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Motivation

B Low-rank signal processing:
Key for dealing with high-dimensional data, low-sample support and large

problems.
Faster convergence, enhanced tracking and improved robustness against

interference.
Main idea: to devise a decomposition that performs dimensionality reduction so
that the data can be represented by a reduced number of effective features.

B How does it work?
Two stage processing: a transformation matrix that performs dimensionality

reduction and a low-rank filter.
The goal is to find an appropriate trade-off between the compression ratio and

the reconstructed error.
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Prior Work

B Principal component analysis (PCA):
Pearson, Hotelling, and others (early 1900s).
Eigen-decomposition or subspace tracking is required.
® Krylov subspace techniques:
Conjugate gradient algorithm by Hestenes and Stiefel (1952).
The multistage Wiener filter (MSWF) by Goldstein, Reed and Scharf (1998).
The auxiliary vector filtering (AVF) algorithm by Pados and Batallama (1997).
B Joint and iterative optimisation (JIO):
Iterative approach by Hua, Nikpour and Stoica (2001).
Alternating approach by de Lamare and Sampaio-Neto (2007).
The optimization algorithm dictates the performance and the complexity.
® Joint interpolation, decimation and filtering (JIDF):
By de Lamare and Sampaio-Neto (2007)
Use of switching with simple structures, very fast and powerful.
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Contributions

® A scheme is devised to compute low-rank signal decompositions with
switching techniques and adaptive algorithms, without eigen-decompositions.

® The generalized low-rank decomposition with switching (GLRDS) scheme
computes the subspace and the low-rank filter that best match the problem.

B GLRDS imposes constraints on the decomposition and performs iterations
between the computed subspace and the low-rank filter.

®  An alternating optimization strategy with switching and iterations based on
RLS algorithms is presented to compute the parameters.

B An application o multichannel space-time interference suppression in DS-
CDMA systems is considered.

® Simulations show that the GLRDS scheme and algorithms obtain significant
gains in performance over existing schemes.
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Signal Model and Problem Statement

B Linear signal model:

r[i] = Hs[i]] +n[i], i=1,2,...,P
where
His an M x M matrix that describes the mixing,
s[ilisan M x 1 vector with the signal,
n[i]is an M x 1 the noise vector,

[i] denotes the time instant and P is the data record.

B  The signal processing scheme observes r[i] and performs linear
filtering.
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Low-Rank Signal Processing and Problem

Statement
rfi] rpli] x[¢]
Dimensionality Low-Rank
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¥ Dimensionality reduction:

D
rplil = Spriil = Y sirlildg
d=1
B Low-rank filtering:
HgH H D H S D
z[i] = WpSHrlil =Wp > sirlilg= > fwg,k( >y sdHr[i]qd)qk.

®  Main problem: design of Sp
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Optimal Linear MMSE Design

® Optimization problem:

[SD,opta WD,opt] = arg SgnIE[I}]DE[||w[i] — Wgsgr[illlﬂ,

B Optimal linear MMSE low-rank filter:

Wpopt = R P = (SERSp) ' SEP,

B Associated MMSE:

MMSE = o7 — tr|PYSp(SERSp)1SE P,

B Optimal dimensionality reduction (when R is known):

Sp.opt = P1:M,1:D>

_ H '
where R — ®AD THE UNIVERSITYW
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Proposed GLRDS Scheme
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GLRDS Scheme: Signal Processing Tasks

B Parameter Estimates :
Zpli) = WHISE lilr[i]

D D
=wh [z’]( 3 qddgbcsd’b[i])r[i] =W [i]( > qddéfbcr[i]>sd,b[i],
d=1

d=1
where the M x 1vectoris dgplil=[0 ... 0 1 0 ... 0 1%,
Yd 2€ros (M —~;—1) zeros

and the M X D matrices C+[i] and Cs,,[:] are Hankel matrices given by

. . : ST . .
rg] 7“%] - r%%l S EZ]’%O S%ZZ;b,l ce SEZ]E?;]Id—l
ng] ?“g b "“fd] Sapl  Sdb2 o Sdbly

Crli] = 5 ;  Csyylil = . ; . ; ;
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GLRDS Scheme: LS Design

B Optimization problem:
i
sy W =arg  min SN2l - &0°),d=1, ..., D,b=1, ..., B.
’ Sd,b[i]awD[i] =1

® Decomposition parameters:

D
sqpli] = Rczg[i](pd,b[z’] -y Pj,b[i]sj,b[z']),d,j =1, ...,D, b=1, ..., B.
j7Fd
where Raplil = Sj_; N laf W plddW BlilasCr [1dapdf,CrI is an I, x I
correlation matrix, Paplil = i N l2 W R[ilgqCy day is an I, x I,
correlation matrix and P;,li] = ©j_; A~ lgfW pli]lwH [i]qu,T[l]dd,bdbei[l]

and is an I, x 1 cross-correlation vector.
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GLRDS Scheme: LS Design (cont.)

