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Abstract: This paper presents several strategies to improve the performance of very low bit rate
speech coders and describes a speech codec that incorporates these strategies and operates at an
average bit rate of 1.2 kb/s. The encoding algorithm is based on several improvements in a mixed
multiband excitation (MMBE) linear predictive coding (LPC) structure. A switched-predictive
vector quantiser technique that outperforms previously reported schemes is adopted to encode the
LSF parameters. Spectral and sound specific low rate models are used in order to achieve high
quality speech at low rates. An MMBE approach with three sub-bands is employed to encode
voiced frames, while fricatives and stops modelling and synthesis techniques are used for unvoiced
frames. This strategy is shown to provide good quality synthesised speech, at a bit rate of only
0.4 kb/s for unvoiced frames. To reduce coding noise and improve decoded speech, spectral
envelope restoration combined with noise reduction (SERNR) postfilter is used. The contributions
of the techniques described in this paper are separately assessed and then combined in the design
of a low bit rate codec that is evaluated against the North American Mixed Excitation Linear
Prediction (MELP) coder. The performance assessment is carried out in terms of the spectral
distortion of LSF quantisation, mean opinion score (MOS), A/B comparison tests and the ITU-T
P.862 perceptual evaluation of speech quality (PESQ) standard. Assessment results show that the
improved methods for LSF quantisation, sound specific modelling and synthesis and the new
postfiltering approach can significantly outperform previously reported techniques. Further results
also indicate that a system combining the proposed improvements and operating at 1.2 kb/s, is
comparable (slightly outperforming) a MELP coder operating at 2.4 kb/s. For tandem connection
situations, the proposed system is clearly superior to the MELP coder.

1 Introduction

With the advent of digital cellular telephones, telephony with
privacy for military purposes, and applications such as voice
over IP networks (VOIP), very low bit rate speech coding
algorithms have assumed an increased importance. Very low
bit rate speech coders, such as mixed multiband excitation
(MMBE) [1, 2] and mixed excitation linear prediction
(MELP) [3], are usually based on linear predictive coding
(LPC), where an excitation signal is applied to an all-pole
filter representing the spectral envelope information of
speech. CELP coders [4], which have become successful
and popular as international standards, usually show some
limitations at very low bit rates.

Most modern very low bit rate speech coding algorithms
can deliver quite good speech quality at rates around
2:4 kb=s: Nevertheless, those that follow the classical
vocoder principle of Atal and Hanauer [5] usually result in
synthetic speech quality due to an impairment generally
termed ‘buzziness’. This work presents several techniques to

improve the performance of very low bit rate speech coders
and details a speech codec that operates at an average bit rate
of 1:2 kb=s: The encoding algorithm is based on several
improvements in a mixed multiband excitation (MMBE)
linear predictive coding (LPC) structure, even though these
techniques can be adopted for other classes of coders, such as
the one based on the CELP structure [4]. In this paper, the
1:2 kb=s variable rate speech codec recently proposed in [6]
is described and examined in detail and a more complete and
rigorous analysis in terms of speech quality assessment is
presented. Furthermore, we describe the individual improve-
ments provided by sound-specific modelling and synthesis
techniques, LSF quantisation and spectral envelope restor-
ation combined with noise reduction (SERNR) postfiltering.
We also separately evaluate their impact on speech quality
through several speech quality tests.

In the encoding structure described in this paper and
briefly reported in [6], we employ a mixed multiband
excitation (MMBE) [1, 2] approach to address the problem
of ‘buzziness’ found in voiced frames, through splitting the
speech into several frequency bands. To encode unvoiced
frames, most compression algorithms reported in the
literature employ noise excitation. However, this approach
is not adequate to encode some non-stationary sounds such
as unvoiced fricatives and stops. For this reason, we use a
modelling and synthesis technique [7–9] that improves the
encoding of these sounds, while it encodes unvoiced frames
at only 0:4 kb=s: In this paper, we detail this modelling and
synthesis technique and discuss the benefits and drawbacks
of the proposed method.
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Another fundamental issue for low bit rate speech coders
is the pitch detection algorithm. Pitch detectors are
responsible for the computation of the pitch period as well
as for the classification of voiced and unvoices frames. In the
encoding scheme described in this paper, we have chosen a
strategy based on the pitch detection algorithm reported in
[7], that uses a sliding window to further reduce incorrect
pitch values and voicing decisions. We also employ a
classification algorithm that distinguishes voiced, unvoiced
fricatives, unvoiced stops and silence frames.

To represent the LPC coefficients we have chosen the line
spectral frequencies (LSF) [10]. In memoryless vector
quantisation (MVQ) [11–14], each LSF vector is quantised
independently of any other LSF set. However, this is not the
most efficient approach to encode LSF parameters, since
large gains can be achieved by exploiting the inherent
interframe correlation between adjacent LSF vectors,
especially for voiced segments. A number of predictive
vector quantisation (PVQ) [13, 14] and switched-predictive
vector quantisation (SPVQ) [15–17] schemes, which
exploit interframe correlation, have been proposed in the
last few years. In this work, we employ an enhanced SPVQ
scheme [18, 19] that outperforms previously reported
structures, to encode the LSF parameters. A procedure to
jointly optimise the codebooks [20] is then used to improve
the performance of the LSF quantiser employed in the
proposed speech codec.

The adaptive spectral enhancement (ASE) filter, pro-
posed by Chen and Gersho [21], is one of the most popular
and successful postfiltering techniques. This strategy
reduces the spectral components of the decoded speech
signal that exhibit low signal-to-noise ratio. Another
strategy to enhance the quality of decoded speech, the
spectral envelope restoration (SER) filter, introduced by da
Silva and Alcaim [22], attempts to reconstruct the short-
time spectral envelope (stse) of speech. The principle of this
postfilter is to remove from the reconstructed speech its stse
and apply the stse obtained from the received LPC
parameters. The SER approach has been shown to reproduce
speech with a quality comparable to the ASE technique.
Here, we describe a spectral envelope reconstruction
combined with noise reduction (SERNR) postfilter [9],
that combines the strengths of the ASE and the SER
strategies. The SERNR postfilter has the spectral envelope
restoration properties of the SER filter and the noise
reduction capabilities of the ASE technique. The SERNR
can significantly enhance decoded speech quality and has
shown a performance superior to the traditional ASE filter
for MMBE platforms [9, 23]. To reduce background noise
and enhance the quality of the synthesised speech, we
employ a noise suppression method, proposed by Arslan
et al. [24], that is based on a smooth spectral subtraction of
noise-corrupted speech.

The performance of the sound-specific modelling and
synthesis, LSF quantisation and SERNR postfiltering are
individually assessed and the 1:2 kb=s speech coder is
compared to the North American standard MELP coder [3],
in terms of both objective and subjective listening tests. The
codecs are also evaluated in tandem connection situations,
where the speech signals are encoded and decoded more
than one time. We present objective tests in terms of spectral
distortions and percentage of outliers of the LSF quantisa-
tion and the recently adopted ITU-T P.862 perceptual
evaluation of speech quality (PESQ) recommendation.
Subjective listening tests results with mean opinion scores
(MOS) and A=B comparison tests are also reported.

