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Abstract: A space–time adaptive reduced-rank processor for interference mitigation in
DS-CDMA systems is proposed based on interpolated finite impulse response filters with time-
varying interpolators. The proposed space–time processor allows a significant reduction in the
number of estimation elements, thereby increasing the convergence and tracking performance of
the estimation algorithms. In order to compute the parameters of the proposed space–time pro-
cessor, a least squares design is presented and computationally efficient recursive least-squares
(RLS) algorithms are developed for estimating the parameters of both reduced-rank receiver and
interpolator. A linear and successive interference cancellation space–time receivers based on the
proposed reduced-rank processor for mitigating multi-access and intersymbol interference in an
uplink scenario are proposed. An analysis of the convergence properties of the proposed space–
time processor is carried out and analytical expressions are derived for predicting the mean
squared error performance of the proposed RLS algorithm. Simulation results show that the pro-
posed reduced-rank space–time processor and RLS algorithms outperform existing techniques at
lower complexity.
1 Introduction

In DS-CDMA systems, the incorporation of multiuser recei-
vers in conjunction with antenna arrays can provide an
enhanced performance for multi-access interference
(MAI) and intersymbol interference (ISI) mitigation [1–
3]. This requires the joint processing of the data received
at an antenna array with elements closely spaced, which
leads to the combination of multiuser detection and beam-
forming [4]. Multiuser detection exploits the temporal struc-
ture, whereas beamforming exploits the spatial structure of
the interference. The literature presents several sub-optimal
multiuser detectors capable of providing cost-effective
interference mitigation: the linear [5] and decision feedback
[6] receivers, the successive interference canceller (SIC) [7]
and the parallel interference canceller (PIC) [8]. Among
these detection strategies, interference cancellation (IC)
techniques such as SIC and PIC are relatively simple and
well suited for the uplink of DS-CDMA systems. At each
stage, the PIC simultaneously regenerates and cancels
from each user the MAI due to other users based on the
detected symbols in the preceding stage. The SIC sequen-
tially removes the MAI originated from the stronger users
before detecting the weaker ones and presents some per-
formance advantages over PIC and linear detectors [9,
10]. However, the design of these detectors with antenna
arrays for combined multiuser detection and beamforming
presents a major challenge due to the increased number of
parameters to be estimated.
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In order to estimate the parameters of space–time recei-
vers in dynamic environments, the designer may resort to
adaptive estimation algorithms that can track the highly
dynamic conditions of the channels and usually have a
good trade-off between performance and computational
complexity. However, when the number of elements for
estimation in the receiver is large, the task becomes rather
challenging and one has to cope with an increased complex-
ity and poor convergence performance. This is because the
convergence speed of adaptive estimators are governed by
the number of adaptive elements used in the estimation
process. Reduced-rank interference suppression for
DS-CDMA [11–18] is motivated by situations where the
number of elements in the receiver is large and it is desir-
able to work with fewer parameters for complexity and con-
vergence reasons. Several reduced-rank methods have been
reported in the last decade, namely, the subspace detectors
[11–13], the multistage Wiener filter (MWF) of Goldstein
et al. in [14] and the recent adaptive finite impulse response
(FIR) filters with adaptive interpolators [18]. The major
problem with the MWF and eigen-decomposition tech-
niques is that they rely on the full-rank covariance matrix
R as a starting point for the subspace decomposition. The
estimation process of a full-rank R with time averages can
be problematic and experience tracking problems in
dynamic situations.

In this work, we propose a reduced-rank space–time pro-
cessor based on the recently reported joint adaptive interp-
olator and reduced-rank scheme [18] and derive a
computationally efficient recursive least-squares (RLS)
algorithm for parameter estimation. In contrast to the
MWF, the proposed processor uses a projection based on
interpolation and decimation operations and skips the pro-
cessing stage with R. The proposed scheme directly esti-
mates (after the decimation) through time averages a
reduced-rank covariance matrix, leading to convergence
and tracking performance advantages over the MWF. An
analysis of the global convergence properties of the
IET Commun., 2008, 2, (2), pp. 388–397



proposed joint adaptive interpolator and reduced-rank esti-
mation scheme, which is not treated in [18], is carried out
and an evaluation of the computational complexity of the
proposed space–time processor is presented. An analysis
of the convergence properties of the proposed space–time
processor is also conducted and analytical expressions are
devised for predicting the mean squared error (MSE) per-
formance of the proposed reduced-rank RLS algorithm.
The second contribution of this paper is the proposal of
linear and SIC antenna-array receivers designed with the
proposed space–time processor and a comparative analysis
of these receiver structures with schemes based on the full-
rank [3] and the MWF [14–16] approaches.

