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Abstract: In this study, the authors propose a novel successive interference cancellation (SIC) strategy for multiple-input
multiple-output spatial multiplexing systems based on a structure with multiple interference cancellation branches. The
proposed multi-branch SIC (MB-SIC) structure employs multiple SIC schemes in parallel and each branch detects the signal
according to its respective ordering pattern. By selecting the branch which yields the estimates with the best performance
according to the selection rule, the MB-SIC detector, therefore, achieves higher detection diversity. The authors consider three
selection rules for the proposed detector, namely, the maximum likelihood (ML), the minimum mean square error and the
constant modulus criteria. An efficient adaptive receiver is developed to update the filter weight vectors and estimate the
channel using the recursive least squares algorithm. Furthermore a bit error probability performance analysis is carried out.
The simulation results reveal that the authors’ scheme successfully mitigates the error propagation and approaches the
performance of the optimal ML detector, while requiring a significantly lower complexity than the ML and sphere decoder
detectors.
1 Introduction

The deployment of multiple transmit and receive antennas has
been recognised to improve wireless link performance in
communication system significantly. The degrees of
freedom, which are afforded by the multiple antennas, can
offer dramatic multiplexing [1–5] and diversity gains [6, 7].
The diversity gains make the links more reliable and allow
low error rates over wireless fading channels, whereas the
multiplexing gains enable high spectral efficiencies. Within
the scope of this paper, we focus on the multiplexing gains
obtained by the multiple-input multiple-output (MIMO)
system.

In a spatial multiplexing configuration, in order to separate
all data streams using their respective spatial signatures, the
designer may resort to several detection techniques, which
are similar to multiuser detection methods [8]. The optimal
maximum likelihood (ML) performance can be approached
using the sphere decoding algorithm [9, 10]. However, the
complexity of this algorithm can be polynomial or
exponential depending on the signal-to-noise ratio (SNR)
and the signal constellation, typically very high for low to
moderate SNR values. As known to all, it is typical for
coded systems that detectors normally operate at low to
moderate SNR values. This renders the application of the
sphere decoder (SD) limited and has motivated the
development of various alternative low-complexity strategies.

The diagonal Bell Laboratories Layered Space-Time
(D-BLAST) proposed by Foschini [3] was the first BLAST
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architecture. Owing to the large computational complexity
required for the D-BLAST scheme, a simplified version,
called the vertical BLAST (V-BLAST) has been proposed
in [4, 5]. The V-BLAST scheme is primarily based on the
following three steps: (i) ordering to select the substream
with the largest SNR; (ii) interference nulling by using the
zero forcing or the minimum mean-square-error (MMSE)
criterion to reduce the effect of interfering signals on the
desired one and (iii) successive interference cancellation
(SIC) [11]. According to this view, the V-BLAST can be
seen as an ordered SIC. There is also a number of other
strategies to achieve the capacity gain of MIMO systems
including the linear and the decision feedback (DF) detector
[12–15] and the parallel interference cancellation (PIC)
[16, 17]. However, all these detectors suffer from
performance degradation. It motivates us to develop an
effective detector with an affordable complexity.

In this paper, we propose a novel SIC strategy for MIMO
spatial multiplexing systems based on multiple processing
branches. This multi-branch SIC (MB-SIC) framework
consists of several SIC branches placed in parallel and in
each branch an SIC scheme detects the signal with a given
ordering pattern. From this point of view, the SIC branch
with the optimal ordering pattern, which detects the signal
according to the signal-to-interference-plus-noise ratio
(SINR) form high to low, is tantamount to the ordered SIC
schemed used in the V-BLAST detector. Using the
designed selection rule, which determines the branch with
the best performance, the detection diversity is obtained by
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exploiting different detection ordering patterns. Thus, the full
detection diversity in this case can be achieved by permuting
all possible ordering patterns. Based on different application
requirements, different criteria, such as ML, MMSE and
constant modulus (CM), can be used as selection rules to
select the branch with the best performance. Owing to the
high computational complexity of the optimal ordering
scheme, we propose three sub-optimum ordering schemes
for practical implementation, which select subsets of
ordering patterns from the optimal ordering scheme set. In
an attempt to reduce the computational complexity of our
proposed algorithm, an efficient adaptive receiver is
developed to update the filter weight vectors and estimate
the channel using the recursive least squares (RLS)
algorithm. An adaptive equalisation of flat-fading MIMO
channels has been proposed in [18] by taking advantage of
the equivalence between the V-BLAST receiver and the
generalised decision feedback equaliser (GDFE) [19]. The
adaptive architecure in [18] is adopted to implement the
SIC detector for each branch so that a great deal of
computation can be saved. Furthermore, a bit error
probability (BEP) performance analysis is carried out. The
simulation and analytical results reveal that our scheme
successfully mitigates error propagation and approaches the
performance of the optimal ML detector.

The main contributions we have made in our paper are as
follows:

1. A novel MB-SIC strategy for MIMO spatial multiplexing
systems is proposed. Three selection rules, together with the
proposed scheme, are investigated.
2. Three sub-optimum ordering schemes are proposed to
reduce the computational complexity.
3. An efficient adaptive implementation using the RLS
algorithm is developed for the proposed receiver.
4. A BEP analysis is carried out for both the V-BLAST and
the proposed receiver.

