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Joint Transmit Diversity Optimization and Relay Selection for
Multi-Relay Cooperative MIMO Systems

Using Discrete Stochastic Algorithms
Patrick Clarke and Rodrigo C. de Lamare

Abstract—We propose a joint discrete stochastic optimization
based transmit diversity selection (TDS) and relay selection (RS)
algorithm for decode-and-forward (DF), cooperative multiple-
input multiple-output (MIMO) systems with a non-negligible
direct path. TDS and RS are performed jointly with continuous
least squares channel estimation (CE) without the need for
inter-relay communication and linear minimum mean square
error (MMSE) receivers are used at all nodes. The performance
of the proposed scheme is evaluated via bit-error rate (BER)
comparisons and diversity analysis, and is shown to converge to
the optimum exhaustive solution.

Index Terms—MIMO relaying, transmit diversity, cooperative
systems, relay selection.

I. Introduction

COOPERATIVE multiple-input multiple-output (MIMO)
networks have significant benefits over non-cooperative

networks in terms of diversity and robustness. Consequently,
they have been presented as a topology for the next generation
of mobile networks [1], leading to antenna selection, relay
selection (RS) and diversity maximization becoming central
themes in MIMO relaying literature [2]–[4]. However, current
approaches to these topics are often limited to stationary and
single relay systems which assume a negligible direct path [3].

In this letter, the problems of transmit diversity selection
(TDS) and RS are formulated as a joint discrete optimization
problem where RS refines the set from which TDS is made.
Low-complexity iterative discrete stochastic algorithms (DSA)
with mean square error (MSE) cost functions are employed
to obtain a solution and improvements in convergence, per-
formance and complexity result. Continuous recursive least
squares (RLS) channel estimation (CE) is introduced to form
a combined framework where adaptive RS and TDS are
performed jointly with no forward channel state information
(CSI). The proposed algorithms are implemented and bit
error-rate (BER) and diversity comparisons given against the
exhaustive solution and the standard cooperative system.

II. SystemModel

We consider a quadrature phase shift keying (QPSK), two-
phase, decode-and-forward (DF), multi-relay MIMO system
with half-duplex relays. Linear minimum mean square error
(MMSE) receivers are used at all nodes and an error-free
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Fig. 1. MIMO multi-relay system model.

control channel is assumed [2], [4]. All channels between
antenna pairs are flat fading, have a coherence time equal to
the period of an N symbol packet and are represented by a
complex gain. The direct path is non-negligible and has an
expected gain which is a fraction of the indirect paths. The
maximum spatial multiplexing gain and diversity advantage
simultaneously available in the system are r∗ = Nas and
d∗ = Nad(1 + (NrNar/Nas)), respectively [5], [6]. An outline
system model is given by Fig. 1. The system comprises Nr

intermediate relay nodes which lie between single source and
destination nodes that have Nas and Nad antennas, respectively.
Each relay has Nar antennas, where Nar is an integer multiple
of Nas in order to reduce feedback requirements. The trans-
mitted data consists of Nas independent data streams which
are allocated to the correspondingly numbered antennas at the
source and relay nodes. The source node transmits to the relay
and destination nodes during the first phase and the second
phase involves the relay nodes decoding and forwarding their
received signal to the destination. The maximum spatial multi-
plexing gain and diversity advantage simultaneously available
in the system are r∗ = Nas and d∗ = Nad(1 + (NrNar/Nas)),
respectively [5], [6]. The Nad×1 and Nar×1 first phase received
signals at the destination and the nth relay are given by

rsd[i] = Hsd[i]AsTss[i] + ηsd[i] (1)

and
rsrn[i] = Hsrn[i]AsTss[i] + ηsrn[i], (2)

respectively. The matrices Hsd and Hsrn are the Nad×Nas source
- destination and Nar×Nas source - nth relay channel matrices,
respectively where the subscripts s, d and rn refer to the source,
destination and nth relay nodes, respectively. The quantity η
is a vector of zero mean additive white Gaussian noise, s is
the Nas × 1 data vector, and As is the scalar transmit power
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allocation. The TDS matrix, Ts, is a Nas×Nas diagonal matrix
where each element on the main diagonal specifies whether
the correspondingly numbered antenna is active. The received
signal of the second phase at the destination is the sum of the
forwarded signals from the Nr relays and is given by

rrd[i] =H rd[i]ArT r[i]ˆ̄s[i] + ηrd[i], (3)

where T r = diag
[
Tr1 Tr2 ...TrNr

]
is the NarNr×NarNr relay TDS

matrix, ˆ̄s[i] =
[
ŝT
r1 [i]

Nar
Nas· · · ŝT

r1 [i]· · · ŝT
rNr

[i]
Nar
Nas· · · ŝT

rNr
[i]
]

is the NarNr × 1
estimated data vector and H rd[i] =

[
Hr1d[i] Hr2d[i]...HrNrd[i]

]

is the Nad × NarNr channel matrix.
The linear MMSE receiver at the nth relay is given by

