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ABSTRACT techniques for data-adaptive dimensionality reduction, which are

. . ) . computed by the Powers-of-R (PoR) [8-10] and Conjugate-Gradient
We present low complexity, quickly converging robust adaptive(c)[11,12] algorithms. We then develop RDRCB versions exploit-
beamformers that combine robust Capon beamformer (RCB) methyg the PoR and CG algorithms for large arrays. We exploit the fact
ods and data-adaptive Krylov subspace dimensionality reductiofyat the CG algorithm results in a diagonal reduced-dimension sam-
techniques. We extend a recently proposed reduced-dimensigfle covariance matrix (SCM) to give particularly low-complexity
RCB framework, which ensures proper combination of RCBS withyaia_adaptive beamforming algorithms. Scenarios with large planar

any form of dimensionality reduction that can be expressed usingravs are investigated along with both non-degenerate ellipsoidal
a full-rank dimension reducing transform, providing new resultsy,q spherical uncertainty sets.

for data-adaptive dimensionality reduction. We consider Krylov |4 he following, £ {-}, ()7, (), ()~' and())! denote the
subspace methods computed with the Powers-of-R (PoR) and Cogypectation, transpose, Hermitian transpose, inverse and Moore-
jugate Gradient (CG) techniques, illustrating how a fast CG-basegenrose pseudo-inverse operators, respectively. Furtherptse,
algorithm can be formed by beneficially exploiting that the CG-Nz Ix andII% denote the two-norm, a basis for the left null-
algorithm yields a diagonal reduced-dimension covariance matrigp’;(’:e ofX. the o)r(thogonal projector ontc; the range spacXatnd
Our simulations show the benefits of the proposed approaches. the orthogonal projector onto the space perpendicular to the range
Index Terms— Robust adaptive beamforming, dimensionality space ofX, respectively. MoreoveiX > 0 or X > 0 mean that the
reduction, Krylov subspace methods. Hermitian matrixX is +ve semi-definite or-ve definite.

1. INTRODUCTION AND PRELIMINARIES 1.1. Robust Capon Beamforming
) ) ) ) ] We model thekth element-space array snapskpte C* as
When implementing adaptive beamforming on arrays with large
apertures and many elements that operate in dynamic environments, Xk = a0S0,k + Nk, (1)
reduced-dimension techniques are often needed to speed-up th

convergence of beamforming algorithms and reduce their Com\{v?]ereao, so,x andny, denote the true signal-of-interest (SOI) ASV,

- . . < h . the SOI complex amplitude and an additive zero-mean complex
putational complexity [1]. This is of fundamental importance in ; . . .
applications found in passive sonar and radar systems. FurtheG-auss'."j‘n vector that incorporates the n0||se and_the |tr11terference.
more, robust adaptive techniques are often required to alleviate tHe>SUMINgG so.x 1S Z€ro mean and. uncorrelated wity,, }He ar-

: . ; ray covariance matrix can be written &, = F {xuxj } =
deleterious effects of array steering vector (ASV) mismatch, e.g.,, ~ 5 2y -
caused by calibration and pointing errors. A popular class of thesg02020 + Qx, wherng. >0,00=FE {|50,_k‘ } is the SOI power
are the robust Capon beamformers (RCBs) that exploit ellipsoidaBnd Qx = E {nyny'} is the noise plus interference covariance
including spherical, uncertainty sets of the ASV [2-6]. In [1,7], amatrix. In practiceRx is often replaced by the SCM
framework for combining reduced-dimension and RCB techniques K
was derived, allowing rapidly converging, low complexity robust R, = 1 Zxkka )
adaptive reduced-dimension robust Capon beamformers (RDRCBs K Pt ’
to be formed. A key contribution of that work was the derivation )
of a complex propagation theorem that allows a reduced-dimensiofprmed fromi’ snapsr;ots. In[3] (se2e, %'ISO [6]), RCBs were derived
ellipsoid to be derived from an element-space ellipsoid and any fullbY .50|V'n9maxgz,a 0’ st.Rx — c’aa” > 0, a € £u(a,E),
rank dimension reducing transform (DRT). The reduced-dimensioM/hich can be reduced to [3]
ellipsoid may then be exploited by using RCB techniques in the mafR-'a st -

