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Introduction
– MIMO systems offer high performance and capacity

but also present many design challenges [1].

– Interference in MIMO reduces capacity and perfor-
mance.

– Mitigation of interference and exploitation of diver-
sity → MIMO detectors

– MIMO detectors with different trade-offs between
performance and complexity : ML, Sphere Decoder
[3], lattice reduction, VBLAST with ordered succes-
sive interference cancellation (SIC) [2], Linear and
Decision Feedback (DF) [6].

– Challenge → design of detectors with near ML per-
formance and low complexity.

– Contributions : MMSE DF detector with multiple can-
cellation branches, MMSE design of the filters with
shape and magnitude constraints, ordering strate-
gies, and multistage scheme with the proposed de-
tector .
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MIMO System Model

– Consider a MIMO system with NT transmit anten-
nas and NR receive antennas in a spatial multi-
plexing configuration.

– The signals are transmitted over single-path chan-
nels.

– We assume that the channel is constant during each
packet transmission (block fading) and the receiver
is perfectly synchronized.

4



MIMO Data Model

– The received signal is applied to a matched filter,
sampled and collected into a NR × 1 vector r[i]

given by

r[i] = Hs[i] + n[i],

– The NR×1 vector n[i] is a zero mean complex cir-
cular symmetric Gaussian noise vector with E

[
n[i]nH[i]

]
=

σ2nI, where σ2n is the noise variance.
– The symbol vector s[i] has mean zero and a cova-

riance matrix E
[
s[i]sH[i]

]
= σ2s I, where σ2s is the

signal power.
– The elements hnR,nT of the NR ×NT channel ma-

trix H correspond to the complex channel response
from the nT th transmit antenna to the nRth receive
antenna.
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Proposed Multi-Branch Decision Feedback
Detection

– The proposed multi-branch detector considers the
following combination of weights :

zj,l[i] = wH
j,lr[i]−fHj,l[i]̂so[i], for l = 1, . . . , L, m = 1, . . . NT

– The NR × 1 vector wj,l denotes the feedforward
filter, the vector of initial decisions ŝo[i] is fed back
through the NT × 1 feedback filter vector fj,l[i].
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Proposed Multi-Branch Decision Feedback
Detection (cont.)

– The proposed MB-MMSE-DF detector selects the
best branch according to

lopt = arg min
1≤l≤L

MMSE(sj[i],wj,l,f j,l), j = 1, . . . , NT

where MMSE(sj[i],wj,l,f j,l) corresponds to the
instantaneous MMSE produced by the pair of filters
wj,l and f j,l.

– The final detected symbol of the MB-MMSE-DF de-
tector is obtained by :

ŝj[i] = Q
[
zj,lopt[i]

]
= Q

[
wH

j,lopt
r[i]− fH

j,lopt
ŝoj,lopt[i]

]
, j = 1, . . . , NT

where Q(·) is a slicing function that makes the de-
cisions about the symbols, which is drawn from an
M-PSK or a QAM constellation.
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MMSE Filter Design

– The design of the MMSE filters of the proposed MB-
MMSE-DF detector must solve the following optimi-
zation problem

min MSE(sj[i],wj,l,f j,l) = E
[
|sj[i]−wH

j,lr[i] + fH
j,lŝ

o
j,l[i]|

2
]

subject to Sj,lf j,l = vj,l and ||f j,l||2 = γj,l||fc
j,l||

2

for j = 1, . . . , NT and l = 1, . . . , L,

where
-the NT ×NT shape constraint matrix is Sj,l,
-vj,l is the resulting NT × 1 constraint vector and
-fc

j,l is a feedback filter without constraints on the
magnitude of its squared norm.
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MMSE Filter Design (cont.)

– Expressions for wj,l and f j,l obtained after solving
the optimization problem :

wj,l = R−1(pj +Qf j,l),

f j,l = βj,lΠj,l(Q
Hwj,l − tj) + (I −Πj,l)vj,l,

where

Πj,l = I − SH
j,l(S

H
j,lSj,l)

−1Sj,l

is a projection matrix that ensures the shape constraint
Sj,l and βj,l = (1−αj,l)

−1 is a factor that adjusts
the magnitude of the feedback, 0 ≤ βj,l ≤ 1 and
αj,l is the Lagrange multiplier.

– The NR × NR covariance matrix of the input data
vector is R = E[r[i]rH[i]], pj = E[r[i]s∗j [i]],

Q = E
[
r[i]ŝo, Hj,l [i]

]
, and tj = E[ŝoj,l[i]s

∗
j [i]] is

the NT × 1 vector of correlations between ŝoj,l[i]

and s∗j [i].
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MMSE Filter Design (cont.)

– Simplification of the filter expressions (using the fact
that the quantity tj = 0 for interference cancel-
lation, vj,l = 0, and assuming perfect feedback
(s = ŝ)) :

wj,l =
(
HHH + σ2n/σ

2
s I

)−1
H(δj + f j,l)

f j,l = βj,lΠj,l

(
σ2sH

Hwj,l

)
,

where δj = [0 . . .0︸ ︷︷ ︸
j−1

1 0 . . .0︸ ︷︷ ︸
NT−j−2

]T is a NT×1 vector

with a one in the jth element and zeros elsewhere.

– The proposed MB-MMSE-DF detector expressions
above require the channel matrix H (in practice an
estimate of it) and the noise variance σ2n at the re-
ceiver.
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MMSE Filter Design (cont.)

– In terms of complexity, it requires for each branch l

the inversion of an NR ×NR matrix and other ope-
rations with complexity O(N3

R). However, the ma-
trix inversion is identical for all branches and the
MB-MMSE-DFE only requires further additions and
multiplications of the matrices.