This paper is organised as follows. Section 2 briefly
describes a MIMO spatial multiplexing system model and
reviews some existing detectors. Section 3 is dedicated to
the presentation of the novel MB-SIC detector. The
adaptive implementation of the proposed scheme and its
computational complexity are presented in Section 4. In
Section 5, the BEP performance analysis is carried out.
Section 6 presents and discusses the numerical simulation
results, while Section 7 gives the conclusions.

2 System model

In this section, to start with, we briefly describe a MIMO
spatial multiplexing system model. Subsequently, some
existing detection schemes including ML, the SD, the linear
detector and the V-BLAST, are reviewed. Owing to either
the high computational complexity or the unacceptable
performance, these schemes are prohibitive for practical use.

2.1 Transmitter

Let us consider a spatial multiplexing MIMO system, as
depicted in Fig. 1a, with NT transmit antennas and NR
receive antennas, where NR ≥ NT. At each time instant [i],
the system transmits NT symbols which are organised into
an NT × 1 vector s[i] = [s1[i], s2[i], . . . , sNT

[i]]T taken from
a modulation constellation A = {a1, a2, . . . , aN }, where
IET Commun., 2011, Vol. 5, Iss. 4, pp. 484–494
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(·)T denotes transpose. The symbol vector s[i] is then
transmitted over flat fading channels and the signals are
demodulated and sampled at the receiver, which is
equipped with NR antennas. The received signal is collected
into an NR × 1 vector r[i] = [r1[i], r2[i], . . . , rNR

[i]]T given by

r[i] = Hs[i] + v[i] (1)

where the NR × 1 vector v[i] is a zero mean complex circular
symmetric Gaussian noise with covariance matrix
E[v[i]vH[i]] = s2

vI , where E[ · ] stands for the expected
value, (·)H denotes the Hermitian operator, s2

v is the noise
variance and I is the identity matrix. The symbol vector s[i]
has zero mean and a covariance matrix E[s[i]sH[i]] = s2

s I ,
where s2

s is the signal power. The elements hnR,nT
of the

NR × NT channel matrix H correspond to the complex
channel response from the nTth transmit antenna to the nRth
receive antenna.

2.2 Conventional detection techniques for spatial
multiplexing

The optimal detection algorithm is the ML detection
algorithm given by

ŝML[i] = arg min
ŝ[A

‖r[i] − Hŝ[i]‖2 (2)

where A denotes a set of NT-dimensional candidate vectors.
The computational complexity, which increases
exponentially with the number of transmit antennas,
prevents the practical application of the ML detector. The
SD is a powerful scheme to approach the ML detection
solution of signals observed at the output of MIMO
systems. However, the complexity of this algorithm can be
polynomial or exponential depending on the noise variance
and the signal constellation [9, 10]. This has motivated the
development of various suboptimal detection techniques.
The MMSE linear detector is a relatively simple strategy
to separate the transmitted signals at the receiver. It
corresponds to designing an NR × NT parameter matrix W
according to the MMSE criterion. The design of the MMSE
filter matrix W is based on the optimisation of the following

Fig. 1 Overview diagram for the proposed system

a MIMO spatial multiplexing system
b Global block diagram of the proposed MB-SIC detector
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cost function

J (W ) = E[‖s[i] − W Hr[i]‖2] (3)

By computing the gradient of (3) with respect to W and then
making it equal to a null matrix, we obtain the NR × NT
MMSE filter matrix

W = HHH + s2
v

s2
s

I

( )−1

H (4)

The MMSE linear detector expression above requires the
channel matrix H (in practice an estimate of it) and the
noise variance s2

v at the receiver. There are a number of
other strategies to achieve the capacity gain of MIMO
systems in which the V-BLAST is the most competitive one
because of its lower complexity and good performance. The
linear and the DF detectors [12–15] and the PIC [16, 17],
also provide alternatives to avoiding high computational
complexity. However, there is still a large performance gap
between these algorithms and the ML-type detectors.

3 Multi-branch SIC detection

This section is devoted to the description of the proposed
MB-SIC detector for MIMO systems. We present the
overall principles and structures of the proposed scheme in
the first place, and then we introduce the selection rules and
ordering schemes that are employed in our proposed
detector subsequently. Based on different application
requirements and system structures, better performance and
lower complexity can be achieved by employing a proper
selection rule and ordering scheme.

3.1 Proposed scheme

The proposed detection structure employs SICs on several
parallel branches that are equipped with different ordering
patterns. Namely, each branch produces a symbol estimate
vector by exploiting a certain ordering pattern. Thus, there
is a group of symbol estimate vectors at the end of the MB
structure. We present MMSE-SIC for the design of the
proposed MB MIMO receiver because the MMSE estimator
usually has good performance, is mathematically tractable
and has relatively simple adaptive implementation. The
novel structure for detection exploits different patterns and
orderings for the modification of the original V-BLAST
architecture and achieves higher detection diversity by
selecting the branch which yields the estimates with the
best performance.