Wsrn[i] = argmin
Wsrn

E
[∥∥∥s[i] −WH

srn[i]rsrn [i]
∥∥∥2
]
, (4)

which results in Wsrn = R−1srnPsrn , where Rsrn = E
[
rsrn[i]r

H
srn[i]
]

and Psrn = E
[
rsrn[i]s

H[i]
]

are the autocorrelation and cross
correlation matrices, respectively. At the destination the re-
ceived signals are stacked to give rd[i] =

[
rT
sd[i]r

T
rd[i]
]T , whose

associated linear MMSE filter is given by

Wd[i] = argmin
Wd

E
[∥∥∥s[i] −WH

d [i]rd[i]
∥∥∥2
]
, (5)

where Wd = R−1d Pd, Rd = E
[
rd[i]rH

d [i]
]

and Pd =

E
[
rd[i]sH[i]

]
. A QPSK slicer follows MMSE reception at all

nodes; the output of which is taken as the symbol estimate [7].
Using (4) and (5), the MSE at the nth relay and destination
are given by σ2s − trace

(
PsrnR

−1
srnPsrn

)
and σ2s − trace

(
PdR−1d, Pd

)
,

respectively, where σ2s = E
[
sH[i]s[i]

]
.

III. Problem Statement

In this section, we formulate the joint TDS and RS task as
a discrete combinatorial MSE problem. The TDS optimization
problem is given by

T opt
r = arg min

T r∈ΩT

C[i,T r, Ĥ rd, Ĥ sd
]

= arg min
T r∈ΩT

E
[∥∥∥s[i] −Wd[i,T r, Ĥ rd, Ĥ sd]rd[i]

∥∥∥2
]
, (6)

where ΩT is the candidate TDS matrix set of cardinality |ΩT| =(
NarNr
Nasub

)
and Nasub is the number of active relay antennas.

The performance and complexity of solutions to (6) depend
on |ΩT| and therefore we limit |ΩT| whilst ensuring a minimum
level of diversity by fixing Nasub < NarNr. However, |ΩT| is
significant even at modest levels of antennas and relays, e.g.
Nr ≥ 4 and Nas ≥ 2. Further improvements can be achieved by
a process we term RS. By removing one or more relays from
consideration by TDS based on their DF MSE performance,
|ΩT| and its quality can be improved without overly restricting
the second-phase channels available to the TDS process. TDS
using this refined set then effectively optimizes both phases.

The selection of the single highest MSE relay can be
expressed as a discrete maximization problem given by

ropt
n = arg max

rn∈ΩR

F [i, rn, Ĥ srn
]

= arg max
rn∈ΩR

E
[∥∥∥s[i] −WH

srn[i, rn, Ĥ srn]rsrn[i]
∥∥∥2
]
, (7)

TABLE I
Proposed discrete stochastic joint TDS and RS algorithm

Step
1. Initialization

choose r[1] ∈ ΩR, rW[1] ∈ ΩR, πR
[
1, r[1]

]
= 1, πR[1, r̃] = 0 for r̃ � r[1]

2. For the time index i = 1, 2, ...,N
choose rC[i] ∈ ΩR

3. Comparison and update of the worst performing relay
if F [i, rC[i]

]
> F [i, rW[i]

]
then rW[i + 1] = rC[i]

otherwise rW[i + 1] = rW[i]
4. State occupation probability (SOP) vector update
πR[i + 1] = πR[i] + μ[i + 1](vrW[i+1] − πR[i]) where μ[i] = 1/i

5. Determine largest SOP vector element and select the optimum relay
if πR

[
i + 1, rW[i + 1]

]
> πR[i + 1, r[i]] then r[i + 1] = rW[i + 1]

otherwise r[i + 1] = r[i]
6. TDS Set Reduction

remove members of ΩT which utilize r[i + 1] (ΩT → Ω̄T)

where ΩR is the set of candidate relays. Extension to the
selection of multiple relays is then possible by populating ΩR

with sets of candidate relays and summing their MSE. This
results in |ΩR| =

(
Nr

Nrem

)
where Nrem is the number of relays

to be removed. Once RS optimization is complete, a refined
subset, Ω̄T ∈ ΩT, is generated by removing members of ΩT

which involve transmission from ropt
n . TDS then operates with

this subset, where |Ω̄T| =
(
Nar(Nr−Nrem)

Nasub

)
.

IV. Proposed Algorithm

We propose a low-complexity DSA which jointly optimizes
RS and TDS in accordance with (6) and (7), and converges to
the optimal exhaustive solution. The RS portion of the DSA
is given by the algorithm of Table I. At each iteration the
MSE of a randomly chosen candidate relay (rC, step 2) and
that of the worst performing relay currently known (rW) are
calculated (step 3). Via a comparison, the higher MSE relay
is designated rW for the next iteration (step 3). The current
solution and the relay chosen for removal (r) is denoted as
the current optimum and is the relay which has occupied rW

most frequently over the course of the packet up to the ith time
instant; effectively an average of the occupiers of rW. This
averaging/selection process is performed by allocating each
member of ΩR a |ΩR|×1 unit vector, vl, which has a one in its
corresponding position in ΩR i.e. vrW[i] is the label of the worst
performing relay at the ith iteration. The current optimum is
then chosen and tracked by means of a |ΩR|×1 state occupation
probability (SOP) vector, πR. This vector is updated at each
iteration by adding vrW[i+i] and subtracting the previous value
of πR (step 4). The current optimum is then determined by
selecting the largest element in πR and its corresponding entry
in ΩR (step 5). Through this process, the current optimum
converges towards and tracks the exhaustive solution [8]. An
alternative interpretation of the proposed algorithm is to view
the transitions, rW[i]→ rW[i + 1], as a Markov chain and the
members of ΩR as the possible transition states. The current
optimum can then be defined as the most visited state.

