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ABSTRACT

We present low complexity, quickly converging robust adaptive
beamformers that combine robust Capon beamformer (RCB) meth-
ods and data-adaptive Krylov subspace dimensionality reduction
techniques. We extend a recently proposed reduced-dimension
RCB framework, which ensures proper combination of RCBs with
any form of dimensionality reduction that can be expressed using
a full-rank dimension reducing transform, providing new results
for data-adaptive dimensionality reduction. We consider Krylov
subspace methods computed with the Powers-of-R (PoR) and Con-
jugate Gradient (CG) techniques, illustrating how a fast CG-based
algorithm can be formed by beneficially exploiting that the CG-
algorithm yields a diagonal reduced-dimension covariance matrix.
Our simulations show the benefits of the proposed approaches.

Index Terms— Robust adaptive beamforming, dimensionality
reduction, Krylov subspace methods.

1. INTRODUCTION AND PRELIMINARIES

When implementing adaptive beamforming on arrays with large
apertures and many elements that operate in dynamic environments,
reduced-dimension techniques are often needed to speed-up the
convergence of beamforming algorithms and reduce their com-
putational complexity [1]. This is of fundamental importance in
applications found in passive sonar and radar systems. Further-
more, robust adaptive techniques are often required to alleviate the
deleterious effects of array steering vector (ASV) mismatch, e.g.,
caused by calibration and pointing errors. A popular class of these
are the robust Capon beamformers (RCBs) that exploit ellipsoidal,
including spherical, uncertainty sets of the ASV [2–6]. In [1, 7], a
framework for combining reduced-dimension and RCB techniques
was derived, allowing rapidly converging, low complexity robust
adaptive reduced-dimension robust Capon beamformers (RDRCBs)
to be formed. A key contribution of that work was the derivation
of a complex propagation theorem that allows a reduced-dimension
ellipsoid to be derived from an element-space ellipsoid and any full-
rank dimension reducing transform (DRT). The reduced-dimension
ellipsoid may then be exploited by using RCB techniques in the
reduced-dimension space. In [1, 7], only data-independent dimen-
sionality reduction was considered. Here, we extend the framework
developed in [1, 7] to data-adaptive dimensionality reduction, pro-
viding new results useful for exploiting in a variety of scenarios that
occur in practical applications of robust beamforming algorithms.

The problem under consideration is the design of RDRCBs
that are suitable for large arrays. We consider Krylov subspace
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techniques for data-adaptive dimensionality reduction, which are
computed by the Powers-of-R (PoR) [8–10] and Conjugate-Gradient
(CG) [11,12] algorithms. We then develop RDRCB versions exploit-
ing the PoR and CG algorithms for large arrays. We exploit the fact
that the CG algorithm results in a diagonal reduced-dimension sam-
ple covariance matrix (SCM) to give particularly low-complexity
data-adaptive beamforming algorithms. Scenarios with large planar
arrays are investigated along with both non-degenerate ellipsoidal
and spherical uncertainty sets.

In the following,E {·}, (·)T , (·)H , (·)−1 and (·)† denote the
expectation, transpose, Hermitian transpose, inverse and Moore-
Penrose pseudo-inverse operators, respectively. Furthermore,‖·‖2,
Nl

X, ΠX andΠ⊥
X denote the two-norm, a basis for the left null-

space ofX, the orthogonal projector onto the range space ofX and
the orthogonal projector onto the space perpendicular to the range
space ofX, respectively. Moreover,X ≥ 0 or X > 0 mean that the
Hermitian matrixX is +ve semi-definite or+ve definite.

1.1. Robust Capon Beamforming

We model thekth element-space array snapshotxk ∈ C
M as

xk = a0s0,k + nk, (1)

wherea0, s0,k andnk denote the true signal-of-interest (SOI) ASV,
the SOI complex amplitude and an additive zero-mean complex
Gaussian vector that incorporates the noise and the interference.
Assuming s0,k is zero mean and uncorrelated withnk, the ar-
ray covariance matrix can be written asRx = E

{

xkx
H
k

}

=

σ2
0a0a

H
0 +Qx, whereRx > 0, σ2

0 = E
{

|s0,k|2
}

is the SOI power
andQx = E

{

nkn
H
k

}

is the noise plus interference covariance
matrix. In practice,Rx is often replaced by the SCM