Fig. 1b depicts the global block diagram of the proposed
detector. In order to detect the transmitted signals using the
proposed MB-SIC structure, the detection process for each
branch uses linear MMSE nulling and symbol successive
cancellation to compute z̃l[i] = [z̃l,1[i], z̃l,2[i], . . . , z̃l,NT

[i]]T,
where z̃l[i] denotes the NT × 1 ordered symbol estimate
vector for the lth branch. Let s̃l[i] = T ls[i] =
[s̃l,1[i], s̃l,2[i], . . . , s̃l,NT

[i]]T denote the ordered set, which
is a permutation of the transmitted symbol set s[i]
ordered by the transformation matrix T l, l = 1, . . . , L. The
transformation matrices T l, l = 1, . . . , L, in which each
row and each column contain only one 1, corresponds to
the ordering pattern employed in the lth branch. It is worth
noting that z̃l[i] is detected according to the order
486
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determined by T l. Thus, to select the best estimate vector
conveniently, we simply transform z̃l[i] to zl[i] by using T l as

zl[i] = TT
l z̃l[i] (5)

The non-adaptive implementation of the l-th SIC branch, as
shown in Fig. 2a, is mathematically given as follows

z̃l,n[i] = W H
l,n[i]rl,n[i] (6)

where

rl,n[i] = r[i], n = 1

H ′ = T lH

rl,n[i] = r[i] −
∑n−1

k=1

(H ′)k s̃l,n[i], n ≥ 2

W l,n = �H ′
n
�H ′H

n + s2
v

s2
s

I

( )−1

(H ′)n

s̃l,n[i] = Q(z̃l,n[i])

(7)

where (H ′)n denotes the nth column of H ′, �H ′
n denotes the

matrix obtained by taking columns n, n + 1, . . . , NT of H ′

and Q(·) is the quantisation function. In summary, the basic
principle of the proposed structure is to modify the ordering
of the original ordered SIC in appropriate ways such that
the detector can obtain a group of different estimate vectors
and then select the most likely symbol estimates based on a
certain selection rule, which will be introduced in the
following section. The simulation results reveal that our
scheme successfully mitigates the error propagation and
approaches the performance of the optimal ML detector.

3.2 Selection rules

The proposed MB-SIC detector selects the branch that
optimises the corresponding cost function J according to

lopt = arg min
1≤l≤L

J (l) (8)

Fig. 2 Schematic structures of the lth SIC branch

a Schematic structure of the lth SIC branch with non-adaptive
implementation
b Schematic structure of the lth SIC branch with adaptive implementation
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The final detected symbol is

ŝf [i] = Q(zlopt
[i]) (9)

Based on different application requirements, different
criteria, such as the ML, the MMSE and the CM, can be
used as selection rules to select the branch with the best
performance.

3.2.1 ML (or minimum Euclidean distance) criterion:
The cost function for the ML criterion, which is equivalent to
the minimum Euclidean distance criterion, is written as

J ML(l) = ‖r[i] − Hŝl[i]‖2 (10)

The ML criterion can provide the best performance among
these candidate criteria while channel information is
available. Although the channel estimation would cost extra
complexity, the performance improvement by employing
the ML criterion is considerable.

3.2.2 MMSE criterion: Where channel information is not
available, the MMSE criterion can be used to select the
branch which minimises the mean square error of
transmitted symbols. The cost function is given by

JMMSE(l) = ‖ŝl[i] − zl[i]‖2 (11)

where ŝ[i] is symbol estimation in the decision directed mode;
thus, the MMSE criterion would be greatly impaired by error
propagation.

3.2.3 Constant modulus criterion: The CM algorithm
originally proposed by Godard [20] has widely been
applied to the blind detection because of its robustness and
easy implementation. In this context, the CM criterion
attempts to minimise the cost function

JCM(l) =
∑NT

n=1

[||zl,n[i]|2 − 1|2] (12)

We will show how these selection rules perform later in the
simulation section. Note that for non-constant modulus
constellations such as QAM, one can replace the cost
function in (12) with a square contour [21].

3.3 Ordering schemes

Here, we propose the optimal ordering scheme and three
alternative ordering schemes for designing the proposed
receiver, where the common framework is the use of parallel
branches with ordering patterns that yield a group of symbol
estimate vectors. The number of parallel branches L is a
parameter that must be chosen by the designer. In this
context, the optimal ordering scheme conducts an exhaustive
search L ¼ NT! where ! is the factorial operator. Taking a
4 × 4 system for example, Fig. 3 shows all ordering patterns
that can be employed in the SIC detector. There are 24
ordering patterns in the optimal ordering scheme. It is
clearly very complex for practical systems, especially when
NT is large. Therefore an ordering scheme with low
complexity, which renders itself to practical implementation,
is of great interest.
IET Commun., 2011, Vol. 5, Iss. 4, pp. 484–494
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To this end, we propose three sub-optimal schemes to
design the transformation matrices T l with appropriate
structures such that they can be used for low-complexity
implementation of the detector. These three schemes are
developed to select a subset from the optimal ordering
scheme set in a smart way. We assume that the original
order has been sorted according to optimal order
(maximum SINR criterion), that is, as illustrated in Fig. 3,
the V-BLAST order is the first order (index 1) in the the
optimal ordering scheme set. This optimal ordering scheme
set can be easily obtained by using PERMS(NT : 21 : 1)
in Matlab.

3.3.1 Pre-stored patterns (PSP): The transformation
matrix T1 for the first branch is chosen as the identity
matrix INT

to keep the optimal ordering as described by
T1 = INT

. The remaining ordering patterns can be described
mathematically by

T l =
I s 0s,NT−s

0NT−s,s f[INT−s]

[ ]
, 2 ≤ l ≤ NT (13)

where 0m,n denotes an m × n-dimensional matrix full of
zeros, the operator f[ · ] rotates the elements of the
argument matrix column-wise such that an identity matrix
becomes a matrix with ones in the reverse diagonal. The
proposed ordering algorithm shifts the ordering of the
cancellation according to shifts given by

s = (l − 2), 2 ≤ l ≤ NT (14)

Note that in this scheme, the number of branches is equal to
the number of transmitter antennas.