Once RS is complete at each time instant, set reduction
(ΩT → Ω̄T, step 6) takes place followed by TDS using a
modified version of steps 1-5. The considered set is replaced,
ΩR → Ω̄T; the structure of interest is replaced, r → T r; the
best performing matrix is sought rW → T B

r ; the SOP vector
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Fig. 2. BER performance versus the number of received symbols.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

N
r
 = 4, N

as
 = 2, N

ar
 = 2, N

ad
 = 2, N

asub
 = 4, N

rem
 = 1, N

p
 = 1000, N = 250

 

 

Non − Cooperative
No TDS
Exhaustive TDS
Exhaustive TDS with RS
Iterative TDS
Iterative TDS with RS

Fig. 3. BER performance versus SNR.

is replaced, πR → πT ; and C → F from (6). Finally, the
inequality of step 3 is reversed to enable convergence to the
lowest MSE TDS matrix, the index of which is fed back to
the relays over the control channel.

Convergence of the proposed algorithm to the optimal ex-
haustive solution is dependent on the independence of the cost
function observations and the satisfaction of Pr

{F [ropt[i]
]
>

F [r[i]]} > Pr
{F [r[i]] > F [ropt[i]

]}
and Pr

{F [ropt[i]
]
>

F [rC[i]
]}
> Pr

{F [r[i]] > F [rC[i]
]}

for RS and TDS (with
the afore mentioned modifications). In this work, to minimize
complexity, independent observations are not used and there-
fore the proof of convergence is intractable. However, excel-
lent convergence has been observed under these conditions in
[4] and throughout the simulations conducted for this work.

Significant complexity savings result from the proposed
algorithm; savings which increase with Nas, Nar, Nad, Nr and
Nrem. When Nr = 10, Nas = Nar = Nad = 2, Nrem and Nasub = 4,
the number of complex multiplications for MMSE reception
and exhaustive TDS, exhaustive TDS with RS, iterative TDS
and iterative TDS with RS are 5.8 × 108, 1.7 × 108, 1.8 × 105

and 5.9 × 104, respectively, for each time instant.

V. Simulations

In this section, simulations of the proposed algorithm (It-
erative TDS with RS) are presented and comparisons drawn
against the optimal exhaustive solutions (Exhaustive TDS

with RS), the standard system (No TDS), and the direct

transmission (Non-Cooperative). Plots of the schemes with
TDS only (Exhaustive TDS, Iterative TDS) are also included
to illustrate the performance improvement obtained by RS.
Equal power allocation is maintained in each phase, where
Ar = 1/

√
Nasub when TDS is employed and Ar = 1/

√
NarNr for

the standard system. For the RLS CE, PĤ rd
, PĤsrn

and PĤsd
are

initialized as identity matrices and the exponential forgetting
factor is 0.9. The initial values of Ĥ rd, Ĥsrn and Ĥsd are zeros
matrices. Each simulation is averaged over 1000 packets (Np)
each made up N pilot symbols.

Fig. 2 gives the BER convergence performance of the
proposed algorithm. The iterative TDS with RS algorithm
rapidly converges to the improved optimal exhaustive BER
as does TDS with RS and CE, albeit in a delayed fashion
due to the CE. These results and the interdependence between
elements of the algorithm confirm that both the RS and TDS
portions of the algorithm converge well and the probability
conditions of Section IV are satisfied.

Fig. 3 shows the BER versus SNR performance of the
proposed and conventional algorithms. Increased diversity
and improved interference mitigation have been achieved
whilst maintaining r∗, illustrating that although the maximum
available diversity advantage decreases with RS with TDS to
d∗ = Nad(Nasub/Nar + 1), the diversity achieved has increased.
However, due to the use of linear receivers it is not pos-
sible to achieve the full receive diversity on offer [6]. The
improvements obtained can be attributed to the removal of
transmissions over poor paths but also the increase in transmit
power over the remaining paths. The largest gains are present
in 5dB-25dB region and begin to diminish above this region as
relay decoding becomes increasingly reliable and lower power
paths become more viable for transmission.

VI. Conclusions

This work presented a joint DSA which combines TDS
and RS along with continuous CE for multi-relay coopera-
tive MIMO systems.The scheme exceeds the performance of
systems which lack TDS and matches that of the optimal
exhaustive solution whilst saving considerable computational
expense, making it ideal for real-time mobile use.
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