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Abstract

Motivated by the performance of the direction finding algorithms based on the aux-

iliary vector filtering (AVF) method and the conjugate gradient (CG) method as well

as the advantages of operating in beamspace (BS), we develop two novel direction

finding algorithms for uniform linear arrays (ULAs) in the beamspace domain, which

we refer to as the BS AVF and the BS CG methods. The recently proposed Krylov

subspace-based CG and AVF algorithms for direction of arrival (DOA) estimation uti-

lize a non-eigenvector basis to generate the signal subspace and yield a superior reso-

lution performance for closely-spaced sources under severe conditions. However, their

computational complexity is similar to the eigenvector-based methods. In order to save

computational resources, we perform a dimension reduction through the linear trans-

formation into the beamspace domain, which additionally leads to significant improve-

ments in terms of the resolution capability and the estimation accuracy. A comprehen-

sive complexity analysis and simulation results demonstrate the excellent performance

of the proposed algorithms and show their computational requirements. As examples,

we investigate the efficacy of the developed methods for the Discrete Fourier Transform

IParts of this paper have been published at the IEEE International ITG Workshop on Smart Antennas

(WSA 2011), Aachen, Germany, Feb. 2011.
IIThis work was supported by the International Graduate School on Mobile Communications (MOBI-

COM), Ilmenau, Germany.
∗Corresponding author. Phone: +49 (3677) 69-2613, fax: +49 (3677) 69-1195, WWW: http://www.tu-

ilmenau.de/crl.

Email addresses: jens.steinwandt@tu-ilmenau.de (Jens Steinwandt),

rcdl500@ohm.york.ac.uk (Rodrigo C. de Lamare), martin.haardt@tu-ilmenau.de (Martin

Haardt)

Preprint submitted to Signal Processing May 16, 2012



(DFT) and the Discrete Prolate Spheroidal Sequences (DPSS) beamspace designs.

Keywords: Direction of arrival estimation, Beamspace processing, Krylov subspace,

Conjugate Gradient, Auxiliary Vector Filtering.

1. Introduction

The need for the direction of arrival (DOA) estimation of incident signal wave-

fronts using sensor arrays is encountered in a broad range of important applications,

including radar, wireless communications, biomedicine, etc. As a result, numerous

methods for estimating the directions of arrival of signals have been proposed in the

last few decades [1]. Among the most powerful techniques are the subspace-based

algorithms, such as MUSIC [2], Root-MUSIC [3] and ESPRIT [4], which are proven

to yield high-resolution capabilities. However, they require an eigendecomposition

of the M × M spatial covariance matrix R = E{xxH} of the received data, corre-

sponding to M sensor elements. Since this is a computationally expensive operation

with O(M3) multiplications, a new class of subspace-based DOA estimation methods

termed Krylov subspace-based methods [5, 6], adopting the auxiliary vector filtering

(AVF) algorithm [7] or as an extension the conjugate gradient (CG) algorithm [8],

was recently proposed. Note that another class of DOA estimators that do not resort

to an eigendecomposition but still demand a high computational cost comprises the

maximum-likelihood (ML) methods [1, 9, 10]. Here, however, we only focus on the

subspace-based algorithms. The advantage of the Krylov-based techniques is that they

are applicable to arbitrary array geometries and avoid the eigendecomposition by iter-

atively generating an extended Krylov signal subspace that comprises the true signal

subspace and the scanning vector itself. While the AVF algorithm forms the signal

subspace from auxiliary vectors, the CG method applies residual vectors to span the

Krylov subspace. Then, the unknown DOAs are determined by searching over the spa-

tial spectrum for the collapse of the rank of the extended signal subspace when the

scanning vector lies in it. This results in superior resolution performance for closely-

spaced sources under severe conditions, i.e., in the case of a low signal-to-noise ratio

(SNR) and a small data record. However, despite utilizing a non-eigenvector basis
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they suffer from a similar computational complexity as the eigenvector-based methods,

since the Krylov signal subspace is constructed for each search angle.

One way of significantly reducing the computational complexity is beamspace (BS)

processing [11], which transforms the original data into a lower-dimensional subspace

and performs the DOA estimation in the reduced-dimensional space rather than in the

element space. Apart from the great computational savings, operation in beamspace

also increases the resolution abilities as well as the estimation accuracy [12]. This

is achieved by the enhancement of the SNR within the spatial sector of interest in

analogy to beamforming. However, it is well known that beamspace processing does

not improve the best achievable estimation accuracy as it only preserves the signals

in the sector of interest, i.e., the corresponding Cramér-Rao lower bound (CRLB) in

beamspace is equal to the element-space CRLB if there are only in-sector sources [13,

14]. Beamspace techniques with robustness against strong sources that are located

outside of the spatial sector were developed in [15, 16].