R̂x =
1

K

K
∑

k=1

xkx
H
k , (2)

formed fromK snapshots. In [3] (see, also [6]), RCBs were derived
by solvingmaxσ2,a σ2 s.t.Rx − σ2aaH ≥ 0, a ∈ EM (ā,E),
which can be reduced to [3]

min
a

a
H
R

−1
x a s.t. a ∈ EM (ā,E). (3)

TheM -dimensional element-space ellipsoidEM (ā,E) is parame-
terized bȳa, which often represents the assumed ASV, andE ≥ 0 ∈
C

M×M , and can be written as

EM (ā,E) =
{

a ∈ C
M

∣

∣ [a− ā]HE[a− ā] ≤ 1
}

. (4)

For non-degenerate sets,E > 0. To solve (3), we assume that

ā
H
Eā > 1 (5)



When E = (1/ǫ)I, (4) reduces to a spherical uncertainty set,
‖a− ā‖22 ≤ ǫ, with radius

√
ǫ and (5) becomes‖ā‖22 > ǫ. For

non-degenerate ellipsoids, we can factorE = E
H
2 E

1

2 and form
ă = E

1

2 a, ˘̄a = E
1

2 ā and R̆ = E
1

2RE
H
2 . Then, (3) can be

re-written using the following spherical constraint [4]

min
ă

ă
H
R̆

−1
ă s.t.

∥

∥ă− ˘̄a
∥

∥

2

2
≤ 1. (6)

As shown in [4], (6) can be solved via the eigenvalue decomposition
(EVD) of R̆, where computing the EVD is the most computation-
ally expensive step. Denotinğ̂a as the solution to (6), the solution
to (3) is formed aŝa0,RCB = E− 1

2 ˆ̆a. The RCB power estimate

is formed asσ̂2
0,RCB =

‖â0,RCB‖2

2
/M

âH
0,RCBR

−1
x â0,RCB

and the weight vector as

ŵRCB =
R−1

x
â0,RCB

âH
0,RCBR

−1
x â0,RCB

.

2. A DATA-ADAPTIVE REDUCED-DIMENSION ROBUST
CAPON BEAMFORMING FRAMEWORK

In reduced-dimension methods, thekth element-space snapshot,
xk ∈ C

M , is projected onto anN -dimensional subspace (with
N < M ) using a DRTD ∈ C

M×N , yielding the reduced-dimension
snapshot,yk = DHxk, whereyk ∈ C

N . As shown in [1, 7], this
leads to the following RDRCB problemmaxσ2,b σ2 s.t. Ry −
σ2bbH ≥ 0, b ∈ EN (b̄,F), whereb = DHa, Ry = DHRxD

andEN (b̄,F) denote the reduced-dimension ASV, covariance and
uncertainty ellipsoid, respectively, which can be reduced to

min
b

b
H
R

−1
y b s.t. b ∈ EN (b̄,F). (7)

The following theorem is used to deriveEN (b̄,F).
Propagation Theorem: [1, 7] The propagation of the element-

space ellipsoid (4), withE ≥ 0 ∈ C
M×M , through the mapping

DHa− INb = 0, whereD ∈ C
M×N has full column rank, yields

the ellipsoidEN (b̄,F) [see (4)] with

b̄ = D
H
ā (8)

F = D
†(E−EN

l
D[(Nl

D)HEN
l
D]†(Nl

D)HE)(D†)H . (9)

For data-adaptive dimensionality reduction,b̄ andF need updat-
ing each time the DRT is updated. If we use (9) for updating, then we
observe thatNl

D, [(Nl
D)HENl

D]† andD† need calculating, which
are expensive operations. Fortunately, if the original element-space
ellipsoid is non-degenerate, such thatE > 0, we can simplify (9).
Then,[(Nl

D)HENl
D]† = [(Nl

D)HENl
D]−1 and we can write

F = D
†
E

1

2Π
⊥

E
1

2 Nl
D

E
1

2 (D†)H

= D
†
E

1

2Π
E

−

1

2 D
E

1

2 (D†)H

=
[

D
H
E

−1
D
]−1

, (10)

whereΠ⊥

E
1

2 Nl
D

= I − E
1

2Nl
D[(Nl

D)HENl
D]−1(Nl

D)HE
1

2 . The

M × M inverseE−1 can be computed offline and therefore, the
online computation ofF reduces to the computation of anN × N

inverse. Note that, in general, we will need to computeF
1

2 , F
H
2 and

F− 1

2 [see Section 1.1], which can all be obtained from the EVD of
[

DHE−1D
]