3.3.2 Frequently selected branches (FSB): The basic
principle of the proposed FSB algorithm is to build a
codebook that contains the ordering patterns for the most
likely selected branches. In order to build such codebook,
we resort to a simulation approach, where we identify the
statistics of each selected branch and construct the
codebook with the L most likely selected branches to be
encountered. The algorithm is summarised in Fig. 4, where
dE denotes the vector of Euclidean distance for all possible
branches, Ne denotes the total number of experiments we
did, Lidx is defined for the storage of the selected branches
for every experiment and Lo is the codebook for optimal
ordering patterns computed by PERMS(NT : 21 : 1),
which provides the list containing all possible permutations

Fig. 3 Illustration of the ordering scheme for a 4 × 4 system
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of the NT elements. We highlight that in each run, after we
measure the Euclidean distances for all branches, the branch
that brings the minimum Euclidean distance is stored in Lidx
at step 10. Finally, the FSB codebook LFSB is created by
selecting the most frequently selected L branches according
to the histogram of Lidx. The selected ordering patterns and
their probabilities of being selected are shown in Table 1.
An interesting fact is that the FSB codebooks with ten
elements for 4 × 4, 6 × 6 and 8 × 8 systems are almost
same and the probabilities of selecting these ordering
patterns for 4 × 4, 6 × 6 and 8 × 8 systems are all more
than 99%. We note that rankings for these ordering patterns
are slightly different for different systems. The possible
reason for this might be that the number of experiments Ne
is not sufficiently large. However, we believe that the
ranking would not affect the system performance
significantly.

3.3.3 Listing patterns approach (LPA): Motivated by
the fact that we have to do a lot of prior work before the
FSB algorithm can be employed, we propose an online
codebook updating algorithm, which is called LPA.
However, this approach is restricted by the number of
antennas. We suppose that the channel is block-fading in
which a block of symbols are affected by the same fading
value. Thus, once the channel changes, we would re-select
a list of ordering patterns to update the codebook. In this
case, the LPA algorithm is proposed to fulfil the online
updating of the codebook. We formalise the algorithm in
Fig. 5. In each block which is supposed to contain Lb
frames, we use the optimal ordering scheme that

Fig. 4 FSB ordering scheme
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exhaustively searches all possible orderings in the first
frame, then updates the codebook LLPA online by listing the
first L ordering patterns that minimise the cost function.
Thereafter, we detect the remaining frames by using the
updated codebook LLPA.

4 Adaptive implementation

The proposed MB-SIC detector shown in the previous section
not only requires the channel matrix H and the noise variance
s2

n at receiver, but also requires the inversion of an NR × NR
matrix and other operations, whose complexity is O(N3

R). To
reduce the complexity of our proposed detector and to allow it
to operate in time-varying scenarios, we develop an adaptive
implementation for the receiver filters and a channel estimator
based on the RLS algorithm.

4.1 RLS algorithm

An adaptive equalisation of flat-fading MIMO channels has
been proposed in [18] by taking advantage of the
equivalence between the V-BLAST receiver and the GDFE
[19]. The algorithm is the adaptive V-BLAST structure in

Fig. 5 LPA ordering scheme
Table 1 Selected patterns and their probabilities of being selected by FSB ordering scheme (ranked)

Index 4 × 4 system Index 6 × 6 system Index 8 × 8 system

1 0.9971 1 0.9514 1 0.9388

2 1.935 × 1023 2 1.446 × 1022 2 1.542 × 1022

5 4.943 × 1024 5 8.217 × 1023 3 7.684 × 1023

3 1.813 × 1024 3 5.324 × 1023 5 5.311 × 1023

19 1.285 × 1024 17 4.03 × 1023 4 5.254 × 1023

17 6 × 1025 13 2.233 × 1023 13 3.164 × 1023

13 3.6 × 1025 19 2.22 × 1023 17 2.542 × 1023

4 1.4 × 1025 4 1.529 × 1023 21 1.977 × 1023

6 1.1 × 1025 21 1.291 × 1023 19 1.582 × 1023

21 1 × 1025 6 1.284 × 1023 6 1.073 × 1023

..

. ..
.

25 7.8 × 1024 49 6.073 × 1024

..

. ..
. ..

. ..
. ..

. ..
.
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which both the taps and the detection ordering are updated
recursively in time. In this section, we introduce the
adaptive implementation, which only updates the taps, into
our design. The adaptive SICs using the RLS algorithm are
employed in the branches of the proposed receiver. Fig. 2b
depicts the adaptive implementation of the lth SIC branch,
which works in two modes. The first mode is a training
mode and the second is a decision-directed mode. The
filters are trained by using training sequence s[i], which is
known to the receiver. The detection is started with linear
filtering for the first substream, and the determined symbol
is fed back and is concatenated together with the original
input vector. The transmitted symbols in s[i] are detected
successively, and, the degree of the linear filter increases
with the number of detected symbols. To be specific, the
following notations are introduced: W l,n[i] denotes
(NR + n − 1)-dimensional weight vectors at the lth branch;
rn[i] denotes the input vector to the nth linear filter; and
ˆ̃zl,n[i] denotes the nth linear filter output, where
n [ {1, 2, . . . , NT}; T ls[i] denotes the training sequence
for the lth branch and the order of detection is determined
by the ordering pattern T l. Note that in the training mode,
ˆ̃sl,n[i] [ T ls[i] represents the training symbol, while in the
decision-directed mode, ˆ̃sl,n[i] is substituted by the detected
symbol Q(ˆ̃zl,n[i]). The output of the linear filter can be
represented as

