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Decoder-Optimised Progressive Edge Growth Algorithms for
the Design of LDPC Codes with Low Error Floors

C.T. Healy and R. C. de Lamare

Abstract—A novel construction for irregular low-density
parity-check (LDPC) codes based on a modification of the
Progressive Edge Growth (PEG) algorithm is presented. Edge
placement of the PEG algorithm is enhanced by use of the Sum-
Product algorithm in the design of the parity-check matrix. The
proposed algorithm is highly flexible in block length and rate.
The codes constructed by the proposed methods are tested in
the AWGN channel and significant performance improvements
are achieved. The flexibility of the proposed decoder optimisation
operation is then shown by its use in modifying the Improved
PEG (IPEG) algorithm to achieve further performance gains.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes are a class of
capacity approaching codes first introduced by Gallager [1],
extended to the irregular degree distribution case by Luby et
al. [2] and provided with an analytical tool, density evolution
(DE), for optimising the degree distribution under certain
conditions by Richardson et al. [3]. For DE, a notable as-
sumption, with respect to realising practical codes, is that
the decoding neighbourhood of a given variable node (VN)
is tree-like [3]. This is true in the case of infinite length codes
and the assumption approximately holds for codes with large
block length. However, for practical codes of medium to short
length, this assumption is not verified. As a consequence, the
assumption of independence of messages passed under sum-
product decoding breaks down. A major focus in the search
for practical finite length codes is the mitigation of the effects
of the cycles which break down the independence assumption.
Approaches include maximising the girth and improving the
connectivity of the cycles in finite length codes, as typifiedby
the ACE metric presented by Tian et al. [4].

Among those codes capable of best performance at practical
lengths are codes designed by the Progressive Edge Growth
algorithm [5]. The PEG algorithm is a greedy edge placement
construction method for the parity-check matrix of an LDPC
code which places edges in the Tanner graph of the code such
that when a cycle is created, that cycle is of the maximum
possible length under the current settings of the matrix. This
algorithm produces LDPC codes with large girth and with
particularly large local girth in the lower weight VN subgraph
of the parity-check matrix, leading to improved performance.
The PEG algorithm is a particularly versatile code construction
algorithm, in both length and rate. In addition, it may be
applied to the construction of structured LDPC codes, as was
demonstrated in previous work of the authors [6].
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The significant performance gains provided by both the
local girth maximisation technique of the PEG algorithm and
the graph connectivity maximisation technique of the ACE
design procedure naturally lead to the combination of the
methods. In this case, a set of check nodes is identified which
will produce cycles of equal maximum possible length and the
check node chosen is that which has maximum connectivity
according to the ACE metric. Significant performance gain has
been demonstrated with codes generated by this method [7]
[8] [9] particularly in the error floor region.

In this work, we propose an approach to improve the design
of PEG-based techniques which involves use of decoder-based
optimisation with the sum-product algorithm (SPA). During
construction of the parity-check matrix, the PEG algorithm
regularly provides a number of check node (CN) candidates,
each of which is at the maximum distance possible from the
current VN, and so will lead to the creation of cycles of
equal length when the edge is placed. The proposed decoder-
optimised (DO) PEG algorithm compares the performance
of the code under the current graph setting for each of the
candidate CNs. The edge which produces the best performance
according to the SPA is then selected. The proposed DOPEG
and DOIPEG algorithms provide codes with improved per-
formance in the error floor region at the cost of increased
complexity in code construction.

II. D EFINITIONS AND NOTATION

The variable node degree sequenceDv is defined as the set
of column weights of the sizem×n LDPC parity-check matrix
(PCM) H designed, and is prescribed by the variable node
degree distributionλ(x) as described in [3].Dv is arranged in
non-decreasing order. The PEG algorithm constructs the PCM
by operating progressively on variable nodes to place the edges
required byDv. The PEG algorithm chooses a check nodeci
to connect to the variable node of interestvj by expanding a
subgraph fromvj up to maximum depthl. The set of check
nodes found in this subgraph is denotedN l

vj
while the set

of check nodes of interest, those not currently found in the
subgraph, are denotedN l

vj
. For the PEG algorithm, a check

node is chosen at random from the minimum weight check
nodes of this set. This is the set upon which the DO operation
is performed in the DOPEG modification, and upon which the
ACE comparison is performed in the IPEG modification.