. Note also that, in general, we will require the EVD of

R̆y = F
1

2RyF
H
2 = F

1

2DHRxDF
H
2 . Thus, in general, twoN -

dimensional EVDs will be required, one decomposingR̆y and one
decomposing

[

DHE−1D
]

. When the element-space uncertainty set
is a sphere, so that in (4),E = 1

ǫ
I, then

F =
1

ǫ
(DH

D)−1. (11)

In this case, if the DRT is orthogonal,F in (11) reduces toF =
1
ǫ
(DHD)−1 = 1

ǫ
IN . Thus, if the element-space set is a sphere and

the DRT is orthogonal, thenF can be written analytically and only
one EVD is required. Denotinĝb0 as the solution to (7), we form
the RDRCB weight vector as

ŵRDRCB =
R−1

y b̂0

b̂H
0 R−1

y b̂0

. (12)

The weight vector (12) operates on the reduced-dimension data,
whilst ŵRDRCB,ES = DŵRDRCB operates on the original element-
space data. An estimate ofa0 can be formed aŝa0 = (DH)†b̂0 =

D(DHD)−1b̂0, which indicates that̂a0 belongs to the column
space ofD. Givenâ0, we form the RDRCB SOI power estimate as

σ̂2
0,RDRCB =

(‖â0‖22 /M)

b̂H
0 R−1

y b̂0

=
b̂H
0 (DHD)−1b̂0

M b̂H
0 R−1

y b̂0

. (13)

3. DATA-ADAPTIVE DIMENSIONALITY REDUCTION

Here, we consider Krylov methods that use the PoR and CG algo-
rithms to compute the dimensionality reduction transform.

3.1. Non-Orthogonal PoR Krylov Basis

The standard PoR method for creating a Krylov DRT is to form

D =

[

ā

‖ā‖
2

R̂xā

‖R̂xā‖
2

. . .
R̂N−1

x
ā

‖R̂N−1
x ā‖

2

]

, (14)

which we term the non-orthogonal (NO) PoR (NO-PoR) DRT and
can be formed iteratively. That is, starting withκ1 = ā, andD1 =

ā

‖ā‖
2

, for i = 2, . . . , N , calculate

κi = R̂xκi−1, (15)

di =
κi

‖κi‖2
(16)

and
Di =

[

Di−1 di

]

. (17)

The cost of calculatingκi from κi−1 is O(M2) and calculatingdi

is O(M) . Thus, calculating the NO-PoR DRT costsO(NM [M +
1]) flops. Due to the non-orthogonal nature of the DRT, twoN -
dimensional EVDs are required to compute the NO-PoR RDRCB,
even if the element-space set is spherical.

3.2. Orthogonal PoR Krylov Basis

In [9], the orthogonal PoR (O-PoR) Krylov subspace technique was
proposed and suggested for applications where the model order is
highly variable and time-varying. To form the O-PoR DRT, letκ1 =
ā, D1 = ā/ ‖ā‖2, and fori = 2, . . . , N , calculate

κi = Π
⊥
Di−1

R̂xκi−1 (18)



di =
κi

‖κi‖2
(19)

and
Di =

[

Di−1 di

]

, (20)

whereΠ⊥
Di−1

= I − ∑i−1
k=1 dkd

H
k can be updated efficiently in

O(M2) operations usingΠ⊥
Di

= Π⊥
Di−1

− did
H
i . GivenΠ⊥

Di−1
,

updatingκi anddi costsO(2M2) andO(M). Thus, the calculation
of one new column ofD costsO(3M2 +M), so that calculation of
the O-PoR DRT costsO(NM [3M + 1]), which is roughly three
times more expensive than calculating the NO-PoR DRT. Since the
resulting DRT is orthogonal, as discussed earlier, for spherical un-
certainty sets only one EVD is required to compute the RDRCB.

