ
(
λ1
t + λ2

t

)
− γ

(
λ1
t−1 + λ2

t−1

)
, (E.14)

ψdt = γ
(
λ1
t + λ2

t

)
, (E.15)

and where, from (E.9), we obtain γλ1
t + γλ2

t = γ (ζx/κ)xt.

The target variable ψ is measured with error, with Ψ = ψ + vt the measured target variable with

mean Ψ̄0, as in Assumption 1. Given a vector of instrumental variables, Zt > 0, we obtain the

following moment inequality conditions

E


−
(
Ψt − Ψ̄0 − ψdt

)
1 (xt−1 ≤ 0)Zt(

Ψt − Ψ̄0 − ψdt
)

1 (xt−1 > 0)Zt(
Ψt − Ψ̄0 − ψct

)
1 (xt−1 ≤ 0)Zt

−
(
Ψt − Ψ̄0 − ψct

)
1 (xt−1 > 0)Zt

 ≥ 0, (E.16)

where we made use of the fact that γ (λ1
t + λ2

t ) > 0 if and only if xt > 0. Thus, we can apply

the same tests of optimal policy as in the baseline model, but where instead of measured inflation

Πt, the moment inequalities are based on the measured target variable Ψt = γ (ζpΠp,t + ζwΠw,t), a

weighted average of measured price and wage inflation.
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We are only able to apply our method to the version of the Erceg et al. (2000) model with

κp = κw, implying that wage and price inflation are equally responsive to changes in the output

gap. However, this parameter restriction is empirically salient as shown in Amato and Laubach

(2003), and is consistent with the finding in many empirical studies that the estimated response

of the real wage to monetary policy shocks is close to zero (e.g. Christiano et al., 2005).
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E.2 An alternative formulation of the specification test

We can follow Andrews and Soares (2010) and test whether there is a parameter value for which

the set of moment equalities and inequalities are satisfied. For example, when testing discretion

we could proceed as follows.

Let θ =
(
D,Π

)
, and Hd

0 : ∃ θ = θ0 satisfying

E
[
m0
d,t (θ)

]
= E

[(
Πt − Π̄−Dst

)
Zt
]

= 0,

E [mc,t (θ)] = E

 (
Πt − Π̄−D∆st

)
1 (St−1 ≤ 0)Zt

−
(
Πt − Π̄−D∆st

)
1 (St−1 > 0)Zt

 ≥ 0,

and to test H0, we can construct the following statistics

TQd
T (θ) = T

[
p∑
i=1

m0
i,d,T (θ)2

v̂i,i (θ)
+

p∑
i=1

[
mc
i,c,T (θ)

]2
−

v̂i,i (θ)

]

and the following bootstrap statistics

TQ∗dT (θ) = T

p∑
i=1

m0∗
i,d,T (θ)−m0

i,d,T (θ)√
v̂i,i∗ (θ)

2

+ T

2p∑
i=1

m∗i,c,T (θ)−mi,c,T (θ)√
v̂i,i∗ (θ)

2

−

1
[
mi,c,T (θ) ≤

√
v̂i,i (θ)

√
2 ln lnT/T

]
,

and let c∗T,1−α (θ) be the (1− α) bootstrap critical value. The (1− α) confidence set for is

CSn =
{
θ : TQd

T (θ) ≤ c∗T,1−α (θ)
}

We do not reject H0 if TQd
T (θ) ≤ c∗T,1−α (θ). This gives a test of at most size α.
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E.3 An interpretation of the specification tests

The moment equality/inequality conditions that form the basis for the proposed specification tests

are linear in the transformed parameter space θ̃ =
{
φ†, φ‡, Π̄

}
, with φ† = c′D and φ‡ = b′D in

the general case. In particular, in the benchmark application we are considering, with b = 1

and c = −1, the moment conditions (23) and (24) are linear in θ =
{
D, Π̄

}
∈ R2. The upshot

is that, as the moment conditions are convex, the identified set ΘI is fully characterized by its

support function δ?
(
q|ΘI

)
=

{
sup
θ∈ΘI

(q′θ) ∀q : ||q|| = 1

}
. Specifically θ ∈ ΘI is equivalent to

q′θ ≤ δ?
(
q|ΘI

)
, for all q such that ||q|| = 1 (see Bontemps et al., 2012; Kaido and Santos, 2014).

This result allows us to provide a geometric interpretation of the specifications test, that illustrates

its source of power.20 Specifically, Bontemps et al. (2012) show that for models defined by a set

of linear moment conditions, the identified set is itself convex and its boundary is determined

by the hyperplanes that are tangent to it. In our case, as ΘI ∈ R2 the hyperplanes are lines

and the moment conditions (23) and (24) define a diamond shaped region corresponding to the

identified set. Suppose there’s a single instrument z satisfying Assumption 2, so that p = 1

and, for illustration, that we want to test the moment conditions (25) and (26), corresponding to

discretion. Denote y1
t = Πt − Π̄ and y2

t =
(
Πt − Π̄

)
1 (St−1 ≤ 0), and the list of covariates x1

t = st

and x2
t = ∆st1 (St−1 ≤ 0). Moreover, to adapt our framework to the set-up in Bontemps et al.

(2012), we assume that
(
Πt − Π̄

)
has bounded support in [ΠL,ΠU ] ∈ R. It follows that, under the

null hypothesis of discretion, the following linear predictions can be obtained

y1
t = Dx1

t + γ1z̃
1
t + e1

t , (E.17)

y2
t = Dx2

t + δτ + γ2z̃
2
t + e2

t , (E.18)

where z̃it is the residual of the linear prediction of zt on xit, δ = (ΠU − ΠL) and, following Bontemps

et al. (2012), τ ∈ [0, 1], is a random variable called a “selection”, with the cumulative distribution

function η = F (τ ≤ T|y1,y2,x1,x2) an unknown nuisance parameter. The random variable τ is

called a “selection” variable because knowledge of η would complete the model and lead to the

point identification of
{

Π̄,D, γ1, γ2

}
via the conditions E [xite

i
t] = 0 and E [z̃ite

i
t] = 0, for i = {1, 2}

yielding 4 identification conditions. As η is unknown, we obtain instead partial identification and,

20This elegant interpretation was suggested to us by an anonymous referee.
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heuristically, the identified set corresponds to the union over the convex domain of the nuisance

parameter η of each point identified model.

Finally, when p ≥ 2 we obtain a surplus of moment conditions. Thus, there are overidentifying

restrictions and as stated in Lemma 4 of Bontemps et al. (2012), the identified set may be empty

and its non-emptiness requires an additional set of Sargan-like conditions. In particular, the

validity of the exclusion conditions E [z̃ite
i
t] = 0, for i = {1, 2}, is satisfied when the restrictions

γ1 = 0 and γ2 = 0 fail to be rejected. It follows that all the moment conditions (either equality or

inequality conditions) contribute to the power of the specification test.21

21This is similar to the framework in Moon and Schorfheide (2009), who use additional moment inequality
conditions to provide overidentifying information. Importantly, in our empirical illustration we find that our test
is able to reject the null of commitment, while a standard J-test is not.
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