ˆ̃zl,n[i] = W H
l,n[i]rl,n[i] (15)

where

rl,n[i] = r[i], n = 1

rl,n[i] = [rT
l,n−1[i], ˆ̃sl,n[i]]T, n = 2, . . . , NT

(16)

The weight vectors W l,n[i] in (15) can be obtained by solving
the standard least squares (LS) problem. Specifically, the LS
cost function with an exponential window is given by

J n[i] =
∑i

k=1

li−k |s̃l,n[i] − W H
l,n[i]rl,n[i]|2 (17)

The optimal tap weight minimising J n[i] is given by

W l,n[i] = R−1
l,n [i]pl,n[i] (18)

where Rl,n[i] is the time-averaged correlation matrix
defined by

Rl,n[i] =
∑i

k=1

li−krl,n[k]rH
l,n[k] (19)

and pl,n[i] is the time-averaged cross correlation vector
defined by

pl,n[i] =
∑i

k=1

li−krl,n[k]ˆ̃sl,n[k] (20)

It is well known that the optimal weight in (18) can be
calculated recursively using the RLS algorithm, which is
IET Commun., 2011, Vol. 5, Iss. 4, pp. 484–494
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summarised as follows

Fl,n[0] = d−1I

kl,n[i] =
l−1Fl,n[i]rl,n[i]

1 + l−1rH
l,n[i]Fl,n[i]rl,n[i]

Fl,n[i] = l−1Fl,n[i − 1] − l−1kl,n[i]rH
l,n[i]Fl,n[i]

W l,n[i] = W l,n[i − 1] + kl,n[i]j∗l,n[i]

(21)

where d is a small constant, kl,n[i] is the gain vector for the lth
branch, and jl,n[i] is the estimation error defined by

jl,n[i] = ˆ̃sl,n[i] − W H
l,n[i]rl,n[i] (22)

and (.)∗ denotes conjugate operator.

4.2 Channel estimation

In this paper, we employ the LS MIMO channel estimation
algorithm which has been investigated in [22]. In the LS
algorithm, the interested channel estimation must minimise
the cost function whose expression at the time instant i is
defined based on a weighted average of error squares as

J [i] =
∑i

k=1

li−k‖(r[k] − Ĥ [i]s[k])‖2 (23)

where r[k] and s[k] are the received and transmitted symbol
vectors at the time instant k, respectively, l is the forgetting
factor and Ĥ[i] is the channel matrix estimate at the time
instant i.

To minimise the cost function, the gradient of the cost
function with regard to channel matrix estimate must be set
to the zero matrix as

− 1

2
∇Ĥ[i]J [i] =

∑i

k=1

li−k [(r[k] − Ĥ[i]s[k])s[k]]

= 0NR,NT
(24)

By solving (24), we obtain the LS estimate of the channel
matrix as

Ĥ[i] =
∑i

k=1

li−kr[k]s[k]

( ) ∑i

k=1

li−ks[k]s[k]H

( )−1

= D[i]F−1[i] (25)

where F[i] =
∑i

k=1 l
i−ks[k]s[k]H and D[i] =∑i

k=1 l
i−kr[k]s[k]H.

To avoid the matrix inversion operation, the recursive
algorithm is developed based on the matrix inversion
lemma. Let us define

Ĥ[i] = D[i]P[i] (26)

where D[i] can be iteratively calculated by

D[i] = lD[i − 1] + r[i]s[i]H (27)
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and by using the matrix inversion lemma, we may calculate
P[i] iteratively as

P[i] = l−1P[i − 1] − l−2P[i − 1]s[i]s[i]HP[i − 1]

1 + l−1s[i]HP[i − 1]s[i]
(28)

Initially, we set the parameters D[0] = 0NR,NT
and

P[0] = d−1
c I , where dc is a small constant.

4.3 Complexity

Here, we detail the computational complexity in terms of
additions and multiplications of the proposed algorithm with
the RLS implementation and other existing algorithms,
namely the linear detector with RLS, the V-BLAST with
RLS and the SD, as shown in Table 2. The linear detector
has the lowest complexity O(N2

R), and the V-BLAST has a
complexity O(N 2), N = max{NT, NR}. Our proposed
algorithm has L times the complexity of the V-BLAST.
Compared with the SD whose complexity is extremely high
when the SNR level is low or moderate and higher
modulation as well as more antennas are employed, say 16-
QAM and 8 × 8 systems, our proposed algorithm has a fixed
complexity. Note that the complexity of the SD is associated
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with the constellation size M and the radius d which is
chosen to be a scaled version of the noise variance [10].

In order to illustrate the main trends in what concerns the
complexity of the proposed detector with the RLS algorithm
and other existing algorithms, we show in Fig. 6 the
complexity in terms of additions and multiplications against
the number of antennas (NT = NR). In this case, our
algorithm using the FSB scheme with L ¼ 10 is investigated
because it provides comparable performance with the SD.
The curves indicate that the complexity of the SD increases
sharply with the number of antennas. For a QPSK 4 × 4
system at the high SNR level, say 12 dB, the complexity of
the SD is lower than our proposed algorithm. However,
when higher modulation (16-QAM) or more antennas
(NT, NR ≥ 6) is employed at the moderate SNR level, for
example 8 dB, the complexity of the SD is typically very high.