2 Excitation model

In this Section the excitation model employed in the
experiments throughout this work and its components are
described. Section 2.1 describes the sliding window pitch
detection scheme, Section 2.2 details our mixed-multiband
excitation approach; and Section 2.3 presents the fricatives
and stops modelling and synthesis strategies.

2.1 Pitch detection

Pitch detection is one of the most important issues in low bit
rate coding, since it has a significant impact upon the quality
of synthesised speech. Indeed, the more accurately a pitch
algorithm detects the pitch period and decides voicing, the
more it contributes to the quality of reproduced speech.
Pitch estimation algorithms are responsible for computation
of the pitch period and classification of voiced and unvoiced
frames. For this reason, we have chosen a strategy based
upon the pitch detection algorithm introduced by Unno et al.
[7], which uses a sliding window to further reduce incorrect
pitch values and voicing decisions. The deployment of a
sliding window can reduce the artificial noise usually found
in non-stationary segments that contain vowels and result in
more accurate voicing decisions and pitch estimates. The
pitch correlation provided by the sliding window method is
defined by

RðTÞ ¼ max
Ts�1
i¼�Ts

½maxT RiðTÞ� ð1Þ

RiðTÞ ¼
Cði; T þ iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cði; iÞCðT þ i; T þ iÞ
p ð2Þ

where Ts is the maximum sliding range and RiðTÞ is the
value of the normalised autocorrelation for the delay i. The
autocorrelation function C(k,l) is limited between 20 and
160 samples (at a sampling frequency of 8 kHz) and is
expressed by

Cðk; lÞ ¼
XN�1

n¼0

sðn þ kÞsðn þ lÞ ð3Þ

where s(n) is the lowpass speech signal, N is the frame size
and k and l are the corresponding delays.

2.2 Mixed multiband excitation

Mixed multiband excitation (MMBE) [1, 2] addresses the
problem of ‘buzziness’ found in low bit rate coders that
follow the classical vocoder principle, through splitting the
speech into several frequency bands. These frequency bands
have their voicing assessed individually, with a voiced
excitation source or an unvoiced excitation source for each
subband in the speech frame. This excitation model is
capable of representing the voiced frames more adequately
than those models which assume a binary decision between
voiced and unvoiced frames [5]. To apply this model at very
low bit rates it is necessary to establish a trade-off between
speech quality and the number of subbands used in the coder
[1–3]. Taking into account this trade-off, and in order to
achieve an average bit rate of 1:2 kb=s; we have chosen a
model with only three subbands, resulting in four mixed
excitations to represent voiced signals.

The subband analysis filters split the speech spectrum
into the following frequency bands: 0–1 kHz, 1–2 kHz and
2–4 kHz. Figure 1 shows the frequency response of these
filters. We have employed the same method used in the
MELP coder [3] to select voiced excitation. The bandpass
voicing analysis uses the pitch detector to determine
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whether each one of the analysed subbands is voiced or
unvoiced. This approach is undertaken for those frames
which are declared voiced by the pitch detector. The
procedure is to filter the input speech signal into the
frequency bands 1–2 kHz and 2–4 kHz and perform pitch
detection on each of the subbands. The voicing decision
vi 2 f0; 1g; where the numbers 0 and 1 denote unvoiced
detection, respectively, and i denotes the ith sub-band with
1 � i � 3; is the largest value of the pitch correlation R(T)
defined in (1), computed for both the bandpass signal and
the time envelope of the bandpass signal. The time envelope
is first decremented by 0.1 to compensate for an exper-
imentally observed bias as detailed in [3]. The envelopes are
calculated by full-wave rectification followed by a smooth-
ing filter. This filter consists of a zero at DC in cascade with
a complex pole pair at 150 Hz with a radius of 0.97. If the
frame is found to be voiced by the pitch detector, the voicing
decision of the first band is automatically set to v1 ¼ 1 and
the remaining ones, for i ¼ 2; 3 are given by

vi ¼
1 if RðTÞ>0:6
0 otherwise

�
ð4Þ

The proposed excitation codebook, shown in Table 1, has
four different mixed-voiced excitations (0–3) and four
unvoiced excitation (4–7) entries in the codebook, which
are used to encode fricatives, stops and silence frames,
totalling 3 bits for the excitation. The mixed excitation m(n)
used in this work consists in the application of a pulse
excitation p(n) filtered in the chosen subbands and summed
to filtered white noise excitation w(n) in the remaining
subbands. Indeed, the mixed excitation m(n) is computed by
summing the filtered pulse and noise excitations, i.e. p(n)
and w(n), as given by

mðnÞ ¼ pðnÞ þ wðnÞ ð5Þ

where p(n) and w(n) are obtained via the following filtering
operations and according to the excitation index:

pðnÞ ¼

tðnÞ �
PN0�4

k¼1 h0�4
k pðn � kÞ if index ¼ 0

tðnÞ �
PN0�2

k¼1 h0�2
k pðn � kÞ if index ¼ 1

tðnÞ �
PN0�1

k¼1 h0�1
k pðn � kÞ

�
PN2�4

k¼1 h2�4
k pðn � kÞ if index ¼ 2

tðnÞ �
PN0�1

k¼1 h0�1
k pðn � kÞ if index ¼ 3

8>>>>>>><
>>>>>>>:

ð6Þ

wðnÞ ¼

0 if index ¼ 0

uðnÞ �
PN2�4

k¼1 h2�4
k wðn � kÞ if index ¼ 1

uðnÞ �
PN1�2

k¼1 h1�2
k wðn � kÞ if index ¼ 2

uðnÞ �
PN1�4

k¼1 h1�4
k wðn � kÞ if index ¼ 3

8>>><
>>>:

ð7Þ

where t(n) is a pulse train whose pulses are spaced by the
pitch period, u(n) is a white Gaussian noise with zero mean
and unit variance, and hB

k is the kth coefficient for the Bth
band of the synthesis filter bank. The filter bank contains
infinite impulse response (IIR) filters of the ellyptical type
with 0.5 dB of ripple in the passband, at least 60 dB of
attenuation in the stopband and NBth-order filters. For
bandpass filters, we have used NB ¼ 12; whereas for
lowpass and highpass filters NB ¼ 6:

At the decoder, the excitation is generated with the aid of
a pair of filter banks as given by (1)–(4), which are different
from those used in the analysis. Note that at the encoder we
only wish to determine the voiced subbands, determined on
the basis of the pitch detection algorithm invoked for each
subband signal. Differently from the MELP that employs
64th-order finite impulse response (FIR) filters, in the
proposed coder, the filters are IIR and were designed in
order to minimise the number of filters used in the process of
synthesis of the mixed excitation signal. For example, if we
transmit index 1 for a given frame, the MELP employs
three FIR filters (out of the five connected in parallel) in the
0–0.5, 0.5–1 and 1–2 kHz subbands to filter the periodic
excitation p(n), whereas the proposed coder uses only one
IIR filter in the 0–2 kHz subband for the synthesis. Note that
in such situations, where we have adjacent voiced
excitations, the MELP employs unnecessary filtering
operations that may introduce undesirable distortions.
Indeed, informal listening tests have shown that in the
cases where we transmit index 1 for a given frame, our
approach provides a higher quality speech synthesis than
that attained using the MELP synthesis filters. Figure 2
shows the frequency response of the synthesis filters for
periodic and for noise excitation.