3.3. Conjugate Gradient Method

Using the approach outlined in [11], the CG DRT can be formed by
setting,d1 = ā, r1 = −ā, and then fori = 2, . . . , N , update using

αi = − dH
i ri

dH
i R̂xdi

, (21)

ri+1 = ri + αiR̂xdi, (22)

βi =
dH
i R̂xri+1

dH
i R̂xdi

(23)

and
di+1 = −ri+1 + βidi. (24)

The cost of computinĝRxdi is O(M2). GivenR̂xdi, the cost of
computingαi is O(2M). Updatingri+1 is O(M). The cost of
computingβi, given R̂xdi and the denominator ofαi is O(M).
Then, updatingdi+1 is O(M). Thus, the total cost to compute a
new column of the CG DRT isO(M2 + 5M). Thus, the total cost
to calculate the CG DRT isO(NM [M + 5]), which is almost the
same as calculating the NO-PoR DRT. Since the CG DRT is non-
orthogonal, we would expect that we would need two EVDs to com-
pute the CG-RDRCB. However, in the next section, we illustrate
how a fast CG-based RDRCB can be obtained by exploiting that the
CG DRT diagonalizes the SCM so that

R̂y = D
H
R̂xD = ΛCG, (25)

whereΛCG is a diagonal matrix andD = [d1 . . .dN ] is the DRT.

4. FAST CONJUGATE-GRADIENT RDRCB

Here, we illustrate how only oneN -dimensional EVD is required
to solve the CG-RDRCB under either spherical or non-degenerate
uncertainty. In general, we will be solving

min
b

b
H
R

−1
y b s.t.

[

b− b̄
]H

F
[

b− b̄
]

≤ 1. (26)

Usually, at this stage one would transform withF
1

2 to give a spher-
ical uncertainty set. However, from (25), we observe thatR−1

y =

Λ−1
CG , so that (26) can be written as

min
b

b
H
Λ

−1
CGb s.t.

[

b− b̄
]H

F
[

b− b̄
]

≤ 1. (27)

Noting (10), we letM = Λ
− 1

2

CG DHE−1DΛ
−H

2

CG , b̌ = Λ
− 1

2

CG b and
ˇ̄b = Λ

− 1

2

CG b̄, and rewrite (27) as

min
b̌

b̌
H
b̌ s.t.

[

b̌− ˇ̄b
]H

M
−1

[

b̌− ˇ̄b
]

≤ 1. (28)

We form the Lagrangian using the real Lagrange multiplierµ

L(b̌, µ) = b̌
H
b̌+ µ

(

[

b̌− ˇ̄b
]H

M
−1

[

b̌− ˇ̄b
]

− 1

)

. (29)

Setting∂L(b̌,µ)

∂b̌H = 0 yields

ˆ̌
b =

(

M

µ
+ I

)−1
ˇ̄b = ˇ̄b−

[

µM−1 + I
]−1 ˇ̄b, (30)

where we have used the matrix inversion lemma [13] to obtain the
term after the second equality. Using (30) in the constraint equation
in (28) yields

h(ˆ̌b, µ) = ˇ̄bH [

µM−1 + I
]−1

M
−1 [µM−1 + I

]−1 ˇ̄b. (31)

Letting M = UΛUH denote the EVD ofM, where Λ =
diag

{

[ λ1 . . . λN ]
}

is a diagonal matrix containing the eigen-
values in non-increasing order on its main diagonal andU contains
the associated eigenvectors, we can write (31) as

h(ˆ̌b, µ) =
N
∑

n=1

λn|cn|2
(µ+ λn)

2 , (32)

wherecn is thenth element ofc = UH ˇ̄b. Since we can write

M = M
1

2M
H
2 , whereM

1

2 = Λ
− 1

2

CG DHE− 1

2 , we know thatM
is non-negative definite [13, 14] and therefore, it has non-negative

eigenvalues. Thus,h(ˆ̌b, µ) is a monotonically decreasing function
of µ > 0. Forµ = 0, we obtain

h(ˆ̌b, 0) = ˇ̄bH
M

−1 ˇ̄b = b̄
H
[

D
H
E

−1
D
]−1

b̄ = b̄
H
Fb̄. (33)

Note that, to exclude a non-trivial solution, we require thatb̄HFb̄ >

1. Since we requireh(ˆ̌b, µ) = 1, it is clear thatµ 6= 0. Further, it is

clear thatlimµ→∞ h(ˆ̌b, µ) = 0, therefore, there is a unique solution

µ > 0 to h(ˆ̌b, µ) = 1, which can be found, e.g., by Newton search.