This work is organised as follows. Section 2 describes an
asynchronous space–time DS-CDMA system model.
Section 3 presents the proposed space–time reduced-rank
processor. The proposed space–time reduced-rank linear
and SIC multiuser receivers are presented in Section 4,
whereas Section 5 is devoted to the least-squares (LS)
design of the parameter estimators. An RLS algorithm for
the proposed processor is presented in Section 6 along
with a convergence analysis of the reduced-rank algorithm
and an evaluation of its computational complexity.
Section 7 presents and discusses the simulation results,
whereas Section 8 gives the conclusions.

2 DS-CDMA system model

Consider the uplink of an asynchronous binary phase shift
keying DS-CDMA system with K users, N binary chips
per symbol and Lp paths. The transmitted signal for the
kth user is

xk(t) ¼ Ak

X1
i¼�1

bk(i)sk(t � iT ) (1)

where bk(i) [ f+1g is the ith symbol for user k, the real-
valued spreading waveform and the amplitude associated
with user k are sk(t) and Ak, respectively. The spreading
waveforms are given by sk(t) ¼

P
i¼1
N (ak)(i)f(t2 iTc),

where ak(i) [ {+1=
ffiffiffiffi
N

p
}, f(t) is the chip waveform, Tc is

the chip duration and N ¼ T/Tc is the processing gain.
Assuming that the receiver equipped with linear antenna
arrays is synchronised with the main path and identical
amplitude fading is experienced by all antenna elements
for each path of each user signal (no antenna diversity),
the coherently demodulated composite received signal at
the lth antenna element is

rl(t) ¼
XK
k¼1

XLp�1

m¼0

hk,m(t)e jQk,mxk(t � tk,m � dk) þ n(t) (2)

where uk,m ¼ 2p(l2 1)(d/l)cos(fk,m) the delay shift of the
mth path of the kth user, fk,m is the direction of arrival
(DoA) of the signal of user k and its mth path, d ¼ l/2 is
the spacing between sensors and l the carrier wavelength.
The channel coefficient associated with the mth path and
the kth user is hk,m (t), dk [ f0, 1, . . . , N2 1g is the asyn-
chronism of the kth user and tk,m is the delay of the mth
path of the kth user, which is assumed to be a multiple of
the chip rate. We assume that the channel is constant
during each symbol interval, the spreading codes are
repeated from symbol to symbol, and the receiver with a
J-element linear antenna array is synchronised with the
main path. The complex envelope of the received wave-
forms after filtering by a chip-pulse matched filter and
sampled at chip rate is collected and organised in a
JM � 1 observation vector corresponding to the ith
IET Commun., Vol. 2, No. 2, February 2008
signalling interval

r(i) ¼
XK
k¼1

Akbk(i� 1) �FHk(i� 1) þ Akbk(i)FHk(i)

where M ¼ Nþ Lp 2 1, the complex Gaussian noise vector
is n(i) ¼ [n1(i) . . . nJM(i)]T with E[n(i)nH(i)] ¼ s2I, (.)T

and (.)H denote transpose and Hermitian transpose, respect-
ively, and E[.] stands for expected value. The space–time
convolution matrices Fk and F k have dimension
JM � JLp and contain matrices with special structures on
their main diagonal, that is

F k ¼ diag(Ck , Ck , . . . , Ck) and

F k ¼ diag(Ck , Ck , . . . , Ck)
(4)

The columns of the M � Lp matrix Ck contain one-chip
shifted versions of segments of the signature sequence
sk ¼ [ak(1) ... ak(N)]T of user k given by

s
dk
k ¼ [ck(1) � � � ck(N )]T

¼ [ 0 � � � 0|fflffl{zfflffl}
dk

ak(1) � � � ak(N � dk þ 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N�dk

]T (5)

where dk is the shift in chips that describes the system asyn-
chronism. The structure of the M � Lp matrix Ck is
described by

Ck ¼

ck(1) 0

..