2.3 Fricatives and stops encoding

The noise excitation usually employed to model unvoiced
sounds is not capable of adequately representing unvoiced
stops and fricatives. In order to provide a clearer speech
quality for the sentences containing stops and fricatives
sounds, we use a strategy based upon the algorithms
recently introduced in [9].

The methods reported in [9] resemble those introduced in
[7] and [8]. However, the overall scheme has novel
contributions with respect to some specific points that differ

Table 1: Proposed mixed-excitation codebook

Index Band for p(n), kHz Band for w(n), kHz Index Unvoiced excitation

0 0–4 – 4 stop 1

1 0–2 2–4 5 stop 2

2 0–1 and 2–4 0–4 6 fricative

3 0–1 1–4 7 silence

Fig. 1 Frequency response of the analysis filter bank
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from the techniques described in [7] and [8]. Regarding the
modelling and synthesis of stops, the work by Unno et al. [7]
employed pre-stored excitation templates and transmitted
LPC parameters to model and synthesise stop sounds. In [8]
Ehnert used pre-stored excitation templates of 40 ms
duration and pre-stored LPC sets to reproduce stop sounds.
This method requires no transmission of LPC parameters,
however, according to informal listening tests it has shown
inferior performance to Unno et al.’s. In [9] we proposed a
modification of the techniques introduced by Unno et al. to
encode stops that rather than transmitting LSF vectors,
makes use of pre-stored templates of LPC coefficients.
Informal listening tests have shown that our approach is
capable of reproducing speech at a quality comparable to
that delivered by the method in [7], while reducing the bit
rate to only 0:4 kb=s and offering an attractive trade-off
between speech quality and bit rate.

To model and reproduce fricative signals, Ehnert [8] used
pre-stored excitation templates of 220 ms duration and pre-
stored LPC sets to reproduce these sounds. For the case of
fricative sounds, the difference of our work in [9] from [8] is
that the pre-stored excitation and LPC set templates
correspond to only 20 ms of speech. At first glance, one
may think that this idea would lead to bad modelling
because of the different types of fricatives. However,
distinctive characteristics of these sounds will be captured
in the transition of the fricative to the voiced sounds and
vice versa, where a mixed excitation will be used.
Specifically, when different fricative sounds are encoded
the mixed excitation that precedes or follows the template
model will contribute to account for their differences, even
though some speech quality deterioration is assumed. It
should be noted that a small percentage of unvoiced speech
segments have to rely on mixed-voiced excitation to
compensate for different fricatives and stops. The overall
bit rate is not significantly affected by this approach as
shown in Section 5 by the statistical analysis carried out to
determine the average bit rate of the proposed codec.
Certainly, the use of a reduced set of templates is not
capable of achieving high quality speech, although they play
a key role in reducing the overall bit rate of the codec. In this
context, one can employ a specific template for each kind of
fricative and stop sound, leading to an increase in the bit

rate. In this regard, such an approach is still an open topic
since it requires more sophisticated detection methods in
order to discriminate different types of fricatives and stops.
From informal listening tests we have verified that the
subjective quality of reconstructed fricative sounds can be
improved by reducing the length of these pre-stored
templates. When successive fricative frames are detected,
our approach uses the same pre-stored template with the
appropriate gain for each one of the frames in order to
reproduce the fricative sound.

For the detection of stop sounds we employ the peakiness
value of the LPC residual signal r(n) and a sliding window is
used to find the frame position that maximises the peakiness
value. The peakiness value with the sliding window is
given by

P ¼ max
i¼Ts

i¼�Ts

1
N

PN�1
n¼0 rðn þ iÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN�1
n¼0 jrðn þ iÞj

q ð8Þ

where N is the frame size and Ts is the maximum sliding
range. In this approach there are two types of stop
signals since two excitation codebook entries are
reserved for these sounds. The first one corresponds to
those signals whose maximum amplitudes are located in
the first half of the frames while the second one is
associated to those whose maximum amplitudes are
found in the second part.

The detection of fricative sounds makes use of appropriate
thresholds for the zero crossings and the energy of each
frame. These low energy signals usually have between 60 and
140 zero crossings per frame while voiced frames typically
do not cross the axis more than 60 times per frame [8].

Despite an accurate assessment (including insertion and
deletion errors) of the efficiency of the detection schemes
not being carried out, these techniques have been shown to
work well for a wide range of situations of practical interest.
Indeed, we focused on the applicability of these methods to
an excitation model with fricatives and stops. We believe
that a more detailed study of detection of fricatives and stops
is beyond the scope of this paper, even though it constitutes
an interesting research topic. It is also important to remark
that in the situations where these sounds are not identified
our scheme has the option of choosing among four mixed-
voiced excitations.

Fig. 2 Frequency response of the synthesis filter banks
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For the reproduction of unvoiced stops and fricatives, we
employ a model where fricatives (f) and stops (s) signals
( f jsðnÞ is used to denote these sounds) are produced by
scaling and LPC filtering pre-stored templates of LPC
residual signals r(n) and LPC coefficients ðai; i ¼ 1; . . . ; pÞ:

f jsðnÞ ¼ GrðnÞ þ
Xp

i¼1

ai f jsðn � iÞ ð9Þ

where G is a gain based on the energy of the input stop or
fricative signal and faig is the set of LPC coefficients stored

Fig. 3 Reproduction of stop signal in synthesised speech

a Input speech signal
b Synthesised speech signal with noise excitation
c Synthesised speech signal with stops modelling and synthesis

Fig. 4 Reproduction of fricative signal in synthesised speech

a Input speech signal
b Synthesised speech signal with noise excitation
c Synthesised speech signal with fricatives modelling and synthesis
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in the decoder. The templates are carefully chosen from
fricatives and stops speech segments to avoid the trans-
mission of LPC coefficients for unvoiced frames. With
regard to the selection of templates, we selected several
small sized stop and fricatives residual signals for use as
candidate templates. Then, we carried out several listening
tests with these selected candidates in order to determine the
most appropriate ones for use in the proposed model. These
templates have been shown to reproduce good quality
speech through informal listening tests. We used one
residual signal and an LPC set as templates to synthesise
fricatives, while two residual signals and two LPC sets were
employed to reproduce stops. These sounds are reproduced
by the application of (9), where the r(n) and faig templates
are used with the transmitted gains for the synthesis.