. ) . . x t aef ,E). 3
reduced-dimension space. In [1, 7], only data-independent dimen- e a a (3, E) ®)
sionality re(juctlon was con3|dergd. nge, we extgnd the frgmeworlfhe M-dimensional element-space ellipsdid;
developed in [1, 7] to data-adaptive dimensionality reduction, Protearized bya
viding new results useful for exploiting in a variety of scenarios that~arxam
occur in practical applications of robust beamforming algorithms.

The problem under consideration is the design of RDRCBs Ev(a,E) = {a ccM
that are suitable for large arrays. We consider Krylov subspace

For non-degenerate sels,> 0. To solve (3), we assume that

(a,E) is parame-
which often represents the assumed ASV,Bnd 0 €
, and can be written as

a-a"Ea-a<1}. @

*This work was supported by MOD under contract from the Cefure -
Defence Enterprise. a Ea>1 (5)



(1/e)1, (4) reduces to a spherical uncertainty set,R, = F%RyF% = F2D”R,DF?¥. Thus, in general, twav-

< ¢, with radius/e and (5) become§al|; > €. For  dimensional EVDs will be required, one decomposiRg and one
non-degenerate ellipsoids, we can fackr= EYE? and form decomposingiDHEle]. When the element-space uncertainty set
4 = Eta, a = E2aandR = E2RE?. Then, (3) can be iSasphere, sothatin (4 = {I, then

re-written using the following spherical constraint [4]

B
\
&
S
Al

5 F= 1(DHD)*. (12)

mina"R™'ast a-a|; < 1. ) ¢
In this case, if the DRT is orthogonakF, in (11) reduces t& =

As shown in [4], (6) can be solved via the eigenvalue decomposition}(DHD)*1 = %IN. Thus, if the element-space set is a sphere and

(EVD) of R, where computing the EVD is the most computation- the DRT is orthogonal, theR can be written analytically and only

ally expensive step. Denotingas the solution to (6), the solution one EVD is required. Denotinl, as the solution to (7), we form

to (3) is formed asiores = E~ 24 The RCB power estimate the RDRCB weight vector as

2
. R a0 /M . .
is formed as6? rcg = % and the weight vector as R; 'bo
’ aflrceRx  80,RcB WRDRCB = AHyflA
N _ R a9 Rres bO Ry bo
WRCB = 3F — R_Tag nes’
0,rceRx ~80,RCB

(12)

The weight vector (12) operates on the reduced-dimension data,
whilst wrprcees = Dwrpres Operates on the original element-
space data. An estimate af can be formed ag, = (D*)b, =
D(D” D) 'by, which indicates that, belongs to the column

In reduced-dimension methods, thth element-space snapshot, SPace oD. Givenao, we form the RDRCB SOI power estimate as
x; € CM, is projected onto anV-dimensional subspace (with

2. A DATA-ADAPTIVE REDUCED-DIMENSION ROBUST
CAPON BEAMFORMING FRAMEWORK

~ 2 "~ —11
N < M)usingaDRTD € CM*¥ yielding the reduced-dimension 62 rores = ([|a°||2 /1}4) — bé’(]?HD) jbo_ (13)
snapshoty, = Dx;, wherey, € CV. As shown in [1, 7], this ’ bl Ry 'bo Mbl Ry by
leads to the following RDRCB problemax, 2 4, 0% st. Ry —
a’bb” >0, b € Ex(b,F), whereb = D7a, Ry = DYR.D 3. DATA-ADAPTIVE DIMENSIONALITY REDUCTION
and &y (b, F) denote the reduced-dimension ASV, covariance and
uncertainty ellipsoid, respectively, which can be reduced to Here, we consider Krylov methods that use the PoR and CG algo-
B rithms to compute the dimensionality reduction transform.
mbianR;lb st. be&n(b,F). (7)