In this paper, we propose two beamspace direction finding algorithms based on the

CG and the AVF algorithms. Note that although these two Krylov-based algorithms are

applicable to arbitrary array geometries we focus in this work on uniform linear arrays

(ULA) to simplify the operation in the beamspace. A generalization to other geome-

tries can be achieved by considering array linearization techniques [17] prior to the

proposed algorithms. Also, our methods are designed for the one-dimensional DOA

estimation but extensions to the two-dimensional case are possible. For convenience,

we assume that the number of signal sources is known and that they are well inside the

subband of interest. As the search for the signals is only conducted in a sector of the

entire angle range, either a priori information of the approximate position of the DOAs

is required or parallel processing of overlapping sectors of the angle spectrum has to be

applied. We show that the proposed algorithms require a substantially lower compu-

tational complexity compared to their counterparts in element space. Moreover, they

provide a better resolution and better estimation capabilities compared to previously

developed beamspace algorithms, such as BS MUSIC [12], BS Root-MUSIC [18], and

BS ESPRIT [19]. In addition, two different designs of the beamspace transformation

matrix using the Discrete Fourier Transform (DFT) and Discrete Prolate Spheroidal
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Sequences (DPSS) are evaluated and compared.

The remainder of this paper is organized as follows. Section II describes the system

model. The two different ways of designing the beamspace matrix are introduced and

compared in Section III. In Section IV, the proposed BS CG and BS AVF algorithms are

presented, whereas Section V deals with the complexity analysis. Section VI illustrates

and discusses the simulation results and finally, the concluding remarks are drawn in

Section VII.

Notation: We use lowercase boldface letters for column vectors and uppercase

boldface letters for matrices. The superscripts T and H denote transpose and con-

jugate transpose, respectively, ‖x‖ represents the 2-norm of the vector x and E {·}

stands for the statistical expectation.

2. System Model and Beamspace Processing

Let an M -element ULA receive narrowband signals originating from d (d < M)

far-field sources with the DOAs θ = [θ1, . . . , θd]
T . The ith of N available data snap-

shots of the M × 1 array output vector can be modeled as

x(i) = A(θ)s(i) + n(i), i = 1, 2, . . . , N, (1)

where A(θ) = [a(θ1), . . . ,a(θd)] ∈ C
M×d is the array steering matrix, s(i) =

[s1(i), . . . , sd(i)]
T ∈ C

d×1 represents the signal waveforms, and n(i) ∈ C
M×1 is the

vector of white circularly symmetric complex Gaussian sensor noise with zero mean

and variance σ2
n. The M × 1 steering vector a(θl) corresponding to the lth source,

l = 1, . . . , d, is expressed as

a(θl) = [1, ej2π
∆

λc
sin θl , . . . , ej2π(M−1) ∆

λc
sin θl ]T , (2)

where ∆ denotes the interelement spacing of the ULA, λc is the signal wavelength,

and omni-directional sensors have been assumed for the sake of notational simplicity.

Using the fact that s(i) and n(i) are modeled as uncorrelated random variables, the

M ×M covariance matrix is calculated by

R = E
{

x(i)xH(i)
}

= A(θ)RssA
H(θ) + σ2

nIM , (3)
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where Rss = E{s(i)sH(i)} and IM is the M × M identity matrix. In practice, the

unknown covariance matrix is estimated by the sample covariance matrix

R̂ =
1

N

N
∑

i=1

x(i)xH(i). (4)

The linear transformation of the original data into the beamspace of a lower dimen-

sion B with d < B < M is defined as

x̃(i) = WHx(i) ∈ C
B×1 , (5)

where W is the M × B beamspace matrix satisfying WHW = IB , so that the

beamspace sensor noise remains spatially white. If the beamspace matrix Wo is not

unitary, additional noise prewhitening is required and a unitary W can be constructed

as W = (WH
o Wo)

−1/2WH
o .

The B ×B beamspace covariance matrix is given by

R̃ = E
{

x̃(i)x̃H(i)
}

= WHA(θ)RssA
H(θ)W + σ2

nIB . (6)

From (5) and (6), it is apparent that the beamspace transformation changes the original

array manifold to

ã(θ) = WHa(θ), (7)

where ã(θ) is the new steering vector in the beamspace. The eigendecomposition of

the sample estimate of (6) enables us to express R̃ in terms of its eigenvectors and

eigenvalues, i.e.,

R̃ = ŨsΛ̃sŨ
H
s + ŨnΛ̃nŨ

H
n , (8)

where the diagonal matrices Λ̃s and Λ̃n contain the d largest eigenvalues and the B−d

smallest eigenvalues, respectively, and Ũs and Ũn contain their corresponding eigen-

vectors.

3. Beamspace Design

In order to improve the resolution compared to the element space, the beamspace

transformation matrix needs to be chosen adequately. The design of this matrix is
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determined by the beam pattern, which is constructed to suit different characteristics.