B Switching:
Splil = Sppli] when bs = arg 12%23 || z[d] 1535[2'],“2,
epli]
® Low-rank filter:
Wpli+ 1] = R[] P[],
where R[] =Y, X"—lel{;t) [l]r[l]rH[l]Sglfg [[] isan D x D correlation

matrixand P®[] =i, Ai_leth) [r[l=[l] isa D x K cross-correlation

vector.
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Proposed Recursive Alternating Least Squares
(RALS) Algorithm (1/3)

® Main strategy:
RALS-based algorithms -> complexity from cubic to quadratic in D.
Estimate subspace bases.
Perform switching.
Estimate low-rank filter.
Iterate between subspace bases and low-rank filter.

B Alternating optimisation:

t=1,...,7 lterations

Estimate decomposition
parameters
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Proposed RALS Algorithm (2/3)

B Estimate decomposition parameters:

() = ()
sqalil = Paplil(paplil — > Pjplilssy i),
j#=d
where
Pyplil = X Py pli—11-XA"tky i1 CF [i1d g P g pli—1],

A_lpd,b[’i — 1]dgbC;i[z]
(CF ) lwaklil2) =1 + A= Crli) Py i — 11CT [i]d gy

kqplil =

P li] = X71P;y[i— 114+ W p[i|lW B [i]q,CF i dq pdf, Crlil,
Paplil = Apgpli — 11 + 2P [(AW B [ilg,CL[ildy,,
B Switching:
Sl = 8%, [i] when bs = arg_min_||z[i]-25" [i]]|?,

1<b<B
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Proposed RALS Algorithm (3/3)

B Compute the low-rank input data:
: (t=1)¢r., .
rplil = SP, " lilrli]
B Estimate the low-rank filter:
WOl + 11 = Wplil + kplile i),
where e [i] = x[i] — ;?;Zg:’) [7] and

A"IPpli — 1]rpli]
(L+ X8 Ppli — 1]rpli]’

kpli] =

Pplil = A" tPpli—1] - X" tkplilrBli1Ppli — 1],
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Simulations: Scenario and Parameters

B DS-CDMA system with random spreading codes, processing gain N=16, channel
with delay spread of L chips, equipped with an antenna array of J sensor
elements and linear receivers.

® We consider a space-time interference suppression application. The space-
time r'eg{eived signal organised in JM x 1 vector, where M=J(N+L-1):

r[i] = ) Agzililpglidl + nlid + 5[] + nld,

B We assess the BER of the following algorithms:
Proposed GLRDS scheme with RALS algorithm -> GLRDS-RALS.
Full-rank RLS algorithm -> Full-rank-RLS.
Low-rank eigendecomposition algorithm with RLS - EIG-RLS.
Multistage Wiener filter -> MSWF-RLS.
Auxiliary vector filtering algorithm -> AVF.
Joint and iteration optimization (JIO) scheme -> JIO -RLS.
Joint interpolation and decimation (JIDF) scheme -> JIDF-RLS.
Linear full-rank MMSE estimator -> MMSE

® The time-varying channels are modelled by an FIR filter and the Jakes model,
have L=9, 3 effective paths with powers equal to O, -3 and -6 dB and spacing
given by a discrete random variable between 1 and 2 chips.
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Simulations: BER X Rank
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Simulations: BER X Symbols

N=16, J=3, K =8 users, SNR=12 dB, ,T=0.0001, P=1500 symbols
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Conclusions

B A GLRDS scheme has been proposed and compared with the state-of-the-
art low-rank signal processing techniques for space-time interference
suppression.

B  Adaptive RALS algorithms have been devised to estimate the parameters of
the decomposition, the low-rank filter with the aid of switching techniques.

® The application of the GLRDS scheme with RALS for interference
suppression has shown a performance significantly better than existing
techniques.

B The proposed techniques require less training than prior art and can
converge twice faster than the best available scheme.

B The complexity of the proposed algorithms is about 50% higher than the
simplest available scheme, i.e. the JIDF approach.
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