~ 3.1. Non-Orthogonal PoR Krylov Basis
The following theorem is used to derida; (b, F).
Propagation Theorem: [1, 7] The propagation of the element-
space ellipsoid (4), wittE > 0 € C*™  through the mapping

The standard PoR method for creating a Krylov DRT is to form

- oS5 = A N—1_-
a Rya R a

D"”a —Ixb = 0, whereD € C** has full column rank, yields D=| @Gp TRl R | (14)
the ellipsoidEn (b, F) [see (4)] with 2 * 2
_ o which we term the non-orthogonal (NO) PoR (NO-PoR) DRT and
b = D"a 8 can be formed iteratively. That is, starting wikh = a, andD; =
F = D'(E-ENL|(NL)"EN] (NL)TE)(DH). (9) g fori=2,..., N, calculate
For data-adaptive dimensionality reductibrandF need updat- ki = Rykis (15)

ing each time the DRT is updated. If we use (9) for updating, then we

observe thalNb, [(N5)?ENS)T andDT need calculating, which d - i (16)
are expensive operations. Fortunately, if the original element-space kil
ellipsoid is non-degenerate, such ti&at> 0, we can simplify (9).  gnq
Then,[(Nb)"ENL]' = [(Nb)"ENp] " and we can write D,=[Di1 di]. 17
F - D'E:mt, E? (DHH The cost of calculating:; from ;1 is O(M?) and calculatingl;
E2Np, is O(M) . Thus, calculating the NO-PoR DRT cosi§ N M[M +
- DEMIm . E%(DT)H 1]) flops. Due to the non-orthogonal nature of the DRT, tNe
E"2D dimensional EVDs are required to compute the NO-PoR RDRCB,
_ [DHE—ID} -1 (10) even if the element-space set is spherical.

whereH;lNl - E%N‘D[(NZD)HENZD]*(NZD)HE%. The 3.2. Orthogonal PoR Krylov Basis
*Np In [9], the orthogonal PoR (O-PoR) Krylov subspace technique was
: 1 . )
M X M mverse_E can be computed offline a_nd therefore, the proposed and suggested for applications where the model order is
online computation oF reduces to the computation ?f aﬁHx N highly variable and time-varying. To form the O-PoR DRT Agt—
inverse. Note that, in general, we will need to comdatg F= and 3 D; = a/||al|,, and fori = 2,..., N, calculate
F 2 [see Section 1.1], which can all be obtained from the EVD of

[D”E~'D]. Note also that, in general, we will require the EVD of ki =I5 Rxki1 (18)

i—1



Ki

[[#ill

. N . .qH .
D~ [Diy d ], (20) L(b,u):be—i—p([b—b] M [b—b] _1>. (29)
whereIl, | = I — >,_} drdf’ can be updated efficiently in
O(M?) operations usin§Ip, = Iy, | — d.d}’. GivenIl5, |,
updatings; andd, costsO(2M?) andO(M). Thus, the calculation . M -1, . 1=
of one new column ab costs®(3M? + M), so that calculation of b= (— + I) b=b— [pM ' +1I] b, (30)
the O-PoR DRT cost®)(NM[3M + 1]), which is roughly three "

times more expensive than calculating the NO-PoR DRT. Since th@here we have used the matrix inversion lemma [13] to obtain the

resulting DRT is orthogonal, as discussed earlier, for spherical unerm after the second equality. Using (30) in the constraint equation
certainty sets only one EVD is required to compute the RDRCB.  jn (28) yields