. . .
.

ck(1)

ck(N ) ..
.

0 . .
.

ck(N)

2
6666664

3
7777775 (6)

The structure of Ck is analogous to Ck but employs the
segments of sk given by

�s
dk
k ¼ [ ak(N � dk þ 1) � � � ak(N)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dk

0 � � � 0|fflffl{zfflffl}
N�dk

] (7)

The corresponding spatial signatures are

p
dk
k (i� 1) ¼ F kHk(i� 1) and

p
dk
k (i� 1) ¼ F kHk(i� 1)

(8)

The JLp � 1 space–time channel vector is given by

Hk(i) ¼ [hT
k,0(i)jhT

k,1(i)j � � � jhT
k,J�1(i)]T (9)

where hk,l(i) ¼ [hk,0
(l ) (i)...hk, Lp21

(i)]T is the Lp � 1 vector
with the channel gains of user k at sensor l. The spatial chan-
nels assume that the amplitudes do not vary across antenna
elements; however, the directions of arrival are different for
each user and path and the signals experience a phase shift
[4, 14].

3 Proposed space–time reduced-rank processor

The principles of the proposed space–time adaptive
reduced-rank (STAR) processor structure are detailed
here. Fig. 1 shows the STAR processor, where an interp-
olator and a reduced-rank receiver that are time varying
are employed. The received vector r(i) ¼ [r0

(i)
� � � rJM21

(i) ]T

is filtered by the interpolator filter vk(i) ¼ [vk,0
(i) . . . vk,

NI21
(i) ]T, yielding the interpolated received vector rk(i) with

JM samples. The JM � 1 vector rk(i) is then projected
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Fig. 1 Proposed STAR processor
onto a JM/L � 1-dimensional vector r̄k(i). This corresponds
to removing L2 1 samples of rk(i) of each set of L consecu-
tive ones. Then the inner product of r̄k(i) with the parameter
vector wk(i) ¼ [wk,0

(i)
� � � wk,JM/L21]T is computed to obtain

the estimate xk(i) before the slicer yields the detected
symbol b̂k(i), as depicted in Fig. 1.

The vector r̄k(i) ¼ Drk(i) is obtained with the aid of the
JM/L � M projection matrix D that is mathematically
equivalent to uniform decimation on rk (i). The STAR pro-
cessor with decimation factor L can be designed by choos-
ing D as

D ¼

1 0 0 0 0 . . . 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . 0|fflfflfflfflffl{zfflfflfflfflffl}
(m�1)L zeros

1 0 . . . 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 . . . 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(JM=L�1)L zeros

1 0 . . . 0|fflfflfflfflffl{zfflfflfflfflffl}
(L�1) zeros

2
66666666664

3
77777777775
(10)

where m ¼ 1, . . . , JM/L is the mth row. The strategy to
design the interpolator and the receiver is to express the
symbol estimate xk(i) ¼ wk(i)r̄k(i) as a function of wk(i)
and vk(i)

xk(i) ¼ w�
0vHk _r0 þ w�

1vHk _r1 þ � � � þ w�
JM=L�1vHk _rJM=L�1

xk(i) ¼ v
H
k (i)[_r

(i)
0 j � � � j_r

(i)
JM=L�1]w�

k (i)

¼ vHk (i)<(i)w�
k (i) ¼ vHk (i)uk(i) (11)

where uk(i) ¼ R(i)wk
�(i) is a NI � 1 vector, (.)� denotes

complex conjugate, the JM/L coefficients of wk(i) and the
NI elements of vk(i) are complex and ṙs(i) is a length NI

segment of the received vector r(i) beginning at rs�L(i) and

<(i) ¼

r
(i)
0 r

(i)
L � � � r

(i)
(JM=L�1)L

..

. ..
. . .