More specifically, the columns of the transformation matrix W can be physically in-

terpreted as beams pointing to different angles. Thus, the performance of the operation

in beamspace simply depends on the properties of the beams. In this section, we re-

view the DFT beamspace matrix, the DPSS transformation matrix, and compare them

to each other.

3.1. DFT-Based Beamspace Design

The most common preprocessing scheme is the M × B DFT matrix beamformer

composed of B consecutive columns of the M -point DFT matrix. The output in the

DFT beamspace is formed as

x̃DFT(i) = WH
DFTB,m

x(i) ∈ C
B×1 , (9)

where m denotes the first column of the DFT manifold 0 ≤ m ≤ (M − 1), which

is determined from the prior knowledge and thus selects the sector of interest. The

subscripts B and m in WDFTB,m
are intended to clarify the dependence on the number

of beams B and the subband m under consideration. The resulting orthogonal beam

pointing angles are equispaced by the angular distance ∆u = 2
M , so that the DFT

transformation matrix WDFTB,m
is given by

WDFTB,m
=

[

w

(

m
2

M

)

, . . . ,w

(

(m+B − 1)
2

M

)]

, (10)

where the DFT beamforming vector w(u) exhibits the Vandermonde structure

w(u) =
[

1, ejπu, . . . , ej(M−1)πu
]T

∈ C
M×1 (11)

with u ∈
{

m 2
M , (m + 1) 2

M , . . . , (m+ B − 1) 2
M

}

defining the range of the sector of

interest.

3.2. DPSS-Based Beamspace Design

Discrete prolate spheroidal sequences were first applied to beamspace processing

in [20]. The basic idea is to maximize the ratio of the energy within the desired sector
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defined by Θ to the total beamspace energy in the entire spatial domain described by

[−π, π], which can be formulated according to [14] as

αb
∆
=

∫

Θ
|wH

b a(θ)|2 dθ
∫ π

−π
|wH

b a(θ)|2 dθ
, b = 1, . . . , B, (12)

where wb is the bth column of the DPSS transformation matrix WDPSSB,Θ
. Again, the

subscripts highlight the dependence on B and the sector of interest Θ. Using the fact

that for ULAs
∫ π

−π

|wH
b a(θ)|2 dθ = 2πwH

b wb, (13)

expression (12) can be more compactly expressed in matrix form as

αb =
wH

b Kwb

2πwH
b wb

, (14)

where

K
∆
=

∫

Θ

a(θ)aH(θ) dθ (15)

is a positive semi-definite matrix. The maximization of {αb}
B
b=1 is equivalent to max-

imizing the numerator while keeping the denominator fixed and thus corresponds to

finding the B eigenvectors of the matrix K associated with the B largest eigenvectors.

The DPSS beamspace matrix is then given by

WDPSSB,Θ
= [u1, . . . ,uB ] ∈ C

M×B , (16)

where ub, b = 1, . . . , B, are the B principal eigenvectors of K. The appertaining

DPSS beamspace snapshot vector x̃DPSS(i) is computed in analogy to (9). In prac-

tice, it can be assumed that prior information about the coarse location (the sector)

of the sources to be estimated is available. Subsequently, the width of the sector of

interest and its orientation with respect to the broadside of the array is used to select

the appropriate number of beams B. Whereas in the DFT-based beamspace design,

the corresponding consecutive columns of the DFT matrix have to be chosen, in the

DPSS-based design, B can be determined via model order selection from the eigen-

value profile of K for the spatial sector. Note that an inadequate choice of W due to

an increased width and an improper spatial orientation of the sector can degrade the

estimation performance of the proposed beamspace direction finding methods.
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3.3. Comparison of the DFT and DPSS Spatial Filters

In this section, we compare the characteristics of the DFT and the DPSS spatial

filters in terms of their passband transmission and their stopband attenuation. Fig. 1

shows the spatial filter response of a sensor array composed of M = 32 elements,

where the scanning angle after the beamspace transformation (7) is varied over the

array manifold. The transformation matrix for both filters is formed by B = 7 beams

and the sector of interest is chosen by the parameters m = −3 and Θ = [−12.5◦, 12.5◦]

for the DFT and the DPSS design, respectively. It is evident from Fig. 1 that the DFT

and the DPSS filters perform similarly, but the passband of the DPSS window exhibits

smaller ripples, and provides a better rejection performance in the stopband as the

peaks are significantly lower. According to these observations, we expect a slightly

better estimation performance of direction finding algorithms in the DPSS beamspace

than in the DFT beamspace.

4. Proposed Beamspace Direction Finding Algorithms

In this section, two Krylov-based algorithms are proposed for estimating the DOAs

in the beamspace.