5 Performance analysis

In this section, a BEP performance analysis for our proposed
algorithm is carried out. The BEP expression of the
V-BLAST detector, rather than symbol error probability
(SEP) which was discussed in [23, 24], is firstly built based
on the Gaussian approximation and the MMSE criterion. It
is well known that the detection with DF suffers from the
Table 2 Computational complexity of algorithms

Algorithm Number of operations per symbol

Multiplications Additions

linear MMSE-RLS 4N2
R + 4NR 3N2

R + 2NR − 1

V-BLAST-RLS 4N2
R + 4NTNR + 4

3 N2
T − 4

3 3N2
R + 3NTNR − NR + N2

T − 1
2 NT − 3

2

proposed-RLS 4N2
R + 4NTNR + 4

3 N2
T − 4

3

( )
L 3N2

R + 3NTNR − NR + N2
T − 1

2 NT − 3
2

( )
L

SD [10]
∑NT

k=1

(Mkpk/2/G(k/2 + 1)dk + 2N2
T

∑NT

k=1

(M(k + 1)pk/2/G(k/2 + 1))dk + 2N2
T − NT + 2

Number of operations per block

channel estimation NRN2
T + 4N2

T + 2NTNR + 2NT + 2 NRN2
T + 4N2

T − NT

ordering NRN2
T + 4N2

T + 2NTNR + 2NT + 2 NRN2
T + 4N2

T − NT

Fig. 6 Complexity in terms of arithmetic operations against number of antennas (NT ¼ NR)

a and b L ¼ 10
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error propagation, that is, the cancellation of an erroneously
detected symbol increases the power of the interfering terms
and can cause significant performance degradation. In the
following subsections, we analyse the performance of the
MIMO V-BLAST receiver taking the error propogation into
account. Furthermore, building on this, the BEP analysis of
our proposed algorithm is carried out.

5.1 BEP performance of the V-BLAST detector

Without loss of generality, in the following, it will be
assumed that in the nth step we detect the nth element sn[i]
of s[i]. It is easy to show that, with SIC, the BEP can be
derived by

Pe =
1

NT

∑NT

n=1

Pen
(29)

where Pen
represents the probability of making an error in the

detection of the nth symbol. Taking into account the effects of
error propagation, the determination of the exact expressions
for Pen

is difficult. We will rely here on presenting a simple
approach to estimate these probabilities. By using the total
probability theorem [23], we can write

Pen
=
∑Nn−1

j=0

P{en|E
(n)
j }P{E(n)

j } (30)

where the Nn = 2n−1 mutually exclusive error events E(n)
j ,

with P
⋃Nn−1

j=0 E(n)
j

{ }
= 1. Each error event E(n)

j can be
associated with an (n 2 1)-dimensional vector e(n)

j , with
element e(n)

j,m equal to zero if the symbol at the mth step has
been correctly detected, one otherwise. It is convenient for
what follows to assume that e(n)

j is an (n 2 1)-dimensional
vector containing the binary representation of the number j.
Let us consider a simple example with n ¼ 4. In this case,
we have Nn ¼ 7, and e(4)

5 = [1, 0, 1]T represents the error
event that the first and the third symbols have been
incorrectly detected and the second symbol has been
correctly detected. To better understand our derivation of
P{en|E

(n)
j }, we also take n ¼ 4 for an example. P{e4|E

(4)
5 }

represents the error probability for the fourth symbol
conditioned on the error event E(4)

5 . P{en|E
(n)
j } can be

expressed by

P{en|E
(n)
j } = Q

�������
g

n|E(n)
j

√( )
(31)

where g
n|E(n)

j
denotes the SINR for nth detected symbol

conditioned on the error event E(n)
j , and the function Q(x) is

defined as Q(x) = (1/2)erfc(x/
��
2

√
). To derive the SINR, let

us consider the received vector rn[i] and the MMSE nulling
vector W n according to (7) as

rn[i] =
∑NT

l=n

(H )lsl[i] +
∑n−1

l=1

(H)l(sl[i] − ŝl[i]) + v[i]︸����������������︷︷����������������︸
ṽ

n|E(n)
j

[i]

W n = �Hn
�H

H
n + s2

v

s2
s

I

( )−1

(H)n

(32)
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where ṽ
n|E(n)

j
[i] denotes the equivalent noise vector associated

with the error event E(n)
j . It is shown that the errors in the

previous symbols results in an additional disturbance, which
can cause severe performance degradation. In order to
approximate the model, we assume the term ṽ

n|E(n)
j

[i] to be a
Gaussian r.v. with E{ṽ

n|E(n)
j

[i]} = 0 and

G
ṽ,n|E(n)

j
= E{ṽ

n|E(n)
j

[i]ṽ
n|E(n)

j
[i]H}

=
∑n−1

l=1

‖(H)l‖2E{|sl[i] − ŝl[i]|2} + s2
v

s2
s

( )
I (33)