III. D ECODER-OPTIMISED PEGAND IPEG ALGORITHMS

With high regularity, the original PEG algorithm is faced
with a set of check nodes which are equivalent according
to the metric by which it compares candidates, that is the
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Fig. 1. Block diagram of the proposed decoder-based optimisation.

distance from the current variable node of interest in a tree
expanded from that VN. Likewise for the IPEG algorithm,
albeit with less regularity, a set of CNs will be found to be
equivalent in both distance metric of the PEG algorithm and
graph connectivity as measured by the ACE metric. For both
algorithms the strategy in this case is to choose a CN at random
from these sets of equivalent candidates. The motivation for
this work was to find the candidate from each of these sets
which provides the best performance. To this end, the decoder-
based optimisation was developed.

The candidate code for check nodeci is formed in the
following way: Htest, the PCM of the candidate code, is
simply the constructed PCM under the current setting with
the addition of a ‘1’ placed in the position [ci,vj ]. The node
vj is the current variable node of interest. The DO operation
is used forj ≥ m + 1, ensuring that the candidate codes
generated have more VNs than CNs. Each candidate code is
used in decoding a preset number of all-zero codeword vectors
as follows: The codewords are subjected to additive white
Gaussian noise (AWGN) over a range of values of signal-to-
noise ratio (SNR) and the candidate PCM is used to decode
through log-domain SPA decoding. The performance of each
candidate code is evaluated and the code which provides the
best performance indicates which candidate check node to
choose for edge placement. This is outlined in Fig. 1. When the
block ‘candidate CN set selection procedure’ deliversN l

vj
of

the PEG algorithm, this block diagram represents the DOPEG.
When this block delivers the set of nodes inN l

vj
with equal

maximum ACE metric then the DOIPEG is represented.
The graph of the chosen candidate code forms a subgraph

of the final graph. Since the graphs of the candidate codes are
almost identical, differing in only one entry with that entry
creating a cycle of equal length in each case, the difference
in performance of the candidate codes is determined by the
connectivity of the cycles each candidate edge creates. At
each placement choosing the edge with the best subgraph
connectivity as indicated by the DO comparison leads to
a graph with better overall connectivity, and an improved
performance.

A. Description of Metric Calculation

For each candidate code, the soft-output bit log-likelihood
ratios (LLRs) of the decoder are given by

L(Qi) = L(si) +
∑

j∈Ci

L(rji), (1)

whereL(si) is the channel output LLR for the coded bitsi
andL(rji) is the LLR passed from CNj to VN i in a half-
iteration of the SPA algorithm.Ci is the set of CNs connected

TABLE I
PSEUDOCODE FOR THE PROPOSEDDOPEG ALGORITHM

1 For j = 1 to n

2 For k = 1 to Dv(j)

3 If k == 0

4 Place edge(cmin, vj), cmin chosen randomly from the minimum

5 weight CNs of the current graph.

6 Else

7 Expand tree fromvj until the cardinality ofN l
vj

stops increasing

8 but is less than mor N l
vj

6= ∅ but N l+1
vj = ∅.

9 If j < m+ 1

10 Place edge(cmin, vj), cmin chosen randomly from the minimum

11 weight CNs ofN l
vj

.

12 Else

13 For p = 1 to Length(N l
vj

)

14 PCM Htest formed fromH under current graph setting up to

15 columnvj , with edge in position(N l
vj
(p), vj)

16 UseHtest to decode in the presence of AWGN over the selected

17 SNR range using the log-domain SPA decoder with soft output.

18 Compute convergence metrics CVM as described in Section III-A

19 Identify CN cDO = arg max
α

CVM(α).