4.1. Beamspace Direction Finding Based on the CG Algorithm

The presented BS CG algorithm is developed according to the previous work in [8]

in order to reduce the dimensionality of the data and to further increase the resolution

ability. The originally proposed CG method [21] is used to minimize a cost function

or, equivalently, to solve a linear system of equations. It approaches the optimal solu-

tion step by step via a line search along successive directions, which are sequentially

determined at each iteration. Applying the CG algorithm to beamspace direction find-

ing [22], the system of equations, also known as the Wiener-Hopf equations, which is

iteratively solved for w̃(θ) at each scanning angle, is given by

R̃w̃(θ) = b̃(θ), (17)

where R̃ is the covariance matrix of the transformed data (5) and b̃(θ) is the initial

vector depending on the search angle. However, for the CG-based DOA estimation
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in the beamspace, the solutions in (17) at each iteration do not have to be computed

explicitly as the proposed algorithm only utilizes the orthogonal residual vectors at

each step. The initialization for b̃(θ) is defined as in [8] as

b̃(θ) =
R̃ã(θ)

‖R̃ã(θ)‖
, (18)

where ã(θ) computed as in (7) is linearly transformed by the beamspace covariance

matrix R̃ and normalized.

The extended Krylov-based signal subspace of rank d+1 is generated by perform-

ing d iterations of the BS CG algorithm summarized in Table 1. The set of orthogonal

residual vectors

G̃d+1(θ) =
[

b̃(θ), g̃1(θ), . . . , g̃d(θ)
]

, (19)

where b̃(θ) = g̃0(θ) and the columns of G̃d+1(θ) span the extended Krylov subspace

composed of the true signal subspace of dimension d and the scanning vector itself.

All the residual vectors are normalized apart from the last one. If θ ∈ {θ1, . . . , θd},

the initial vector b̃(θ) lies in the true signal subspace WHA(θ) and thus, the set of

orthogonal residual vectors G̃d+1(θ) generated from b̃(θ) are also contained in the

column space of WHA(θ), which was proven for the element space in [8]. Hence, we

can conclude that

span{g̃0(θ), . . . , g̃d−1(θ)} = span{WHA(θ)}. (20)

In this case, G̃d+1 is not a basis for the true signal subspace in the beamspace domain so

that the rank of the generated Krylov signal subspace drops from d+1 to d. This implies

that since the last unnormalized residual vector g̃d(θ) cannot be a linear combination of

the previously formed residual vectors due to the orthogonality to them, the following

equation must hold:

g̃d(θ) = 0. (21)

However, if θ 6∈ {θ1, . . . , θd}, G̃d+1(θ) is an orthogonal basis for the extended signal

subspace in the beamspace domain, i.e.,

span{g̃0(θ), . . . , g̃d(θ)} = span{ã(θ),WHA(θ)}. (22)
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In order to exploit this observation, the spectral function of the proposed BS CG

direction finding algorithm is given as in [7] by

P̃ (θ(n)) =
1

‖g̃H
d (θ(n))G̃d+1(θ(n−1))‖2

, (23)

where θ(n) is defined as the current search step in the entire angular range {−90◦, . . . , 90◦}

with θ(n) = n · ∆◦ − 90◦, where ∆◦ is the search grid and n = 0, 1, . . . , 180◦/∆◦.

The matrix G̃d+1(θ
(n−1)) contains all the residual vectors at the (n − 1)th angle

and g̃d(θ
(n)) is the last residual vector calculated at the current search step n. If

θ(n) ∈ {θ1, . . . , θd}, then g̃d(θ
(n)) = 0 and we expect a peak in the pseudo spec-

trum.

In practical applications, the true covariance matrix in the beamspace domain R̃ is

unknown and needs to be estimated. Thus, the terms g̃d(θ
(n)) and G̃d+1(θ

(n−1)) in

the denominator become approximations and as a result, the spectral function defined

in (23) will merely provide a very large value but not approach infinity as for the true

covariance matrix. Eventually, a peak search algorithm is applied to obtain the signal

directions θ from the d largest peaks of the pseudo spectrum.

4.2. Beamspace Direction Finding Based on the AVF Algorithm

In the development of the BS AVF algorithm, the concept of iteratively generating a

non-eigenvector basis for the signal subspace and the search for the rank collapse of the

extended Krylov signal subspace is the same as for the CG-based version. However,

this approach employs the AVF algorithm to solve the system of equations in (17)

iteratively for each search angle by utilizing successive auxiliary vectors. The AVF

algorithm was firstly applied to sensor signal processing by the adaptive filtering work

in [23] and was then exploited for direction finding in [7]. Here, the latter algorithm

is extended to the operation in beamspace to reduce the computational burden while

enhancing the estimation performance.