Thus, the desired signal covariance matrix and the
interference-plus-noise covariance matrix for the nth
detection can be written as Rn

s = s2
s (H)n(H)H

n and

R
i,n|E(n)

j
= �Hn

�H
H
n + G

ṽ,n|E(n)
j

, respectively. Actually, the

interference-plus-noise covariance matrix is associated with
the error event and the equivalent noise power caused by
error propagation is increased. Therefore the output SINR
of the nth detected symbol conditioned on the error event
E(n)

j can be given as

g
n|E(n)

j
= W H

n Rn
s W n

W H
n R

i,n|E(n)
j

W n

(34)

Substituting (34) into (31), we can obtain the conditioned
error probability P{en|E

(n)
j }. Now consider the evaluation

of P{E(n)
j }, which can be written as

P{E(n)
j } = P{e(n)

j } = P{>n−1
m=1 e(n)

j,m} (35)

By using the well-known property of conditional probability
P{>N

m=1 Am} =
∏N

m−1 P{An|>m−1
k=1 Ak}, we obtain

P{>n−1
m=1 e(n)

j,m} =
∏n−1

m=1

P{e(n)
j,m|>m−1

k=1 e(n)
j,k }

= P{e(n)
j,n−1| >n−2

k=1 e(n)
j,k }

× P{e(n)
j,n−2|>

n−3
k=1 e(n)

j,k } . . .P{e(n)
j,1 } (36)

where the term P{e(n)
j,n−1|>

n−2
k=1 e(n)

j,k } represents the probability

of an error decision e(n)
j,n−1 = 1 or a correct decision e(n)

j,n−1 = 0
when detecting the (n 2 1)th symbol conditioned on the
detection if the first (n 2 2) symbols. By substituting (31)
and (36) into (30) and then substituting (30) into (29), we
finally can calculate the average BEP Pe as

Pe =
1

NT

∑NT

n=1

∑Nn−1

j=0

Q
�������
g

n|E(n)
j

√( )

× P{e(n)
j,n−1|>

n−2
k=1 e(n)

j,k }

× P{e(n)
j,n−2|>

n−3
k=1 e(n)

j,k } . . .P{e(n)
j,1 } (37)

It is worth noting that because the binary digits in the error
event vector represent the symbol error, the BEPs calculated
in (35) have to be converted from SEPs unless the
modulation scheme is binary phase-shift keying.
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5.2 BEP performance of the MB-SIC detector

Based on the above analysis, the simplest method is to extend
the analysis straightforwardly to our proposed MB-SIC
detector. By using (29) to calculate the BEPs
{P(l)

e |l = 1, . . . , L} for all branches, we may select the
branch with the minimum error probability as the optimum
one, which is expressed as

lopt = arg min
1≤l≤L

P(l)
e (38)

However, this straight method does not outline the
performance of the proposed MB-SIC detector as we
expected because the error probability P(l)

e in (38) is a
statistical average value of the bit error calculated by Q(.),
while the proposed MB-SIC detector selects the best
estimates according to the selection rules at every time
instant. Thus we have to build a further model to describe
the performance of the proposed detector (at least a lower
bound).

In this paper, we provide an approximate method to outline
the lower bound for the MB-SIC scheme. Based on (37), we
know that the BEP for each branch is an average of error
probabilities of NT substreams, which are calculated by
conditioning on the error events associated with previous
detected symbols. Now we extend the analysis in the
previous section from single branch to multiple branches in
an approximate way to provide an error bound. Let us
consider an extreme case that the MB structure is smart
enough to select the branch with the minimal BEP at every
transmit substream. That is, the error probabilities selected
are the minimum for detecting any symbol at any
cancellation stage. The lower bound, which we define as
MB lower bound (MBLB), can be written mathematically as

Pe =
1

NT

∑NT

n=1

P
(l′opt,n)
en

, l′opt,n = arg min
1≤l≤L

P(l)
en

(39)

where l′opt,n is the index of the branch with minimal error
probability for detecting the nth symbol, P(l)

en
denotes the

error probability for detecting the nth symbol in the lth
branch, which can be calculated by using (30) with the lth
ordering pattern. Note that as we mentioned in the previous
section, MBLB is also sensitive to the employed ordering
scheme.

6 Simulations

In this section, we assess the bit error rate (BER) performance
of the proposed scheme and the existing MIMO detection
schemes, namely, the ML detector, the linear MMSE
detector, the V-BLAST, the PIC and the proposed MB-SIC
algorithm. Here, we consider two channel models in the
simulation: the first one is i.i.d. random fading, whose
coefficients are taken from complex Gaussian random
variables with zero mean and unit variance, and the second
one is the 3 GPP spatial model (SCM) [25], which was
developed as a common reference for evaluating different
MIMO concepts in outdoor environments at a centre
frequency of 2 GHz and a system bandwidth of 5 MHz. We
define the SNR as SNR = 10 log10(NTs

2
s/s

2), where ss
2 is

the variance of the transmitted symbols and s2 is the noise
variance. In all experiments, the blocking fading channel
model is assumed.
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6.1 Non-adaptive detector

In these experiments, we average the experiments over 5000
runs and use packets with 100 symbols per stream employing
QPSK modulation. We first compare the BER performance
against SNR for our proposed detector by employing the
three candidate selection rules. As shown in Fig. 7, the
detector with the ML criterion outperforms the other criteria
while the channel information is known. The selection rule
can be chosen according to the different application
requirements. In our following simulations for the non-
adaptive detector, the ML criterion is the selection rule
because we assume that the channel information is perfectly
known.