Figure 3 shows an example of speech containing stops.
The input speech signal is depicted in Fig. 3a. In the
synthesised speech signal (b) a noise excitation is applied to
the full band of the speech segment associated with the stop
sound. From informal listening tests it was perceived that this
latter approach degrades the clarity of the speech quality.
In Fig. 3c the synthesised speech signal provides better stops
reproduction and encodes frames with only 0:4 kb=s:
Figure 4 shows an example of speech containing fricatives.
The input speech signal is depicted in Fig. 4a. The
synthesised speech signal shown in Fig. 4b is obtained
from noise excitation applied to the full band of the speech
segment associated with the fricative sound. In Fig. 4c the
synthesised speech signal provides better fricatives repro-
duction and encodes frames with only 0:4 kb=s: Note that the
proposed scheme for the encoding of fricative and stop
signals plays a significant role in the reduction of the average
bit rate of the coder described in this work. We also remark
that the fricatives and stops encoding scheme can be
implemented with the transmission of LPC coefficients at
the cost of increasing the transmission rate of the codec.
Indeed, informal listening tests reveal that when the LPC
parameters are transmitted the quality of fricative and stop
sounds was found to be superior to the pre-stored templates
approach. In addition, statistical analysis (detailed in Section
5 and carried out to determine the average bit rate of the
analysed codec) indicates that unvoiced frames account for
40% of the frames. These results show the importance of the
contribution of the fricatives and stops encoding scheme in
terms of the average bit rate of the codec.

3 LSF quantisation

Most low bit rate speech coding algorithms are based on
linear predictive coding (LPC), where an excitation signal
is applied to an all-pole filter representing the spectral
envelope information of speech. We have chosen line
spectral frequencies (LSF) to represent LPC coefficients
since they have proven to be a suitable representation of
the spectral envelope and because they are well suited to
quantisation and interpolation. In addition, LSF parameters
usually show significant correlation between successive
frames, especially for voiced segments.

Multistage vector quantisation (VQ) and split VQ are
some of the most usual and successful suboptimal schemes
used to encode LSF parameters. Multistage VQ has been
shown to perform better than split VQ, at the expense of
higher computational complexity [12, 14]. In a multistage
VQ system the LSF vector f is approximated by the
quantised vector f̂f given by

f̂f ¼ c1i þ c2l þ    þ cKv ð10Þ

where K is the number of stages and cki is the ith codevector
of the codebook of the kth stage represented by the set Ck ¼
fcki; i ¼ 1; . . . ; Ikg; where Ik is the number of LSF
codevectors stored in each codebook.

In memoryless vector quantisation (MVQ), each LSF
vector is quantised independently of any other LSF set [11].
Paliwal and Atal [11] demonstrated that a split MVQ
scheme is capable of efficiently encoding the LSF
parameters with 24 bits per frame. A tree-structured
multistage MVQ was presented in [12] and shown to
outperform the split MVQ. However, this is not the most
efficient approach to encode LSF parameters, since large
gains can be achieved by exploiting the inherent interframe
correlation between adjacent LSF vectors. A number of
predictive vector quantisation (PVQ) schemes, which
benefit from the interframe correlation, have been proposed
in recent years [14–16]. A vector linear predictor forms
an estimate of the incoming vectors as a linear combination
of earlier observations, and the prediction residual vector
ðdjþ1Þ is vector quantised. The vector djþ1 is expressed by

djþ1 ¼ f jþ1 � f̂f j  rt ð11Þ

where r is the vector with the correlation coefficients and f̂f j

is the quantised version of f j; the LSF vector occurring at
time instant j. In this work, we restrict the experiments to
first-order predictors, which have been shown to capture
most of the achievable coding gains.

Interframe correlation can be exploited by memory VQ
methods such as PVQ. However, there are situations of
rapid changes in the spectral envelope and hence low
correlations between adjacent LSF vectors. Indeed, this
observation motivated the combination of MVQ and PVQ
techniques for encoding low correlation frames separately
from typical highly correlated frames. A search of both VQ
schemes is performed for each frame and the best candidate,
with respect to a distortion criterion, dðf; f̂fÞ; is encoded and
transmitted [15].

Several switched-predictive VQ (SPVQ) schemes have
been reported in the literature [15–19]. All of them share
the important characteristic of exploiting the changes in
interframe LSF correlations, by switching between more
than one PVQ (and eventually MVQ) systems. Note that
different strategies to design SPVQ structures will lead to
different performances.

One of these SPVQ schemes, also called safety-net VQ,
was described by Eriksson et al. [16]. It switches between a
split MVQ and a split PVQ, achieving an efficient
quantisation of the LSF parameters at 20 bits per frame.
Another SPVQ technique, proposed by McCree and
De Martin [17], uses NVQ ¼ 2 tree-structured multistage
PVQ schemes, where each predictor is trained for a specific
training database and operates at 21 bits per frame. Recently
[18, 19], we investigated the performance of this class
of algorithms and introduced two SPVQ schemes that use
NVQ ¼ 4 tree-structured multistage vector quantisers and
outperform previously reported systems. It should be
remarked that the best results were achieved using a larger
number of reduced dimension codebooks. We now
summarise the main results of our investigation and present
an optimised SPVQ structure to be used in the speech codec
described in this paper. The structures of the SPVQ schemes
are described in Table 2 and an SPVQ structure using three
PVQs and one MVQ is shown in Fig. 5.

In SPVQ systems a search among all the VQ schemes is
performed and the ioptth VQ, that minimises a desired
distortion criterion is selected to encode a given frame
according to
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iopt ¼ min argfdðf; f̂f
ðiÞÞgi¼1;...;NVQ

ð12Þ

where dðf; f̂fÞ is the distortion criterion and NVQ is the
number of vector quantisers used in the system.

The speech training database used in this work consists
of 2400 s of phonetically balanced sentences [25] (in the
Portuguese spoken in Rio de Janeiro) uttered by 40
speakers, 20 male and 20 female. Another set of 30 s of
speech uttered by six different speakers, three male and
three female, was used for assessment. The speech was
lowpass filtered at 3.4 kHz, highpass filtered at 120 Hz and
sampled at 8 kHz. A 10th-order LPC analysis using the
autocorrelation method was performed every 20 ms using a
24 ms Hamming analysis window and 15 Hz bandwidth
expansion was applied to each pole of the LPC vectors.
We have chosen the weighted Euclidean measure [14, 18,
19, 26] as the distortion measure, since it has been shown to
improve both objective and subjective quality of com-
pressed speech and also because it is a low complexity
measure for implementation. It is given by

dðf; f̂fÞ ¼
Xp

i¼1

aiðfÞð fi � f̂fiÞ2 ð13Þ

where aðfÞ ¼ ða1ðfÞa2ðfÞ . . . apðfÞÞ is the weighting func-
tion defined as

aiðfÞ ¼
1

fi � fi�1

þ 1

fiþ1 � fi

ð14Þ

where i ¼ 1; . . . ; p; f0 ¼ 0 and fpþ1 ¼ 0:5:
Large savings in complexity and storage can be achieved

by the use of suboptimal procedures, such as multistage VQ
and tree-structured approaches, where an M-best approxi-
mation is saved at each stage of the search procedure.
Indeed, we have used a tree-structured multistage VQ
scheme with M ¼ 12 and 4 stages.