According to the previous section, we start our development with the initial vec-

tor b̃(θ), also defined as b̃(θ) = w̃0(θ) = g̃0(θ), given in (18) after performing the

beamspace transformation. Then, we find d auxiliary vectors g̃k(θ), k = 1, . . . , d,

that are orthogonal with respect to the previous iteration w̃k−1(θ) to solve (17), and to
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each other, where the first d − 1 auxiliary vectors are also of unit norm. The auxiliary

vectors are determined by maximizing the magnitude of the cross-correlation between

w̃H
k−1(θ)x̃(i) and g̃H

k (θ)x̃(i). Formulating this concept as an optimization problem

with respect to the orthonormality constraint for the first auxiliary vector g̃H
1 (θ) with

b̃(θ) = w̃0(θ), yields

g̃1(θ) = argmax
g̃1(θ)

∣

∣E

{

b̃H(θ)x̃(i)
(

g̃H
1 (θ)x̃(i)

)H
}

∣

∣

= argmax
g̃1(θ)

∣

∣b̃H(θ)R̃g̃1(θ)
∣

∣

s.t. g̃H
1 (θ)b̃(θ) = 0, ‖g̃1(θ)‖

2 = 1.

(24)

The solution to this constrained optimization problem is obtained as

g̃1(θ) =

(

IB − b̃(θ)b̃H(θ)
)

R̃b̃(θ)

‖
(

IB − b̃(θ)b̃H(θ)
)

R̃b̃(θ)‖
. (25)

The proof is given in the Appendix. The recursion for the d− 1 orthonormal auxiliary

vectors with g̃0(θ) = b̃(θ) can be cast as

g̃k(θ) =

(

IB −
k−1
∑

i=0

g̃k(θ)g̃
H
k (θ)

)

R̃w̃k−1(θ)

∥

∥

∥

∥

(

IB −
k−1
∑

i=0

g̃k(θ)g̃H
k (θ)

)

R̃w̃k−1(θ)

∥

∥

∥

∥

(26)

and the dth auxiliary vector is the unnormalized version of (26) with k = d.

The iterations w̃k(θ) to solve the beamspace-transformed system of equations in

(17) are defined as

w̃k(θ) = w̃k−1(θ)− µk(θ)g̃k(θ), (27)

where µk(θ) is the step size, which is the solution of the minimization problem dealing

with the output power described as

µk(θ) = argmin
µk(θ)

E
{

|w̃H
k−1(θ)x̃(i)|

2
}

(28)

and easily shown to be

µk(θ) =
g̃H
k (θ)R̃w̃k−1(θ)

g̃H
k (θ)R̃g̃k(θ)

. (29)
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After the computation of the d orthogonal auxiliary vectors according to the above

procedure, the extended Krylov signal subspace G̃d+1(θ) in the beamspace domain,

which includes the initial vector b̃(θ) is formed, similarly to the CG-based beamspace

algorithm, by

G̃d+1(θ) =
[

b̃(θ), g̃1(θ), . . . , g̃d(θ)
]

. (30)

Considering the fact that this strategy requires the computation of the vectors w̃k(θ)

for each iteration, a direct way of obtaining the d auxiliary vectors was proposed in

[24] and is summarized in Table 2 for the beamspace version.

Finally, by using the previously established concept that g̃d(θ) = 0 if θ ∈ {θ1, . . . , θd},

we define the spectral function for the pseudo spectrum in the same fashion as in (23)

for the CG-based version, yielding

P̃ (θ(n)) =
1

‖g̃H
d (θ(n))G̃d+1(θ(n−1))‖2

. (31)

Once more θ(n) is the search step in the angular range {−90◦, . . . , 90◦} with θ(n) =

n · ∆◦ − 90◦, where ∆◦ is the search grid and n = 0, 1, . . . , 180◦/∆◦. Again,

G̃d+1(θ
(n−1)) contains all the auxiliary vectors at the (n − 1)th angle, and g̃d(θ

(n))

is the last unnormalized auxiliary vector calculated at the current search step n. If

θ(n) ∈ {θ1, . . . , θd}, then g̃d(θ
(n)) = 0 and a peak occurs in the pseudo spectrum. The

desired signal directions θ are extracted from the location of the d largest peaks in the

spatial spectrum.

5. Computational Complexity Analysis

As mentioned in the introduction, the key advantage of the operation in the beamspace

domain is to reduce the computational complexity linked with the conventional tech-

niques in element space. In this section, we evaluate the computational cost of the two

proposed Krylov subspace-based methods, the BS AVF and the BS CG algorithms, and

compare them to the complexity of the classical direction finding methods in element

space as well as their beamspace versions. We will not take into account the cost of

finding W as it can be computed offline and stored for the direction finding process.
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Considering well-established DOA estimation algorithms, such as MUSIC [2], Root-

MUSIC [3], and ESPRIT [4], the required subspace estimate is obtained by using either

a singular value decomposition (SVD) of the received array measurement matrix X or

by computing an eigenvalue decomposition (EVD) of the estimated covariance matrix

R̂. As the dimensions of both matrices are different, these two decompositions also

cause different computational costs. Thus, we distinguish between them in the follow-

ing analysis. Further insights regarding the choice between the SVD and the EVD, and

their accuracy in estimating the subspaces for practical applications can be found in

[25].