– Moreover, we can verify that the filters wj,l and f j,l

are dependent on one another, which means the
designer has to iterate them before applying the de-
tector.

– The MMSE associated with the pair of filters wj,l

and f j,l and the statistics of data symbols sj[i] is
given by

MMSE(sj[i],wj,l,f j,l) = σ2s −wH
j,lRwj,l + fH

j,lf j,l

where σ2s = E[|sj[i]|2] is the variance of the desi-
red symbol.
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Design of Cancellation Patterns

– Design of the shape constraint matrices Sj,l and
vectors vj,l : pre-stored patterns at the receiver for
the NT data streams and for the L branches.

– Basic idea : to shape the filters f j,l for the NT data
streams and the L branches with the matrices Sj,l

such that resulting constraint vectors vj,l are null
vectors.

– For the first branch of detection (l = 1), we can use
the SIC approach and

Sj,lf j,l = 0, l = 1

Sj,l =

[
0j−1 0j−1,NT−j+1

0NT−j+1,j−1 INT−j+1

]
, j = 1, . . . , NT ,

where 0m,n denotes an m × n-dimensional matrix
full of zeros, and Im denotes an m-dimensional
identity matrix.

12



Design of Cancellation Patterns (cont.)

– For the remaining branches, we adopt an approach
based on permutations of the structure of the ma-
trices Sj,l, which is given by

Sj,lf j,l = 0, l = 2, . . . , L

Sj,l = ϕl

[
0j−1 0j−1,NT−j+1

0NT−j+1,j−1 INT−j+1

]
, j = 1, . . . , NT ,

where the operator ϕl[·] permutes the columns of
the argument matrix such that one can exploit dif-
ferent orderings via SIC.

– These permutations are straightforward to imple-
ment and allow the increase of the diversity order
of the proposed MB-MMSE-DF detector.

– An alternative approach for shaping Sj,l for one of
the L branches is to use a PIC approach and de-
sign the matrices as follows

Sj,lf j,l = 0, l

Sj,l = diag (δj), j = 1, . . . , NT ,

13



Ordering Algorithm

– The proposed ordering algorithm for l = 1, . . . , L

is given by

{o1,l, . . . , oNT ,l
} = arg min

o1,l,...,oNT ,l

L∑
l=1

NT∑
j=1

MMSE(sj[i],wj,l,f j,l)

– The ordering for the proposed MB-MMSE-DF de-
tector is based on determining the optimal orde-
ring for the first branch, which employs a SIC-based
DFE, and then uses phase shifts for increasing the
diversity for the remaining branches.

– The algorithm finds the optimal ordering for each
branch. For a single branch detector this corres-
ponds to the optimal ordering of the V-BLAST de-
tector.

– The idea with the multiple branches and their orde-
rings is to attempt to benefit a given data stream or
group for each decoding branch.
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Multistage Detection

– Main ideas : to combat error propagation by refi-
ning the decision vectors with multiple stages, and
to equalize the performance over the data streams.

– The MB-MMSE-DF detector with M stages can be
described by

z
(m+1)
j,l (i) = w̃H

j,lr[i]−f̃
H
j,lŝ

o,(m)
j,l [i], m = 0, 1, . . . , M,

where ŝo,(m)
j,l [i] is the vector of tentative decisions

from the preceding iteration that is described by
ŝ
o,(1)
k,j,l [i] = Q

(
wH

j,lr[i]
)
, k = 1, . . . , NT , and

ŝ
o,(m)
k,j,l [i] = Q

(
z
(m)
j,l [i]

)
, m = 2, . . . , M,.

– In order to equalize the performance over the data
streams population, we consider an M-stage struc-
ture with output given by

z
(m+1)
j,l [i] = [Twj,l]

Hr[i]− [Tf j,l]
H]ŝ0,(m)

j,l [i]

(1)
where z

(m+1)
j,l [i] is the output of jth data stream

and T is a square permutation matrix with ones
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along the reverse diagonal and zeros elsewhere.



Simulation Results

– We assess the bit error rate (BER) performance of
the proposed and analyzed MIMO detection schemes.

– Compared schemes : the sphere decoder (SD) [3],
the linear [5], the VBLAST [2], the S-DF [6], the
lattice-reduction versions of the linear and the VBLAST
detectors [?], the P-DF [7] and the proposed MB-
MMSE-DF detector.

– The channels’s coefficients are taken from complex
Gaussian random variables with zero mean and unit
variance.

– We employ QPSK modulation and use packets with
Q = 200 symbols.

– We average the experiments over 10000 runs .

– The signal-to-noise ratio is defined as SNR = 10 log10
NTσ

2
s

σ2
,

where σ2s is the variance of the symbols and σ2 is
the noise variance.
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– BER Performance of the detectors with perfect de-
cisions and channel estimation for multiple branches
L .
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– BER Performance with perfect decisions and esti-
mates.
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Conclusions

– A novel MMSE multi-branch decision feedback de-
tector was proposed.

– The key strategy lies in the use of multiple branches
for interference cancellation which allows further ex-
ploitation of the diversity at the receiver.

– We have derived MMSE expressions for the filters
of the proposed multi-branch decision feedback de-
tectors with shape and magnitude constraints on
the feedback filters.

– The proposed multi-branch detector has a perfor-
mance superior to the linear, VBLAST and existing
DF detectors and very close to the ML detector,
while it is simpler than the SD detector.

– Future work will investigate the performance with
channel estimation, multiuser and multicell environ-
ments, iterative detection techniques.
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