The VQ performance was evaluated by the spectral
distance (SD) expressed by

SD ¼
X4000

f¼0

1

4000
10 log 10

Sð f Þ
ŜSð f Þ

����
����

� 2
" #1=2

dB ð15Þ

where S( f ) and ŜSð f Þ represent the original and quantised
LPC spectral envelopes. For implementation of (15) the
number of the FFT points was set to 128.

In the design of vector quantisers of different coding
structures, the training database was divided into subsets
according to the SD between consecutive LSF vectors.
The predictors used in the PVQ schemes of the different
encoding systems were designed on the basis of the
correlation coefficients computed from each subset of the
training LSF vectors. The same number of LSF vectors for
each subset was used in the design of the SPVQP2, SPVQ4
and SPVQP4, whereas for the SPVQ2 we employed a subset
with a third of the training LSF vectors for the PVQ and the
remaining LSFs for the MVQ.

The noise-free channel performance is shown in Fig. 6,
where the average SD of the MVQ, PVQ and SPVQ
methods are plotted as a function of the number of bits per
frame. From this figure, it is clear that the schemes SPVQ4
and SPVQP4 achieve the best performances among the
switched-predictive techniques for noise-free channels.
None of these quantisers has SD greater than 4 dB. The
percentage of outliers (percentage of vectors with SD)
between 2 and 4 dB for the case of 21 bits per frame is
approximately 2:6% for the two schemes.

Note that in noisy channels the SPVQ4, which contains
one memoryless VQ, performs better than the SPVQP4. For
this reason, we have chosen the SPVQ4 as the structure to be
optimised.

An improved SPVQ4 structure was designed in order to
provide the analysed coding scheme with an enhanced LSF
encoding. We reduced the number of stages of the SPVQ4
system from four to three and the codebooks have been
jointly optimised. We used an SPVQ scheme with three
PVQs and one MVQ systems, depicted in Fig. 5, and
designed a tree-structured multistage VQ scheme operating
at 21 bits per frame with M ¼ 12 and three stages. In the
SPVQ structure, 2 bits are used to switch among the three
PVQs and the MVQ systems, whose stages have 7, 6 and 6
bits, respectively. Moreover, the vector quantiser codebooks
were jointly optimised by an approach introduced by Barnes
and Frost [20], where each codebook is retrained fixing the
remaining codebooks. This procedure is capable of
significantly reducing the percentage of outliers, resulting

Table 2: SPVQ schemes and their structure with respect
to the combination of PVQS and PVQ

SPVQ Structure of quantisers

SPVQ2 1 PVQ and 1 MVQ schemes

SPVQP2 2 PVQ schemes

SPVQ4 3 PVQ and 1 MVQ schemes

SPVQP4 4 PVQ schemes

Fig. 5 SPVQ using three PVQ and one MVQ schemes

Fig. 6 Performance of vector quantisers in terms of average
spectral distance for noise-free channel
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in superior VQ performance. The performance of the
optimised SPVQ system employed in the proposed coder
is shown in Table 3. For the sake of comparison, we have
also shown the SD performance of this 21-bit quantiser in
Fig. 6.

4 SERNR postfiltering and noise suppression

In this section we detail the postfiltering and noise
suppression strategies used in our experiments. Section
4.1 describes the SERNR postfiltering technique and
Section 4.2 is devoted to the noise suppression scheme.

4.1 SERNR postfiltering

One strategy to reduce the perceived coding noise is to
employ an adaptive postfilter at the output of the decoder.
The postfilter is designed and adapted to reduce the spectral
components of the decoded speech signal that exhibit low
signal-to-noise ratio. The adaptive spectral enhancement
(ASE) postfilter [21] is the most usual structure and has the
following transfer function:

HASE ¼ Aðz=aÞ
Aðz=bÞ ð1 � nz�1Þ ð16Þ

where AðzÞ ¼ 1 �
Pp

i¼1aiz
�i is the inverse of the synthesis

filter and faig is the set of LPC parameters. Appropriate
values for a; b and n at low bit rates are 0.5, 0.8 and 0:4k1;
respectively, where k1 is the first reflection coefficient of the
linear prediction model. In a number of speech coding
algorithms, this filter is followed by a fixed pulse dispersion
filter (PD) that reduces some of the harsh quality of the
synthetic speech.

Another strategy to enhance the quality of decoded
speech attempts to reconstruct the short-time spectral
envelope (stse) of the speech. The principle of this postfilter
is to remove from the reconstructed speech its stse and apply
the stse obtained from the received LPC parameters. This
adaptive postfilter is called spectral envelope restoration
(SER) [22] and has the following transfer function:

HSER ¼
~AAðz=�Þ
Aðz=�Þ ð17Þ

where ~AAðzÞ is the reconstructed stse, obtained from an LP
analysis based on the autocorrelation method, and per-
formed on the decoded speech using a 24 ms Hamming
window. A(z) is the decoded stse an � must be less than 1 in
order to smooth the amplitude spectrum of the postfilter.
From informal listening tests we verified that the SER
postfilter reproduced speech at a quality comparable to the
ASE postfilter, while operating in low bit rate codecs. This
fact motivated the investigation of a strategy to enhance the
quality of the decoded speech which combines the strengths
of the ASE and SER filters. The SERNR postfiltering
structure gathers the stse restoration properties of the SER
filter and the noise reduction capabilities of the ASE
technique. The SERNR postfilter has the following transfer
function:

HSERNR ¼
~AAðz=zÞ
Aðz=�Þ ð1 � nz�1Þ ð18Þ

where A(z) and ~AAðzÞ model the stse of the original and
reconstructed speech, respectively. Listening tests have
shown that appropriate values for z; � and n are 0.82, 0.9 and
0:3k1; respectively, and that the SERNR postfilter is
superior to the SER and to the ASE postfilters. An important
aspect of the SERNR and the SER postfilters performance
is that they are closely related to the LSF quantiser
performance because they attempt to reconstruct the stse
obtained from the received LSFs. Therefore, it is paramount
that the encoding process can deliver high quality LPC
parameters in order to provide an accurate stse restoration
and this is the case when the optimised LSF coding structure
described in this paper is used.