5.1. Subspace Estimation via the SVD

The computational cost, depicted in Table 3, is measured in terms of the number of

additions and multiplications [21], where ∆◦ is the search step and the SVD is used for

the conventional direction finding methods. The peak search in the pseudo spectrum

as necessary for MUSIC, the CG algorithm, and the AVF algorithm is not considered,

since there are implementations that do not require any multiplications and additions.

It is evident from the two tables that the BS AVF and the BS CG algorithms have

a cost, which is a function of O((180/∆◦)M2d) and depends on the search grid step

∆◦ as the Krylov signal subspace is generated for each search angle. However, by

performing the transformation into the lower dimensional beamspace, the number of

sensor elements M can be replaced by B although the transformation itself has also

been taken into account in Table 3.

Fig. 2 shows the complexity in terms of arithmetic operations of the analyzed al-

gorithms as a function of the number of sensor elements M . The number of beams B

is optimized for each direction finding algorithm in beamspace to provide the best es-

timation performance. The proposed BS CG method requires B = 5 beams to achieve

its optimal performance, whereas the proposed BS AVF, the BS MUSIC, BS Root-

MUSIC, and the BS ESPRIT algorithms only demand B = 3 beams. This is due to

the iterative way of constructing the signal subspace by the residual vectors in the BS

CG method, which requires more input data. The curves in Fig. 2 indicate that the

beamspace algorithms provide a significantly lower complexity than their counterparts

13



in element space as M increases. Specifically, the conventional AVF- and CG-based

algorithms in element space constitute a higher computational burden than the other

approaches for a large array size. However, in the beamspace, the complexity of the

BS AVF and the BS CG algorithms is significantly lower than that of the beamspace

versions of MUSIC, Root-MUSIC, and ESPRIT, where the BS AVF algorithm requires

the lowest complexity. The reason for the higher complexity of the beamspace meth-

ods for a small M is the applied transformation into the lower dimensional subspace,

which increases the number of operations.

5.2. Subspace Estimation via the EVD

Similarly to the previous part, in this subsection, we assess the computational com-

plexity of the proposed BS AVF and the BS CG algorithms when the EVD is applied.

As the dimensions of R̂ smaller than the ones of X , a lower computational burden can

be expected. The required cost for the analyzed methods is shown in Table 4. Note

that the expressions for the eigenvector-based methods in Table 4 also contain the nec-

essary computation of R̂ from X . A visual comparison is depicted in Fig. 3. The

computational savings when applying the EVD translates into a lower complexity of

the conventional beamspace techniques. Thus, the two proposed algorithms demand a

higher computational burden. However, as their complexity depends on B, it can be

further reduced by decreasing B and allowing a slight loss of the estimation perfor-

mance. Also, in a practical scenario with a large dynamic range, the computation of

R̂ may introduce finite precision errors due to the squaring of the measurement values,

which deteriorate the estimation performance of the conventional BS algorithms. In

addition, for moving sources the proposed algorithms can track DOAs with little addi-

tional cost, whereas the SVD or EVD-based methods would require the computation

of a new SVD or EVD at each snapshot.

An example showing particular values of the required additions for a specific sce-

nario is given in Table 5.
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6. Simulation Results

In this section, we extensively examine the efficacy of the two proposed Krylov

subspace-based algorithms in beamspace in terms of the estimation accuracy and the

resolution capability and compare them to the BS MUSIC, BS Root-MUSIC, BS ES-

PRIT algorithms and their counterparts in the element space. The first part of the

simulations is concerned with the comparison of the analyzed algorithms in the DFT

beamspace as BS Root-MUSIC [18] and BS ESPRIT [19] are specifically developed

for this beamspace design, and in the second part we compare the performance of the

proposed techniques in the DFT and the DPSS beamspace.

6.1. Comparison of the Proposed Algorithms in the DFT Beamspace

In order to evaluate the estimation performance of the proposed algorithms for

closely-spaced sources in the DFT beamspace, we employ a ULA consisting of M =

10 omnidirectional sensors with interelement spacing ∆ = λc/2. We assume that

there are two uncorrelated complex Gaussian signals with equal power impinging on

the array, which are located at 35◦ and 40◦, where the angles of arrival are measured

with respect to the broadside of the array. Furthermore, we assume a priori knowledge

about the approximate positions of the DOAs to select the sector of interest as m = 2.

The number of available snapshots at the array output is N = 50 and each curve is

obtained by averaging a total of T = 3000 trials. In order to obtain accurate results,

we set the search grid step to ∆◦ = 0.1◦.

In the first experiment, the resolution performance of the BS AVF and the BS CG

algorithms is assessed in comparison to the conventional beamspace techniques. Fig.