Onceµ has been found,̌̂b is found using (30) and the solution to

(27) is formed aŝb0 = Λ
1

2

CG
ˆ̌
b. We can usêb0 andR−1

y = Λ−1
CG

in (12) to form the adaptive weights. To form the power estimate
using (13), we need to evaluate

[

DHD
]−1

. If the uncertainty set
is spherical, then we can evaluate this quantity from the EVD ofM

andΛCG, which are already available. For a general, non-degenerate
ellipsoid this quantity will need computing.

Fig. 1 shows the relative complexities asN is increased from 1
to M , for M = 320, illustrating that the CG-based algorithms are
significantly cheaper than the other methods.

5. NUMERICAL EXAMPLES

In this section, we assess the performance of the proposed algorithms
through numerical examples. For anM = 320, λ/2-spaced pla-
nar array withMh = 40 elements in a row andMv = 8 rows,
we simulated data with covariance matrixRx = σ2

0a0a
H
0 + Qx,

with Qx =
∑d

i=1 σ
2
i aia

H
i + σ2

sI + σ2
isoQiso, whereQx consists

of terms due tod zero-mean uncorrelated interferences, where for
the ith interfererσ2

i andai denote the source power and ASV, a
term modeling sensor noiseσ2

sI, with sensor noise powerσ2
s , and a

term modeling an isotropic ambient noiseσ2
isoQiso, with powerσ2

iso.
The isotropic noise covariance is given by[Qiso]m,n = sinc[πgmn],
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Fig. 1. Relative complexities of different data-dependent RDRCBs.

wheregmn is the distance between themth andnth sensors in units
of wavelength. Theith source (SOI or interference) ASV is simu-
lated according toai = a(θ̄i+δi)+σe,iei, whereei is a zero-mean
complex circularly symmetric random vector with unit norm. When
δi 6= 0 an AOA error exists and whenσe,i 6= 0, an arbitrary error
exists. Unless stated otherwise, in the following, we have assumed
d = 3, θ̄0 = 89.9◦, φ̄0 = 94.8◦, σ2

0 = 40 dB, θ̄1 = 70◦, φ̄1 = 90◦,
σ2
1 = 30 dB, θ̄2 = 88◦, φ̄2 = 90◦, σ2

2 = 20 dB, θ̄3 = 130◦, φ̄3 =
90◦ andσ2

3 = 15 dB. We assumeδ0 is a random vector such that the
azimuth angle perturbation is uniformly distributed over the interval
[−0.72, 0.72]◦ and the elevation angle perturbation is uniformly dis-
tributed over[−3.6, 3.6]◦, whilst for i = 1 tod, δi = 0. Fori = 0 to
d, σe,i = 1. Therefore, the SOI ASV is subjected to both AOA and
arbitrary errors. We assume azimuth and elevation beams spaced at
1/Mh and1/Mv in cosine space and, using the methods described
in [15], design tight-spherical uncertainty sets and non-degenerate
minimum volume ellipsoidal (NDMVE) sets, whose error sphere
radii are set tǒǫ = 10, based on the expected AOA errors given
the spacing of the beams. We refer the reader to [15] for further
details. We assume thatN = 5 and that onlyK = 80 snapshots
are available to estimate the SCM (2), representing a highly snap-
shot deficient scenario, not uncommon in, e.g., passive sonar. Fig. 2
shows the azimuth spectra, illustrating that the RDRCB variants are
able to correctly estimate the power, whereas the non-robust MVDR-
based variants suffer severe SOI cancellation. Fig. 3 shows the out-
put SINR versus the SOI power, obtained using MC = 200 Monte
Carlo simulations. The results show that the CG and O-Krylov re-
sults are the same, whilst the NO-Krylov results diverge for very
high SOI powers. This divergence is a result of numerical instability
in the NO-PoR algorithm. It is clear that the robust RDRCB ver-
sions, exploiting spherical or non-degenerate NDMVE sets, provide
much better robustness at higher SOI powers compared to the stan-
dard MVDR-based implementations.
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