In Fig. 7 the frequency response of a speech segment is
shown for the original speech and the decoded speech using
the ASE filter followed by the PD filter, the SER postfilter
and the SERNR postfilter. Evaluation of these postfilters in
terms of the spectral distance (SD) over several speech
frames was also carried out. In particular, the SD was
measured between the original LPC sets and the decoded
LPC parameters after processing of the analysed postfilters
and the results are depicted in Fig. 8. Note that the stse
processed by the SERNR postfilter is more similar to the
original one than the remaining approaches. It is more

Table 3: Performance of the 21-bit SPVQ system with
jointly optimised codebooks and M = 12 candidates for
the tree-structured search

�SSDðdBÞ 0.95

%2 � 4 dB 1.42

%> 4 dB 0

Fig. 7 Frequency response of three different postfiltering
techniques

Fig. 8 Spectral distance (SD) versus speech frames of utterance
processed by three different postfiltering techniques

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 1, February 2005 81



effective in restoring the stse and reducing the coding noise
of the processed speech. It should be remarked that although
the SER postfilter presents low SD values at a few points, it
does not attack the coding noise as the SERNR postfilter
does. Indeed, from informal listening tests we perceived that
the SERNR method is capable of considerably improving
the quality of decoded speech and is superior to the ASE and
SER techniques. Further results on the performance of the
SERNR postfilter — including the ITU-T P. 862 perceptual
evaluation of speech quality (PESQ) standard — are
presented and discussed in Section 6.

4.2 Noise suppression

Noise suppression techniques have become of paramount
importance in very low bit rate speech coding applications,
because they can reduce background noise and enhance
the quality of synthesised speech [24, 27]. In this work, we
employ a smoothed spectral subtraction (SSS) method [27]
that performs significantly better than conventional spectral
subtraction approaches. To describe the SSS technique, we
assume a clean speech signal s(t) and a stationary and
uncorrelated additive white Gaussian noise n(t). The power
spectrum Pyð$Þ of the noisy speech yðtÞ ¼ sðtÞ þ nðtÞ
corresponds to the sum of the power spectra Psð$Þ and
Pnð$Þ of s(t) and n(t), i.e.

Pyð$Þ ¼ Psð$Þ þ Pnð$Þ ð19Þ

In the traditional spectral subtraction method described
in [27], the estimated spectrum of the clean speech signal
~PPsð$Þ can be obtained by subtracting the estimated noise
spectrum ~PPnð$Þ from the noisy speech spectrum, as given
by

~PPsð$Þ ¼ Pyð$Þ � ~PPnð$Þ ð20Þ

The spectral subtraction principle can be interpreted as a
time-varying linear filter by using the Fourier transform and
rewriting (20). After noise suppression is applied, the clean
speech signal is given by

ŝsðtÞ ¼ F�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pyð$Þ � Pnð$Þ

Pyð$Þ

s
Yð$Þ

( )

¼ F�1fHð$ÞYð$Þg ¼ F�1fŜSð$Þg ð21Þ

where Yð$Þ is the Fourier transform of the noisy speech,
Hð$Þ is a time-varying linear filter and ŜSð$Þ is the estimate
of the Fourier transform of the clean speech. According to
(21), spectral subtraction corresponds to a frequency
dependent attenuation to each frequency in the noisy speech

spectrum PyðoÞ; where the attenuation varies with
PyðoÞ
PnðoÞ [24].

The SSS technique [27] involves three additional
strategies over the traditional spectral subtraction. First,
the HðoÞ filter attenuation is limited to �10 dB; avoiding
signal distortion. Second, the noise estimation is artificially
increased by 5 dB in order to prevent speech deterioration
when the noise spectrum is not properly estimated. And
finally, we use smoothed versions of the FFT derived noisy
speech and noise spectra estimates via a smoothing window
[27], preventing the arise of musical noise.

5 Coder structure

The encoder and decoder schematics of the 1:2 kb=s codec
are shown in Figs. 9 and 10, respectively. Following the
encoder block diagram, after LP analysis has been
performed on a 20 ms speech frame, the pitch detection
algorithm described in Section 2.1 is invoked in order to
locate any evidence of voicing. The LPC coefficients are
transformed into LSF parameters and encoded with 21 bits
per frame by the optimised switched-predictive vector
quantiser presented in Section 3, the gain is uniformly
quantised with 5 bits per frame and the excitation is encoded
with 3 bits per frame. Speech frames classified as voiced are
encoded by an MMBE structure, which was described in
Section 2.2, while unvoiced frames are encoded by the
modelling and synthesis technique introduced in Section
2.3. Voiced frames are split into three frequency bands,
which are implemented with fixed filter banks, and bandpass
voicing analysis is performed, as detailed in Section 2.2.
The bit allocation for the analysed codec is shown in Table 4.
In order to determine the average bit rate of the codec, a
statistical analysis was conducted, comprising 4 min of
speech. This speech material consists of 10 phonetically
balanced sentences [25] (in the Portuguese spoken in Rio de
Janeiro) uttered by four different speakers (two male and
two female). This analysis has shown that our algorithm
operates at an average rate of 1:2 kb=s:

Fig. 9 Block diagram of 1:2 kb=s encoder
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At the decoder, for voiced speech frames a pair of filter
banks is used to generate the mixed excitation. The filter
bank excitation is declared fully unvoiced for unvoiced
frames and hence no voiced excitation is created. For the
voiced frames, mixed excitation is generated as the sum
of the filtered pulse and noise excitation, as described in
Section 2.1. The next step is to perform the LPC synthesis
with the coefficients corresponding to the interpolated LSFs
and apply the decoded gain to the synthesised speech. The
SERNR filter and the noise suppression technique, shown in
Section 4, are then applied to the synthesised speech.

6 Objective and subjective tests results

We have carried out a number of preliminary informal
assessments, in addition to A=B comparison and mean
opinion scores (MOS) listening tests. We have also measured
the spectral distortion (SD) of LSF quantisation and the
perceptual evaluation of speech quality (PESQ) scores. The
ITU-T PESQ standard is a valuable assessment tool because
it provides strong correlation with subjective MOS scores
and can easily be used by other researchers for verification
purposes. All the results presented in this section are used in
order to separately evaluate the improvements provided by
each strategy presented in this paper, which are then
incorporated in the 1:2 kb=s codec described in this paper.

The test material included both clean and noisy speech.
According to preliminary informal listening tests conducted
on clean speech, as well as on noisy speech at different SNR
levels, the 1:2 kb=s codec was superior to the 2:4 kb=s
MELP standard in tandem connections and comparable in
non-tandem situations. These tests indicate that the
preference for the 1:2 kb=s codec in clean speech was not
altered for noisy speech. For these reasons, we show here
only the results for clean speech. Ten (10) sentences were
taken from lists of phonetically balanced sentences [25]
(in the Portuguese spoken in Rio de Janeiro) and were
uttered by 10 speakers (five male and five female). In the
A=B comparison tests, the speech material was presented to

20 listeners and consisted of 10 sentence pairs, where each
was uttered by a different speaker and processed by the
1:2 kb=s coder and the MELP. Since a particular sentence
pair was also randomly presented in reverse order, there are
400 opinions for each test. In the preliminary tests reported
in Sections 6.1 and 6.2 we have used a simpler MMBE
speech coder platform, without noise suppression, using a
standard pitch detection algorithm (without the improved
method described in Section 2.1), and employing the
SPVQ2 LSF quantiser without codebook optimisation.