4 shows the probability of resolution as a function of the SNR, where the number of

beams B for each direction finding algorithm in beamspace is optimized to yield the

best performance. The expression for the SNR is given by

SNR =
Ps

Pn
, (32)

where Ps and Pn are the signal and the noise power, respectively. The signal sources

are said to be resolved in a given run if both estimates θ̂1 and θ̂2 simultaneously fulfill
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the criterion [7]

|θ̂l − θl| <
|θ1 − θ2|

2
, l = 1, 2. (33)

It is evident from Fig. 4 that the resolution capability of the algorithms in beamspace

is generally higher compared to their counterparts in element space, since a priori

knowledge about the approximate positions of the sources is exploited. However, this

is not necessarily the case for the proposed BS AVF algorithm whose resolution perfor-

mance is slightly worse than its counterpart in element space for an SNR between −3

dB and 5 dB. This behavior for higher SNRs can be explained by the gaps between the

overlapping DFT beams, which may cause parts of the signal energy to be attenuated,

if the sources are unfavorably placed. In our comparison, the proposed BS CG algo-

rithm outperforms the CG algorithm and demonstrates the best ability to resolve the

two sources among the existing methods in beamspace and in element space. The fact

that the BS CG algorithm reaches its best performance for B = 5 beams, while the BS

AVF method and the eigenvector-based schemes attain their maximum for only B = 3

beams is due to the iterative way of constructing the signal subspace by the residual

vectors, which requires more data.

In Fig. 5, the probability of resolution is illustrated as a function of the number of

snapshots N . In order to evaluate the performance under severe conditions, the SNR

is fixed at −7 dB. The BS CG algorithm clearly outperforms all the analyzed direction

finding techniques in beamspace and element space, and is able to resolve the two

sources at such a low SNR with more than 50 percent probability using only N = 20

snapshots. Also, it can be seen that the BS AVF algorithm substantially improves

the resolution performance of its counterpart but is outperformed by BS ESPRIT and

BS Root-MUSIC. We also verify that BS MUSIC, MUSIC, Root-MUSIC, ESPRIT,

and the AVF algorithm almost completely fail to separate the two sources under these

severe conditions.

In the next part, the estimation accuracy is investigated in terms of the root mean
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square error (RMSE), where the RMSE is estimated using T trials by

RMSE =

√

√

√

√

1

T

T
∑

t=1

d
∑

l=1

(

θl − θ̂l(t)
)2

. (34)

The investigated direction finding algorithms in beamspace and in element space are

compared to the deterministic Cramér-Rao lower bound (CRLB) [13, 14]. It was es-

tablished in [14] that the CRLB in beamspace is equal to the element-space CRLB if

the sources are well inside the sector of interest. Since this is the case in our study,

only the CRLB in the element space is depicted as a reference for the comparison.

The resulting RMSE as a function of the SNR is presented in Fig. 6. Again, all the

beamspace versions of the analyzed methods yield a higher estimation accuracy in the

underlying scenario. However, whereas the proposed BS AVF method only provides

a limited performance improvement, the BS CG algorithm outperforms the beamspace

versions of ESPRIT and Root-MUSIC within the range of the SNR between −5 dB

and 5 dB. Thus, applying the beamspace transformation to the original CG direction

finding algorithm significantly improves the estimation accuracy for each SNR value.

Finally, in Fig. 7, we show the RMSE versus SNR performance of the proposed

algorithms, where we included the uncertainty information measured by the standard

deviation around each obtained point.

6.2. Comparison of the DFT and DPSS Beamspace

The aim of this section is to examine the potential of operating in the DFT and

the DPSS beamspaces. It was stated in Section 3 that, apart from the applied direc-

tion finding method, the estimation performance mainly depends of the design of the

beamspace transformation matrix. To this end, we compare the efficacy of the DFT

and the DPSS beamspace for the two proposed Krylov subspace-based algorithms. For

the simulations, the same scenario from the previous section is used to simplify the

comparison and the spatial sector of interest for the DPSS beamspace is chosen as

Θ = [25◦, 50◦]. Similarly to the DFT beamspace, the number of beams for the DPSS

beamspace is optimized to yield the best results.

According to Fig. 8, the resolution performance of the BS CG algorithm in the

DPSS beamspace versus the SNR is slightly better than that in the DFT beamspace.
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Furthermore, the DPSS beamspace version of the AVF algorithm compensates the de-

ficiency of the DFT version for relatively high SNR values and thus provides an en-

hanced resolution capability for closely-spaced sources.

The results shown in Fig. 9 verify the conclusions drawn from the first figure. The

DPSS spatial filter yields a small improvement of the probability of resolution for both

proposed beamspace techniques as the data record increases.

Fig. 10 evaluates the RMSE performance against the SNR and once more, the

advantage of the DPSS beamspace becomes obvious. The proposed algorithms benefit

from the transformation into the lower-dimensional DPSS beamspace, outperforming

the versions associated with the DFT beamspace.

As evident from the simulation results, the spatial filter designed by using DPSS

tapers implies a slight performance advantage over the DFT beamspace. This behavior

was already anticipated in Section 3 based on the fact that the DPSS filter provides a

better rejection performance in the stopband and exhibits a smoother transmission in

the passband.