. ..
.

r
(i)
NI�1 r

(i)
LþNI�1 � � � r

(i)
(JM=L�1)LþNI�1

2
664

3
775 (12)

4 Space–time reduced-rank receivers

The combination of multiuser detection and beamforming
can provide an enhanced performance for MAI and ISI sup-
pression [1–3]. This requires the joint processing of the data
received at an antenna array with elements closely spaced,
leading to an increase in the number of parameters to be
estimated. The problem of dealing with a high number of
estimation elements will be addressed with the STAR pro-
cessor. The aim of this section is to detail the proposed
space–time linear and SIC receivers that are designed
with the proposed STAR processor.
390
4.1 Space–time linear receivers

The STAR linear receiver design employs a FIR filter wk(i)
with JM/L elements to yield an estimate of the desired
symbol

b̂k(i) ¼ sgn(Re[wH
k (i)rk(i)]) (13)

where Re(.) selects the real part, sgn(.) the signum function
and r̄k(i) the JM/L reduced-rank received vector provided
by the STAR processor.

4.2 Space–time SIC receivers

In this section, we present a space–time SIC receiver based
on the proposed STAR processor. The goal of this structure
is to exploit IC to further enhance the capacity of the STAR
processor as compared with a linear detector. The STAR–
SIC receiver detects users in a multistage fashion using a
STAR linear receiver front end. To this end, the proposed
SIC scheme requires the ordering of the users and the esti-
mation of their channels and amplitudes. The detector
employs a bank of space–time RAKE receivers to
provide the receiver with estimates of the power of the
users, as shown in Fig. 2. At each symbol, the SIC algorithm
[9, 10] selects users according to their power (decreasing
power order) and then sequentially regenerates and
cancels the interference contribution of every user at each
stage. The detected symbols are described by

b̂k(i) ¼ sgn(Re[wH
k (i)yk(i)]) (14)

where the JM/L � 1 vector ȳ1(i) ¼ D(V1(i)r(i)) ¼ r̄1(i)
corresponds to user k ¼ 1. Note that in this context, the
first user denotes the one with the highest power level and
does not benefit from IC. The JM � JM matrix Vk(i) is a
convolution matrix with one-chip shifted versions of the
NI � 1 interpolator vk(i) of user k, the JM/L � 1
reduced-rank received vector at each SIC stage is given by

yk(i) ¼ D(V k(i)y
(k)(i)), k ¼ 2, . . . , K (15)

where

y(k)(i) ¼ r(i) �
Xk�1

m¼1

Âm(i� 1)b̂m(i� 1) �̂pdm
m (i� 1)

 

þ Âm(i)b̂m(i)p̂dmm (i)
�

(16)

is the JM � 1 received signal at the kth stage, Âm the mth
user amplitude estimate and the JM � 1 spatial signature
estimates are �̂pdmm (i� 1) ¼ F kĤj(i) and p̂dm

m (i) ¼ F kĤk(i).
In order to compute the spatial signature estimates and
carry out IC, the designer has to estimate the channels and
amplitudes of the users. This important task is considered
in the next sections.
IET Commun., Vol. 2, No. 2, February 2008



Fig. 2 Proposed space-time adaptive SIC receiver
4.2.1 Space–time channel estimation: Unlike the
single-antenna existing approaches [19], the space–time
channel estimation for the SIC receiver exploits the IC,
resulting in enhanced channel estimates for users that
benefit from the SIC scheme. In order to describe the
channel estimator, we define the matrix ~Ck with one-chip
shifted versions of the signature sequence for user k and
the block diagonal matrix ~F k given by

~Ck ¼

ak(1) 0

..

. . .
.

ak(1)

ak(N) . .
. ..

.

0 . .
.

ak(N )

2
6666664

3
7777775,

~F ¼

~Ck . . . 0

..

. . .
. ..

.

0 . . . ~Ck

2
64

3
75

(17)

Note that the above matrix ~Ck has a structure similar to
the one of ~Ck and equals Ck defined in (4) for dk ¼ 0. Let
us also define an 2M � 1-dimensional vector that corre-
sponds to the received data for two consecutive symbol
intervals at sensor j

rcj (i) ¼
r(i)

r(iþ 1)

� �

¼
XK
k¼1

Ak(i� 1)bk(i� 1)
Ck

0M

" #
hk,j(i� 1)

þ Ak(i)bk(i)

0dk
~Ck

0M�dk

2
64

3
75hk,j(i)