6.1 Preliminary tests: stops and fricatives
encoding

First we evaluated the stops and fricatives modelling and
synthesis techniques and compared them with noise
excitation. Two scenarios were considered for stops and
fricatives modelling and synthesis techniques: an approach
with pre-stored templates and a method using transmission
of LPC sets. For comparison of the former with the noise
excitation, the results show that 54% of listeners had no
clear preference, 26% preferred the fricatives and stops
approach, while 20% found the noise excitation based coder
superior. This means that the stops and fricatives modelling
and synthesis techniques perform slightly better than the
noise excitation, used in the MELP standard, while it
significantly reduces the bit rate. Comparison of the method
which transmits LPC sets with noise excitation, show that
40% of listeners had no clear preference, 36% preferred the
fricatives and stops approach, while 24% found the noise
excitation based coder superior. This reveals that the
fricatives and stops encoding scheme operating at a higher
transmission rate performs better than noise excitation. In
addition to the A=B comparison tests, we obtained PESQ
scores for the same speech material. The scores were 2.37,
2.39 and 2.47 for noise excitation, fricatives and stops
encoding without and with the transmission of LPC sets,
respectively, confirming the preferences found in the A=B
comparison tests. It is worth noting that fricatives and stops
encoding without the transmission of LPC sets offers a very
attractive trade-off between speech quality and bit rate and
for this reason it has been chosen for use in the codec
described in Section 5.

6.2 Preliminary tests: tandem connections
and postfiltering evaluation

In tandem configurations the LSF quantisation is affected at
each transcoding step. Certainly, this becomes more serious
for quantisation procedures that provide worse performance.
In this context, the 1:2 kb=s variable rate codec has the
advantage of yielding better stse quantisation than the
MELP algorithm (see Table 6 in Section 6). Furthermore,

Table 4: Bit allocation

Parameters Voiced Unvoiced

LSFs 21 0

Gain 5 5

Excitation 3 3

Pitch 6 0

Total bits=20 ms 35 8

Bit rate 1:75 kb=s 0:4 kb=s

Fig. 10 Block diagram of 1:2 kb=s decoder
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the ASE postfilter of Chen and Gersho [22] used in the
MELP [3] attempts to suppress coding noise, but modifies
the speech spectral envelope. In tandem connection
situations this introduces distortion, which increases with
the number of times the speech signal is encoded and
decoded, and is reflected in the resulting speech quality.
On the other hand, the SERNR [9, 23] approach employed
in the 1:2 kb=s coder does not introduce this type of signal
distortion, representing a more attractive choice in these
situations. Our analysis is mainly focused on the effects of
these connections on the perceptual quality of decoded
speech, which can be estimated by the ITUT-P.862 PESQ
recommendation [28]. However, subjective assessments
through A=B comparison tests and LSF quantiser perform-
ance are also provided to corroborate the PESQ results.
A block diagram of the speech codecs in tandem connec-
tions and the corresponding output decoded speech at each
transcoding stage is depicted in Fig. 11. Note that in terms of
LSF quantiser performance, the SD is computed between
the original LSF parameters and the quantised ones, for no
tandem connection. In the situations of one and two tandem
connections, the SD is calculated between the original LSFs
and the quantised LSFs by codecs 2 and 3, respectively.

In a preliminary experiment, we have compared the
SERNR postfilter and the ASE filter followed by a fixed
pulse dispersion (PD) filter, used in the MELP standard in
one, two and no tandem connections. Note that we have left
the SER postfilter out of this assessment because informal
listening tests had indicated that this approach has a
performance similar to the ASE postfilter. The SERNR
postfilter was found to be superior by 37:5% of the listeners,
while 18:2% showed a preference for the ASE filter
followed by the PD filter, and 44:3% of them showed no
preference. Then, we carried out a comparison of these
postfilters in one tandem connection. The SERNR method
was found to be superior by 47:8% of the listeners, whereas
12:5% showed a preference for the ASE and 39:8% of them
had no preference. For two tandem connections, we found a
70:0% preference for the SERNR, 25:3% of listeners who
had no preference and only 4:7% had preference for the
ASE filter. Following the A=B comparison tests we obtained
the PESQ scores for the same speech material. The scores
are 2.39 and 2.32 for the SERNR and the ASE postfilters,
respectively. For one tandem connection, we obtained 1.86
and 1.74 for the SERNR and the ASE techniques,
respectively, whereas with two tandem connections the
scores were 1.62 and 1.43 for the SERNR and the ASE
techniques, respectively. Next, we show in Table 5 the
results in terms of SD and percentage of outliers for the LSF
quantisation of speech material after being processed by
identical codecs with SERNR and ASE postfilters. All these
experiments and results obtained with the two postfilters

indicate that the SERNR postfilter is preferable to the ASE
technique.

The performance of the speech coder of Section 5,
operating at an average rate of 1:2 kb=s; was then evaluated
and compared with the MELP coder, operating at 2:4 kb=s;
in terms of both objective and subjective listening assess-
ments: SD and percentage of outliers of LSF quantisation,
A=B comparison and mean opinion score (MOS) tests and
the ITU-T P.862 perceptual evaluation of speech quality
(PESQ) standard. We also performed an evaluation of both
speech coders in tandem connections and the results for these
experiments are described in the following subsections.

6.3 LSF quantisation results:
proposed £ MELP

In order to assess the effects of tandem connections on the
spectral envelope of speech, we chose the spectral distance
(SD) given by (15) between the original and quantised LPC
spectral envelopes as the performance index. For no tandem
connection, the SD is computed between the original LSF
parameters and the quantised ones. In a transcoding
scenario, the SD is calculated between the original LSFs
and the quantised LSFs by the codec in one and two tandem
connections, respectively, as detailed in Section 6.2. The
VQ performance in terms of average SD and percentage of
outliers between 2 and 4 dB, and above 4 dB is given in
Table 6 for all speakers used in the experiments.

The results shown in Table 6 indicate that the proposed
codec introduces a milder type of short-term spectral
distortion than the MELP. In tandem connections we note
that the values of SD obtained for the 1:2 kb=s codec are
considerably lower than the ones computed for the MELP.
We also observe that in tandem connections the percentage
of outliers above 4 dB — corresponding to severe distortion
— is significantly higher for the MELP coder. As will be
mentioned in the discussion of the subjective tests, the
superior performance of the 1:2 kb=s scheme in terms of the
average SD and the percentage of outliers above 4 dB
significantly contributes to provide a better speech quality.
These results indicate that the reason for the superiority of
the 1:2 kb=s codec in tandem connections is the combined
use of the SPVQ system and the SERNR postfilter.