7. Conclusion

In this paper, two Krylov subspace-based techniques are developed for direction

finding in the beamspace domain as an extension of the recently proposed AVF algo-

rithm and the CG algorithm for DOA estimation in the element space. The presented

beamspace methods significantly improve the estimation accuracy of their counter-

parts for closely-spaced sources at a low SNR and a small data record size. As both

algorithms iteratively generate the signal subspace in the beamspace domain, they do

not resort to an eigendecomposition of the signal covariance matrix. To verify the

beamspace-related reduction of the computational burden, an extensive analysis of the

complexity requirements is conducted. Also, it is shown that operation in beamspace

substantially enhances the resolution capability and the estimation accuracy, where the

BS CG outperforms the BS AVF algorithm, which may behave worse than the classi-

cal beamspace methods. In addition, two different ways of designing the beamspace,

namely the discrete Fourier transform (DFT) and the discrete prolate spheroidal se-
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quences (DPSS) beamspace are analyzed and compared. It is demonstrated that the

proposed algorithms in the DPSS beamspace provide a higher estimation performance

than in the DFT beamspace.

Appendix

Noticing that the cost function and the constraints are phase invariant, we can,

without loss of generality, restrict b̃H(θ)R̃g̃1(θ) to be real-valued and nonnegative,

i.e., b̃H(θ)R̃g̃1(θ) ≥ 0. Thus, the Lagrange function is formed as

L (g̃1(θ)) = g̃H
1 (θ)R̃b̃(θ)− λ1g̃

H
1 (θ)b̃(θ)

− λ2

(

g̃H
1 (θ)g̃1(θ)− 1

)

.
(35)

Taking the gradient with respect to g∗

1(θ) and equating it to zero, we obtain

g̃1(θ) = λ−1
2

(

R̃b̃(θ)− λ1b̃(θ)
)

. (36)

The enforcement of the constraints in (24) leads to a system of equations that is solved

for λ1 and λ2 by

λ1 =
b̃H(θ)R̃b̃(θ)

‖b̃(θ)‖2
(37)

and

λ2 =

∥

∥

∥

∥

∥

R̃b̃(θ)−
b̃H(θ)R̃b̃(θ)

‖b̃(θ)‖2
b̃(θ)

∥

∥

∥

∥

∥

. (38)

After inserting (37) and (38) into (36), considering the fact that ‖b̃(θ)‖2 = 1, and some

straightforward operations, we arrive at the desired result

g̃1(θ) =

(

IB − b̃(θ)b̃H(θ)
)

R̃b̃(θ)

‖
(

IB − b̃(θ)b̃H(θ)
)

R̃b̃(θ)‖
(39)

for the maximization of the cross-correlation subject to the imposed constraints, which

completes the proof.
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Figure Captions

Fig. 1: Comparison of the DFT and DPSS spatial filters with M = 32 and B = 7.

Fig. 2: Complexity in terms of arithmetic operations versus the number of sensors M applying

the SVD with d = 3, N = 50, and ∆
◦

= 1
◦.

Fig. 3: Complexity in terms of arithmetic operations versus the number of sensors M applying

the EVD with d = 3, N = 50, and ∆
◦

= 1
◦.

Fig. 4: Probability of resolution versus the SNR in the DFT beamspace with M = 10, θ1 = 35
◦,

θ2 = 40
◦, N = 50, m = 2.

Fig. 5: Probability of resolution versus the number of snapshots N in the DFT beamspace with

M = 10, θ1 = 35
◦, θ2 = 40

◦, SNR = −7 dB, m = 2.

Fig. 6: RMSE versus the SNR in the DFT beamspace with M = 10, θ1 = 35
◦, θ2 = 40

◦,

N = 50, m = 2.

Fig. 7: RMSE versus the SNR with the standard deviation in the DFT beamspace for M = 10,

θ1 = 35
◦, θ2 = 40

◦, N = 50, m = 2.

Fig. 8: Comparison of the DFT and DPSS beamspace regarding the probability of resolution

versus the SNR with M = 10, θ1 = 35
◦, θ2 = 40

◦, N = 50, m = 2.

Fig. 9: Comparison of the DFT and DPSS beamspace regarding the probability of resolution

versus the number of snapshots N with M = 10, θ1 = 35
◦, θ2 = 40

◦, SNR = −7 dB, m = 2.

Fig. 10: Comparison of the DFT and DPSS beamspace regarding the RMSE versus the SNR

with M = 10, θ1 = 35
◦, θ2 = 40

◦, N = 50, m = 2.
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Table Captions

Table 1: The Proposed BS CG Algorithm

Table 2: The Proposed BS AVF Algorithm

Table 3: Computational Complexity Applying the SVD

Table 4: Computational Complexity Applying the EVD

Table 5: Number of Additions with M = 30, B = 5, d = 2, N = 50, ∆◦

= 1
◦.
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