þ Ak(iþ 1)bk(iþ 1)
0M

Ck

� �
hk,j(iþ 1) þ nc(i) (18)

In order to estimate the channel hk,j(i) at each sensor, we
consider the following optimization

ĥk,j(i) ¼ arg min
ĥk,j

Xi
l¼1

ai�l
kbk(l)

0dk
~Ck

0M�dk

2
64

3
75ĥk(i) � y

c
k,j(l)k

2

(19)

where bk is the desired signal provided by a pilot channel
and yk

c the 2M � 1 received signal at two consecutive
IET Commun., Vol. 2, No. 2, February 2008
symbol intervals of sensor j and stage k expressed as

y
c
k,j(i) ¼ r

c
j (i) �

Xk�1

m¼1

Âm(i� 1)b̂m(i� 1)
Cm

0M

" #
ĥm,j(i� 1)

 

þ Âm(i)b̂m(i)

0dm
~Cm

0M�dm

2
64

3
75ĥm,j(i)

þ Âm(iþ 1)b̂m(iþ 1)
0M

Cm

� �
ĥm,j(iþ 1)

�
(20)

The solution to the optimisation problem in (19) is given
by

ĥk,j(i) ¼

0dk
~Ck

0M�dk

2
64

3
75

H
0dk
~Ck

0M�dk

2
64

3
75

0
B@

1
CA

�1

dk,j(i) (21)

where

dk,j(i) ¼
Xi
l¼1

ai�1

0dk
~C

0M�dk

2
64

3
75

H

yck,j(l)b
�
K (l) (22)

The JLp � 1 space–time channel vector estimate Ĥk(i) is
constructed with the channel estimates of each sensor ĥk,j

(i) as described by

Ĥk(i) ¼ [ĥT
k,1(i)ĥT

k,2(i) . . . ĥT
k,J (i)]T (23)

The JM � 1 spatial signature estimates are then formed
according to

�̂p
dk
k ¼ F kĤk(i) and p̂

dk
k ¼ F kĤk(i) (24)

Note that we assume for the channel estimation method that
the amplitude is absorbed into the cost function since it is
obtained from a similar optimisation problem. This does
not affect the performance of the channel estimators as ver-
ified in our studies and reported in [10]. In what follows, we
address the amplitude estimation task.

4.2.2 Amplitude estimation: The amplitude has to be
estimated at the receiver in order to provide this information
for different tasks such as IC and power control.
Interference cancellers such as SIC need some form of
amplitude estimation in order to proceed with the cancella-
tion of the associated users/interferers. This has been
reported in [7, 9, 10]. To estimate the amplitudes of the
associated user signals, we describe an algorithm that
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employs the following criterion

Âk,j(i) ¼ arg min
Ak,j

E[kAk,j(i)b̂k(i) ~̂pk,j(i) � y(k)(i)k2] (25)

where the signature at each sensor j is

~̂pk,j(i) ¼

0
~Ck

0M�dk

2
4

3
5ĥk,j(i)

Because the amplitude is identical at each sensor, our
studies reveal that it suffices to carry out the estimation pro-
cedure for a single sensor. Thus, we describe a stochastic
gradient algorithm to estimate the amplitude of user k

Âk(iþ 1) ¼ Âk(i) � m(Âk(i) ~̂p
H
k,j(i) ~̂pk,j(i)

� b�k (i)y(k)H (i) ~̂pk,j(i)) (26)

5 LS design for the STAR processor

In this section, we describe the parameter estimation pro-
cedure for the STAR processor. The exponentially weighted
LS design of wk and vk considers the cost function given by

J
(wk ,vk )

LS ¼
Xi
l¼1

ai�1
jbk(l) � vHk <(l)w�

k j
2 (27)