(19)  We form the Lagrangian using the real Lagrange multiplier

i =

and

Setting%ﬁ}” = 0yields

3.3. Conjugate Gradient Method h(b, u) = b? [tM ! +1] Y [bM ! +1] b, (31)

Using the approach outlined in [11], the CG DRT can be formed b)i_etting M — UAUH denote the EVD ofM. where A —

setting,d: = &,r, = —a, and then for = 2,..., N, update using diag{[ M A~ ]} is adiagonal matrix containing the eigen-

dfy, values in non-increasing order on its main diagonal Bihdontains
Qi = TP R.d (21)  the associated eigenvectors, we can write (31) as
1 R ) N ,
ries = 13+ aiRud @2) o) = 3 2ol @)
dHer7;+1 =1 (/J + )\n)2
ST ) :
and e wherec, is the nth element ofe = Ufb. Since we can write
dii1 = —riss + Beds. 24y M= M:2M?Z, whereM? = A;2DYE"2, we know thatM

is non-negative definite [13, 14] and therefore, it has non-negative

eigenvalues. Thusy(b, 1) is a monotonically decreasing function
of u > 0. Foru = 0, we obtain

The cost of computind.d; is O(M?). GivenRxd;, the cost of
computinge; is O(2M). Updatingr;+1 is O(M). The cost of
computing3;, given Rxd; and the denominator af; is O(M).
Then, updatingd;+; is O(M). Thus, the total cost to compute a s = . B -1_ L
new column of the CG D(RT)ié)(M2 + 5M). Thus, the total cost h(b,0) = b"M"'b = b" [DHE 1D] b=b"Fb. (33)
to calculate the CG DRT i©® (N M[M + 5]), which is almost the

same as calculating the NO-PoR DRT. Since the CG DRT is nonNote that, to exclude anon- -trivial solution, we require th&Fb >
orthogonal, we would expect that we would need two EVDs to com- . Since we requwé( p) = 1, itis clear that: # 0. Further, it is
pute the CG-RDRCB. However, in the next section, we illustrate
how a fast CG-based RDRCB can be obtained by exploiting that the
CG DRT diagonalizes the SCM so that ©>0to h(b u) =1, WhICh can be found, e.g., by Newton search.

Oncep has been founob |s found using (30) and the solution to

clear thatim,, h(b w) = 0, therefore, there is a unique solution

Ry, = D"R.D = Acg, (25) -
(27) is formed abo = ACGb We can usé andRy ! = Al
whereAcg is a diagonal matrix and = [d; ... dw] is the DRT. in (12) to form the adaptive weights. To form the power estimate
using (13), we need to evaluatE)HD} “! If the uncertainty set
4. FAST CONJUGATE-GRADIENT RDRCB is spherical, then we can evaluate this quantity from the EVIMof

andAcg, which are already available. For a general, non-degenerate
Here, we illustrate how only on&/-dimensional EVD is required ellipsoid this quantity will need computing.
to solve the CG-RDRCB under either spherical or non-degenerate Fig. 1 shows the relative complexities Asis increased from 1
uncertainty. In general, we will be solving to M, for M = 320, illustrating that the CG-based algorithms are
o He 1 o _ significantly cheaper than the other methods.
mbmb Ry 'bst [b—b]"F[b—b] <1. (26)

. 1 . 5. NUMERICAL EXAMPLES
Usually, at this stage one would transform wih to give a spher-

ical uncertainty set. However, from (25), we observe BR3t' = | this section, we assess the performance of the proposed algorithms
Agg, so that (26) can be written as through numerical examples. For af = 320, \/2-spaced pla-
o Ha 1 o H _ nar array withM; = 40 elements in a row and/, = 8 rows,
minb™ Acgb s.t. [b-b]"F[b-b] <1 (27)  we simulated data with covariance mati, = o2aoal + Qx,
. with Qx = 37, o?aal’ + 021 + 02,Qiso, WhereQx consists
Noting (10) we letM = ACGz DEE- 1DAce b= Zb and of terms due tal zero-mean uncorrelated interferences, where for

the ith interferero? anda; denote the source power and ASV, a
term modeling sensor nois€1, with sensor noise powerf, and a
. term modeling an isotropic ambient noisg&,Qiso, With powero?2,.