20 Place edge in position(cDO, vj)

21 End For

22 End If

23 End If

24 End For

25 End For

to VN i. Our goal is to produce a convergence metric CVM
for each candidate node CNα, α = 1,. . . , X whereX is the
cardinality of the set of minimum weight CNs ofN l

sj
. To this

end we define theZ ×X matrix CV

CV(β, α) =

Y
∑

t=1

N
∑

i=1

(w · |L(Qi)|) , (2)

w =

{

1 if sgn(L(Qi)) = si
−1 otherwise ·

(3)

The variables used in (2) are:N is the length of the candidate
codeword.Y is the number of noise vectors applied code
at each SNR point for each candidate code. The integerβ

indicates the SNR point,β = 1, . . . , Z, whereZ is the total
number of SNR points operated over. The convergence metric
CVM(α) for candidate CNα is then the overall average sum
for each candidate at each SNR point.

B. Proposed DOIPEG Extension to the DOPEG Algorithm

The IPEG modification of the PEG algorithm provides a
method for selecting a candidate CN from the setN l

vj
which

has greater graph connectivity, leading to improved perfor-
mance. Taking a similar approach, we extend the DOPEG
algorithm, by use of the ACE metric, to the DOIPEG al-
gorithm. The ACE comparison of candidate check nodes is
carried out before the DO stage. As such, the DO operation
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is carried out on a refined set of CNs which are at equal
maximum distance from the VN of interestvj and which have
equal ACE metric, which gives an approximate measure of
graph connectivity. These CNs, viewed as equivalent by the
IPEG algorithm, are compared by means of the DO operation
as in the DOPEG algorithm. The CN which provides the
best performance is selected. The gain achieved by codes
constructed by the DOIPEG algorithm over IPEG codes is
intuitively consistent, the ACE metric gives an inexact measure
of the extrinsic message degree (EMD) and so the set of CNs
compared by the DO operation may provide differing levels of
connectivity. The CN which provides the greatest connectivity
will produce an intermediate code with the best performance
and will be selected, thus the final graph will have improved
structure.

In Table II the DOIPEG modification of the DOPEG algo-
rithm is outlined by means of the pseudocode for the combined
ACE metric and DO operations. The section of pseudocode
below replaces lines 14 - 22 in the pseudocode of Table I to
provide that of the full DOIPEG algorithm.

TABLE II
PSEUDOCODE FOR THEDO STAGE OF THEDOIPEG ALGORITHM

1 For each CNcq ∈ N l
vj

2 Calculate the metricACEcq,path =
∑

vp

(wvp − 2), wherewvp is

3 the weight of columnvp and the summation is taken over all VNs in

4 the path fromvp to cq . This summation is carried out for each path,

5 and the final ACE metric associated withcq is the minimum of

6 ACEcq,path

7 End For

8 The setΦvj is the set of CNs with equal maximum ACE metrics and

9 equal maximum distance from the nodevj
10 If cardinality ofΦvj == 1

11 Edge placed in position(Φvj , vj)

12 Else

13 For p = 1 to Length(Φvj )

14 PCM Htest formed fromH under current graph setting up to

15 columnvj , with edge in position(N l
vj
(p), vj)

16 UseHtest to decode over the SNR range with the log-domain SPA

17 decoder with soft output.

18 Compute metric as described in Section III-A

19 End For

20 End If

IV. SIMULATION RESULTS

We consider the irregular rate 1/2 code with maximum VN
degree 8, from the DE optimal degree distribution of [3] Table
II.

λ1(x) = .30013x+ .28395x2 + .41592x7 (4)

The resulting VN degree sequenceDv was modified so that the
number of weight-2 VNs was smaller than the number of CNs.
As discussed in [3] this ensures that no cycles exist which are
composed only of weight-2 VNs. BPSK modulation over the
AWGN channel was considered. The log-domain SPA decoder

was used in the receiver. In both plots, at least 100 block errors
were gathered per point. For the results gathered for Fig. 2,the
decoder was operated to a maximum of 50 iterations while for
Fig. 3 the decoder was operated to a maximum of 10 iterations.
It has been verified that the use of a lower maximum number
of iterations does not alter the hierarchy of code performances.