By fixing vk, taking the gradient of (27) with respect to wk

and equating it to a null vector, the interpolated filter/recei-
ver weight vector that minimises (27) is

wk(i) ¼ g(vk) ¼ R
�1

k (i)pk(i) (28)

where r̄k(i) ¼ R
T(i)vk

�(i), p̄k(i) ¼
P

l¼1
i ai21bk

�(l)r̄k(l) and

R̄k(i) ¼
P

l¼1
i ai2lr̄k(l )r̄k

H(l). For SIC receivers, the LS
design employs ȳk instead of r̄k. By fixing wk, taking the gra-
dient of (27) with respect to vk and equating it to a null
vector, the interpolator weight vector that minimises (27) is

vk(i) ¼ b(wk) ¼ R
�1

uk
(i)puk

(i) (29)

where uk(i) ¼ R(i)wk
�(i), p̄uk

(i) ¼
P

l¼1
i ai21bk

�(l)uk(l ) and
R̄uk

(i) ¼
P

l¼1
i ai21uk(l)uk

H(l ). The associated sum of error
squares (SES) expressions are

J (vk) ¼ JLS(g(vk), vk) ¼ 1b � p
H
k (i)R

�1

j (i)pk(i) (30)

JLS(wk , b(wk)) ¼ 1b � pHuk
(i)R�1

uk
(i)puk

(i) (31)

where 1b ¼
P

l¼1
i ai2l

jb(l)j2 is the energy of the desired
response. This structure trades-off a full-rank matrix inver-
sion against the inversion of two matrices with rank JM/L
and NI. Note that (28) and (29) are not closed-form solutions
for wk and vk since (28) is a function of vk and (29) depends
on wk and it is necessary to iterate (28) and (29) with an
initial guess to obtain a solution. An iterative LS solution
can be obtained via adaptive algorithms and a discussion
of the convergence properties of the method is given in
the appendix.

6 Adaptive RLS algorithms and convergence
analysis

Here, we present RLS algorithms [20] that jointly estimate
the parameters of the reduced rank and interpolator filters of
the proposed STAR processor, depicted in Fig. 1, based on
the LS criterion presented in the previous section. We
provide a convergence analysis of the proposed RLS
392
algorithms and devise analytical expressions for predicting
the MSE achieved by the processor. The complexity of the
STAR processor equipped with RLS algorithms is then
compared with existing methods.

6.1 RLS algorithms

To avoid the inversion of R̄k(i) required in (28), we use the
matrix inversion lemma (MIL) [20], define Pk(i) ¼ R̄k

21(i)
and the gain vector Gk(i)

Gk(i) ¼
a�1Pk(i� 1)rk(i)

1 þ a�1rHk (i)Pk(i� 1)rk(i)
(32)

and thus we can rewrite Pk(i) as

Pk(i) ¼ a�1Pk(i� 1) � a�1Gk(i)r
H
k (i)Pk(i� 1) (33)

By rearranging (32) we have Gk(i) ¼ a21

Pk(i2 1)r̄k(i) 2 a21Gk(i)2̄k
H(i)Pk(i2 1)r̄k(i) ¼ Pk(i)r̄k(i).

Using (28) and the recursion pk(i) ¼ apk(i2 1) þ r̄k(i)bk
�(i)

we obtain

wk(i) ¼ R
�1

k (i)p̂k(i)

¼ aPk(i)pk(i� 1) þ Pk(i)rk(i)b�k (i) (34)

Substituting (33) into (34) yields

wk(i) ¼ wk(i� 1) þ Gk(i)j
�
k (i) (35)

where the a priori estimation error is described by
jk(i) ¼ bk(i) 2 wk

H(i2 l)r̄k(i). Similar recursions for the
interpolator are devised by using (29). To avoid the inver-
sion of R̄uk

we use the MIL again, define Puk
(i) ¼ R̄uk

(i)
and Guk

(i) as

Guk
(i) ¼

a�1Puk
(i� 1)uk(i)

1 þ a�1uH
k (i)Puk

(i� 1)uk(i)
(36)

and thus we can rewrite Puk
(i) as

Puk
(i) ¼ a�1Puk

(i� 1) � a�1Guk
(i)uH

k (i)Puk
(i� 1) (37)

By proceeding in a similar approach to obtain (35) we arrive
at

vk(i) ¼ vk(i� 1) þ GV k
(i)j�k (i) (38)

A summary of the proposed RLS algorithms is given in
Table 1.