Table 5: Effect of postfilters on the LSF quantisation
results

Postfilter Tandem SD, dB %2�4;dB %> 4;dB

ASE No 1.03 2.15 0

SERNR No 1.03 2.15 0

ASE One 3.40 68.81 23.82

SERNR One 2.95 62.80 17.09

ASE Two 4.86 29.33 69.31

SERNR Two 4.22 45.99 49.92

Table 6: LSF quantisation results

LSF VQ Tandem SD, dB %2�4; dB %> 4; dB

MELP No 1.35 2.27 0

Proposed No 0.95 1.42 0

MELP One 3.55 64.33 26.51

Proposed One 2.75 52.74 12.68

MELP Two 4.93 23.04 71.25

Proposed Two 3.82 39.78 38.42

Fig. 11 Speech codecs in tandem connections
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6.4 A=B comparison tests: proposed £ MELP

First, the speech coder platform of Section 5, operating at
1:2 kb=s; was compared with the MELP coder, operating at
2:4 kb=s: We used the same speech material, listeners,
speakers and test procedure previously described. The
results have shown that 32% of the listeners had no clear
preference, 35% of them preferred the 1:2 kb=s coder, while
33% preferred the MELP coder. Note that our codec
performed slightly better than the MELP coder, although it
operates at half the bit rate of the North American standard.

In another situation, comparison of our coding scheme
against the MELP was carried out with one tandem
connection. The 1:2 kb=s coder was found to be superior
by 46:8% of the listeners, while 24:8% showed a preference
for the MELP and 28:4% of them showed no preference.
The results of the A=B comparison tests are summarised in
Table 7. It is clear from these results that for one tandem
connection, the coder structure of Section 5 is superior to the
MELP, corroborating the results (in terms of SD) of the LSF
quantisation in Section 6.3.

6.5 Mean opinion score (MOS) tests:
proposed £ MELP

In MOS tests, listeners are asked to rate a system on an
absolute scale, usually ranging from 1 to 5. The quality scale
ranges from excellent, for grade 5, to very annoying, for
grade 1. A training speech database, including good and bad
speech, was presented to all listeners before the test, in order
to prepare listeners to assess the quality of the sentences.
The same material presented in the A=B comparison tests
was used for the MOS tests and presented to another panel
of 20 listeners, giving a total of 200 opinions for each
situation. We conducted the MOS tests for the original
speech material in order to provide a benchmark for the
speech processed by the 1:2 kb=s coder, the 2:4 kb=s MELP
coder and then the speech processed under one tandem
connection by the 1:2 kb=s coder and the MELP.

Results have shown that the original speech used as
a benchmark scored 4.17, while speech processed by the
1:2 kb=s and the MELP coders scored 3.00 and 2.97,
respectively. The MOS results are given in Table 8 along
with a 95% confidence interval ð�dÞ: For one tandem
connection the speech processed by the proposed and MELP
coders scored 2.41 and 2.19, respectively. These results
confirm that the proposed coder is comparable with the
MELP coder and is clearly superior in tandem connection

situations, as suggested by the results for the SD of LSF
quantisation and A=B comparison tests in previous subsec-
tions. For two tandem connections, we did not perform the
MOS test because the quality was considered poor. The
reader is referred to the results obtained by LSF quantisa-
tion, A=B comparison tests and PESQ scores, which
indicate that the speech quality of the proposed codec was
clearly less affected than the MELP.

6.6 ITU-T P.862 PESQ standard results:
proposed £ MELP

The recently adopted ITU-T P.862 perceptual evaluation of
speech quality (PESQ) recommendation is an objective
measurement technique for estimating subjective quality
obtained in listening-only tests [28]. PESQ compares an
original speech signal with a degraded signal that is the
result of passing the original signal through a communi-
cations system. The output of PESQ is a prediction of the
perceived quality that would be given to the decoded speech
by listeners in a subjective listening test such as the MOS
test. The PESQ score is mapped to a MOS-like scale with
range between 1.0 and 4.5. In this section we assess and
compare our codec to the MELP coder through PESQ tests.

The same material used for LSF quantisation, A=B
comparison and the MOS tests was used for the PESQ
assessment, whose scores are shown in Table 9. The results
show that the original speech used as a benchmark scored
4.5, while the processed speech for the 1:2 kb=s and MELP
coders scored 2.70 and 2.69, respectively. For one tandem
connection the processed speech for the 1:2 kb=s and the
MELP coders scored 2.24 and 2.13, respectively, whereas
for two tandem connections our codec and the MELP scored
2.03 and 1.82, respectively. These results corroborate that
the 1:2 kb=s coder is comparable to the MELP coder and is
clearly superior in tandem connection situations.

7 Conclusions

Several techniques to improve the performance of very low
bit rate speech coders have been presented, analysed and
shown to be useful tools for this important application.
We have also incorporated these techniques in a variable
rate speech coder structure that operates at an average rate
of 1:2 kb=s: An efficient modelling and synthesis technique
is described, examined and employed to encode unvoiced
frames at only 0:4 kb=s; showing an attractive trade-off
between speech quality and bit rate. We adopted a pitch
detection algorithm that uses a sliding window to further
reduce incorrect pitch values and voicing decisions.
We employed a classification algorithm that distinguishes
voiced, unvoiced fricative, unvoiced stop and silence
frames. We proposed an efficient LSF switched-predictive
vector quantisation (SPVQ) structure with jointly optimised
codebooks, which can save more than 4 bits per vector

Table 7: A=B comparison tests

Tandem connections No One Two

Proposed coder ð%Þ 35 46.8 52.8

Comparable quality ð%Þ 32 28.4 19.2

MELP ð%Þ 33 24.8 28

Table 8: MOS tests

Situation MOS � �

Original speech 4:17 � 0:02

1:2 kb=s coder 3:00 � 0:02

MELP 2:97 � 0:03

1:2 kb=s coder - one tandem 2:41 � 0:03

MELP - one tandem 2:19 � 0:03

Table 9: PESQ tests

Situation PESQ score

Original speech 4.50

1:2 kb=s coder 2.70

MELP 2.69

1:2 kb=s coder - one tandem 2.24

MELP - one tandem 2.13

1:2 kb=s coder - two tandem 2.03

MELP - two tandem 1.82
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compared to MVQ (memoryless vector quantiser) without
reduction in performance, under noiseless conditions.
A spectral envelope reconstruction combined with noise
reduction (SERNR) postfilter, that combines the strengths of
the ASE and the SER strategies, is presented, analysed and
used as an important strategy for speech quality enhance-
ment. An evaluation of the SERNR postfilter has shown that
it has a superior performance compared to the ASE and the
SER techniques. We remark that the SERNR postfilter
performance is closely related to the LSF quantiser
performance because our approach attempts to reconstruct
the stse obtained from the received LSF parameters.
Therefore, using a high quality SPVQ encoding scheme
makes possible an accurate stse restoration and can deliver
higher quality decoded speech. The 1:2 kb=s speech coder
described in this paper, that incorporates all these
techniques, is comparable (slightly outperforming) the
MELP coder, operating at 2:4 kb=s: This conclusion was
obtained from the computations of spectral distortion of
LSF quantisation and the application of A=B comparison,
MOS and PESQ tests. For one tandem connection, the coder
described and studied in detail in this paper is clearly
superior to the MELP coder. Finally, we remark that most of
the strategies presented in this paper can also be adopted in
the design of other classes of speech coders, such as CELP
structures recommended by the ITU, in order to improve
speech quality.
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