In Fig. 2, the error performances of codes of block length
250 are compared. The PEG and IPEG codes are constructed
according to [5], [7], respectively. The DOPEG and DOIPEG
codes were constructed with the DO stage operating with
identical input parameters, five distinct AWGN vectors were
applied to the all-zero codeword at each SNR point in the
range specified. Applying a number of independent noise
vectors ensures that the difference in performance metric
obtained for each candidate check node accurately represents
the effect that candidate has on the graph structure, rather
than resulting from random variations of the noise applied.
The log-SPA decoder was operated to a maximum of 50
iterations. The SNR range operated over was [1:0.05:2]. In the
development of the proposed algorithm it was found that the
DO operation was successful provided the SNR range selected
was in the waterfall region of the error performance of the
chosen code ensemble. As expected the DOPEG algorithm
provides significant performance improvements over the PEG
algorithm. However, both codes are outperformed by the IPEG
algorithm. The DOIPEG algorithm provides a performance
gain over the IPEG in the error floor region.

Fig. 3 shows that the gain achieved by the proposed con-
struction algorithms is consistent for different block lengths.
The results were gathered for an SNR of 4dB with log-SPA
decoding used. The DO parameters of the constructed codes
were identical to the codes of Fig. 2. The increased gain with
block length observed is due to the DO operation having the
greatest effect in the error floor region. Direct comparisonof
gains achieved at different block lengths should be avoided, as
the SNR point chosen will lie in a different region of the BER
curve for codes of different lengths, and the results show that
the DO operation consistently provides gains and is flexible
in code length.

As Fig. 3 shows, the DOPEG codes are outperformed by
the IPEG codes for the irregular LDPC codes considered.
However, if a structure is imposed on the graph of the code
which caused the ACE metric of the IPEG algorithm to
become less accurate or to fail entirely, it is likely that the
DOPEG construction could still be a suitable design tool.
Cases where the structure of the graph is limited include quasi-
cyclic LDPC codes [10] and irregular repeat accumulate (IRA)
codes [11] for faster encoding. Work in these areas is ongoing.

The proposed algorithms require considerably greater com-
plexity in code construction. A comparison of construction
times of the existing and proposed algorithms is given in Table
III, for each block length and construction algorithm the time
is given in seconds as measured using thetic/toc functions
of MATLAB and generated on the same system. It should be
noted that the DOPEG algorithm in particular has a very large
cost in terms of construction time when compared to the PEG
algorithm it is based on. The increase for the DOIPEG over
the IPEG algorithm is significantly less, owing to the fact that
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it operates on a smaller set of candidate check nodes.
The increased effort in code construction is justified by

the performance gains achieved by the DO-based construction
methods over codes which themselves perform excellently. It
should also be noted that while the DOPEG and DOIPEG
methods require increased computation, this cost applies only
in the code construction phase. In transmission, the codes
generated provide improved performance with no extra cost
in complexity.
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Fig. 2. BER curves for the proposed code constructions at block length 250
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Fig. 3. Performance gains achieved at a number of different block lengths

V. CONCLUSIONS

The proposed DOPEG and DOIPEG methods are flexible
in length and rate, and are capable of generating irregular
LDPC codes with improved performance in the error floor
region. As has been stated previously, the gains achieved
are intuitively consistent, since the candidate CN with best
subgraph connectivity will exhibit the best intermediate code

TABLE III
CODE GENERATION TIMES, IN SECONDS, FOR THE ALGORITHMS

PRESENTED.

N PEG IPEG DOPEG DOIPEG

250 27.6 33.4 4.9× 103 482

500 182.3 199.9 4.1× 104 2.5× 103

1000 1.3× 103 1.5× 103 2.3× 105 1.1× 104

performance and better subgraph connectivity will lead to
improved performance for the final code.

The novel code constructions are proposed for codes of
short to medium block length. As was discussed in Section
IV, the computational cost of the algorithms for larger lengths
becomes too high, while the performance improvements over
the base codes, PEG and IPEG, will reduce in line with the
concentration theorem [12], as indeed will the gains of these
codes over random code constructions. The codes of Fig. 3 are
indicative of the lengths recommended for code construction
by the proposed method. For these lengths the graph structure,
short cycles and their connections, has a significant impacton
code performance.
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