R HY RN -1 N
mgnb bs.t. [b - b} M [b - b} <L (28)  The isotropic noise covariance is given [9iso) ., n = SINATGrmn],

b= ACG b, and rewrite (27) as
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Fig. 1. Relative complexities of different data-dependent RDRCBs.Fig. 2. Azimuth spectra, for the horizontal elevation, where the true
AOAs and powers are shown by the black circles.

whereg,.., is the distance between theth andnth sensors inunits ~ —— Mean Opimal SINR

of wavelength. Theth source (SOI or interference) ASV is simu- 80| _— co_NDMVE

lated according ta; = a(; + i)+ oc,.ei, Wheree; is a zero-mean 50| %+ cG-spherical
complex circularly symmetric random vector with unit norm. Wher - @ = CG-MVDR '
d; # 0 an AOA error exists and whem. ; # 0, an arbitrary error 40 NO-PoR-NDMVE

exists. Unless stated otherwise, in the following, we have assum 3] NO-PoR-Spherical
d=3,00=89.9°,¢o = 94.8°, o5 = 40 dB, f; = 70°, 1 = 90°, = = = NO-PoR-MVDR
02 =30dB, 0 = 88°, ¢y = 90°, o5 = 20 dB, f3 = 130°, 3 = @ 20| = O-PoR-NDMVE
90° ando? = 15 dB. We assumé, is a random vector such thatthe =~ 10| ' O-PoR-Spherical

. AP - ; - = = 0-PoR-MVDR
azimuth angle perturbation is uniformly distributed over the interve Z
[—0.72,0.72]° and the elevation angle perturbation is uniformly dis- @ of So
tributed over{—3.6, 3.6]°, whilstfori = 1tod, §; = 0. Fori = 0to —10}b Sssl o
d, o.,; = 1. Therefore, the SOI ASV is subjected to both AOA anc s
arbitrary errors. We assume azimuth and elevation beams space -20 ]
1/M}, and1/M, in cosine space and, using the methods describe -30
in [15], design tight-spherical uncertainty sets and non-degener: . . . . . . .
minimum volume ellipsoidal (NDMVE) sets, whose error sphert "4_030 20 -10 0 10 20 30 40 50
radii are set t&& = 10, based on the expected AOA errors giver SOI Power(dB)

the spacing of the beams. We refer the reader to [15] for further
details. We assume th&f = 5 and that onlyK' = 80 shapshots
are available to estimate the SCM (2), representing a highly snap-
shot deficient scenario, not uncommon in, e.g., passive soigga2 F L . . .
shows the azimuth spectra, illustrating that the RDRCB variants are mization: A Solution to the Signal Mismatch ProblentEEE
able to correctly estimate the power, whereas the non-robust MVDR- Trans. Sgnal Process., vol. 51, no. 2, pp. 313-324, Feb. 2003.
based variants suffer severe SOI cancellation. Fig. 3 shows the outf3] P. Stoica, Z. Wang, and J. Li, “Robust Capon Beamforming,”
put SINR versus the SOI power, obtained using MC = 200 Monte |IEEE Sg. Process. Lett., vol. 10, no. 6, pp. 172-175, Jun. 2003.

Carlo simulations. The results show that the CG and O-Krylov re- [4] J.Li, P. Stoica, and Z. Wang, “On Robust Capon Beamforming
sults are the same, whilst the NO-Krylov results diverge for very a.nd’DilagonaI ,Loadin.g " EEE’ Trans. Sgnal Process,, vol. 51
high SOI powers. This divergence is a result of numerical instability no. 7, pp. 1702-1715 Jul. 2003. T

in the NO-PoR algorithm. It is clear that the robust RDRCB ver- . B )
sions, exploiting spherical or non-degenerate NDMVE sets, provide[5] R. G. Lorenz :amd S. P. Boyd, “Robust Minimum Variance
much better robustness at higher SOI powers compared to the stan- Beamforming,” IEEE Trans. Sgnal Process., vol. 53, no. 5,

Fig. 3. SINR versus SOI power.

dard MVDR-based implementations. pp. 1684-1696, May 2005.
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