Let us consider the proposed MB-SIC detector and the
existing algorithms in the i.i.d. random flat-fading model. In
Fig. 8, we evaluate the BER performance against SNR for
MIMO systems with NT = NR = 4 antennas. We compare
the proposed ordering algorithms with the optimal ordering
scheme described in the previous section. We also compare
the proposed MB-SIC detectors with different ordering
schemes against the existing linear MMSE detector, V-
BLAST, MMSE-PIC and ML detector. For our proposed

Fig. 7 BER against SNR performance comparison between the
candidate selection rules for our proposed detector (NT ¼ NR ¼ 4)

Fig. 8 BER against SNR performance comparison between the
proposed algorithm and the existing algorithms for MIMO spatial
multiplexing with QPSK and NT ¼ NR ¼ 4
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ordering schemes, we have to configure the number of
branches L. In this context, the maximum L is set to NT for
the PSP scheme because of the algorithm limitation. For the
FSB and the LPA schemes, we set L ¼ 10 considering
the tradeoff between computational complexity and the
performance. The performance of the proposed MB-SIC
detectors outperforms the linear MMSE, the V-BLAST and
the MMSE-PIC detectors. The plots also show that the
performance of the proposed detector with optimal ordering
scheme, which tests all NT! possible branches and selects
the most likely estimate, approaches the optimal ML
detector closely and the proposed detector with the FSB
and the LPA schemes performs as well as that with optimal
ordering.

As depicted in Fig. 9, the BER performance against SNR is
investigated when the MIMO system with NT = NR = 4
antennas is working in the 3 GPP SCM enviroment. We use
the MATLAB implementation of SCM developed by Salo
et al. [26]. The plots show a similar result as in Fig. 8. The
performance of the proposed detector with the optimal
ordering scheme approaches the optimal ML detector, and
the FSB scheme is slightly better than the LPA scheme.

Fig. 9 BER against SNR performance comparison between the
proposed algorithm and the existing algorithms for MIMO spatial
multiplexing using SCM with QPSK and NT ¼ NR ¼ 4

Fig. 10 BER against SNR performance comparison between the
proposed algorithm and the existing algorithms for MIMO spatial
multiplexing with 16-QAM and NT ¼ NR ¼ 4
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In Fig. 10, the BER performance against SNR is investigated
when the MIMO system here NT = NR = 4 antennas and 16-
QAM. The plots show that the performance of the proposed
detector with the optimal ordering scheme approaches the
SD scheme, and the FSB scheme is slightly better than the
LPA scheme. Note that our proposed scheme has lower
complexity at the lower and moderate SNR level, which
would benefit coded system to some extent.

6.2 Adaptive detector

Fig. 11 shows the BER against SNR performance of the
proposed detector using an adaptive implementation based
on the RLS algorithm. In this experiment, we employ 50
training symbols and 500 information symbols per stream
in one packet and the results are averaged over 5000 runs.
The forgetting factor l is 0.998. It is shown that the
performance of the adaptive receivers with perfect channel
estimation matches that of their non-adaptive counterparts

Fig. 11 BER against SNR performance for adaptive
implementations of the proposed algorithm and the existing
algorithms for MIMO spatial multiplexing, where A and NA
denote adaptive and non-adaptive, respectively, and CE and PCE
denote channel esitmation and perfect channel estimation,
respectively. NT ¼ NR ¼ 4, l ¼ 0.998

Fig. 12 BER performance comparison between the simulation
results and the analytical results for both MMSE-VBLAST and our
proposed MB-SIC algorithm (NT ¼ NR ¼ 4)
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with much lower complexity. We also can find that the
proposed algorithm with LS channel estimation is slightly
worse than perfect channel estimation, outperforming the
proposed algorithm without channel estimation and
V-BLAST receiver.

6.3 Analytical results

The BER performance comparision between the simulation
results and the analytical results is shown in Fig. 12. We
investigate the MMSE V-BLAST algorithm, the MB-SIC
algorithms with PSP, FSB and the optimum ordering
schemes in the MIMO system with NT = NR = 4. The plots
depict that the analytical BER performance of the MMSE
V-BLAST algorithm is a perfect match with the simulation
result and MBLBs with the ordering schemes bound the
performance of MB-SIC with the corresponding ordering
schemes, respectively. Although there are gaps between
the simulation results and MBLB because of the
approximate method we employ, it makes sense that the
MBLB is highly related with the ordering scheme.
Comparing the MBLBs, we can find that the FSB, which
has ten branches, performs significantly better than the four-
branch PSP scheme and slightly worse than the optimum
ordering scheme which has 24 branches, which matches the
simulation results.

7 Conclusions

We presented a novel MMSE SIC detector based on multiple
parallel branches for a MIMO spatial multiplexing system.
The proposed detection structure is equipped with SICs on
several parallel branches which employ different ordering
patterns. Namely, each branch produces a symbol estimate
vector by exploiting a certain ordering pattern. Thus, there is
a group of symbol estimate vectors at the end of the MB
structure. Based on different application requirements,
different criteria, such as ML, MMSE and CM, can be used
as selection rules to select the branch with the best
performance. We also proposed three sub-optimal ordering
schemes together with the optimal ordering scheme.
Furthermore, we developed an adaptive implementation for
our proposed MB-SIC receiver with channel estimation based
on the RLS algorithm. The proposed MMSE-MB-SIC
detector, which achieves higher detection diversity, was
compared with several existing detectors in the literature via
computer simulations and was shown to approach the optimal
ML detector while reducing the complexity significantly.
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