Table 1: RLS algorithms for the design of proposed
STAR processor

Initialise wk(0) ¼ [0 � � � 0]T and vk(0) ¼ [1 0 � � � 0]T

Choose parameters L, NI and a

for each time instant (i) do

Compute JM � 1 vector rk(i) and NI � 1 vector uk(i)

Obtain JM/L � 1 vector r̄k(i) ¼ Drk(i)

Compute JM/L � JM/L matrix Pk(i) and JM � 1 vector Gk(i)

Calculate NI � NI matrix Puk
(i) and NI � 1 vector Guk

(i)

Compute vk(i) ¼ vk(i2 1)þGvk
(i)jk

�(i)

Compute wk(i) ¼ wk(i2 1)þGk(i)jk
�(i)

Reduced-rank estimate: xk(i) ¼ wk
H(i)r̄k(i)
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6.2 Convergence analysis

This section is devoted to the MSE analysis of the proposed
RLS algorithms. Even though this work focuses on asyn-
chronous systems, it is very difficult to analyse these estima-
tors when the input vectors are statistically dependent. For
this reason and in order to provide substantial insight with
respect to the reduced-rank method and processor, our
analysis deals with synchronous DS-CDMA systems [1]
(dk ¼ 0 for k ¼ 1, . . . , K ) and exploits the so-called
Independence Theory [1, 20].

To proceed, let us drop the user k index for ease of pres-
entation and define the tap error vectors ew(i) and ev(i) at
time index (i)

ew(i) ¼ w(i) � wopt, ev(i) ¼ v(i) � vopt (39)

where wopt and vopt are the optimum tap vectors that achieve
the SES for the STAR structure. Because of the unique
feature of the joint optimisation of w(i) and v(i), outlined
in the appendix, it suffices to study the convergence of
only one of the parameters since they will converge to the
same solution. By using a similar analysis to [20] and repla-
cing the expected value operator with time averages, let us
express the weight-error vector of the reduced-rank solution

ew(i) ¼ w(i) � wopt ¼
�̂R
�1

(i)
Xi
l¼1

r(l)e�o(l) (40)

Using the definition for the weight-error correlation
matrix K(i) ¼ E[ew(i)ew

H(i)] [20] we have

K(i) ¼ E �̂R
�1

(i)
Xi
l¼1

Xi
j¼1

r(l)e�o(l)eo(j)r
H (j) �̂R

�1
(i)

" #
(41)

Assuming that eo(i) is taken from a zero-mean Gaussian
process with variance s2, we have

E[eo(l)e�o(j)] ¼
s2, l ¼ j

0, l = j

�

and

K(i) ¼ s2E �̂R
�1

(i)
Xi
l¼1

Xi
j¼1

r(l)rH (j) �̂R
�1

(i)

" #

¼ s2E[ �̂R
�1

(i)] (42)

By invoking the independence theory and using the fact

that the estimate of the covariance matrix given by �̂R
�1

(i)
is described by a complex Wishart distribution [20,
Section 13.6], the expected value of the time-averaged esti-

mate �̂R
�1

(i) is exactly

E[ �̂R
�1

(i)] ¼
1

i� JM=L� 1
R
�1

, i > JM=Lþ 1 (43)

where R̄21 is the theoretical reduced-rank covariance
matrix and thus

K(i) ¼
s2R

�1

i�M=L� 1
, i > JM=Lþ 1 (44)

By considering the a priori estimation error j(i) as

j(i) ¼ eo(i) � eHw (i� 1)r(i) (45)
IET Commun., Vol. 2, No. 2, February 2008
and expressing its mean-squared value we have

J 0(i) ¼ E[jj(i)j2]

¼ E[jeo(i)j
2] þ E[rH (i)ew(i� 1)eHw (i� 1)r(i)]

� E[eHw (i� 1)r(i)e�o(i)] � E[eo(i)r
H (i)ew(i� 1)] (46)

By exploiting the fact that the measurement eo(i) is zero
mean with variance s2, the statistical independence
between the elements in the third and fourth terms of the
above equation, we may simplify the results in (46) and
express the MSE of the proposed RLS algorithm as

J
0(i) ¼ s2

þ tr[RK(i)] ¼ s2
þ

s2
JM=L

i� JM=L� 1
,

i > JM=Lþ 1

(47)

The above result shows that the learning curve of the RLS
algorithm with the STAR structure converges in about
2JM/L iterations, in contrast to the RLS with the full-rank
scheme, that requires about 2JM iterations. This means
that the proposed scheme converges L times faster than
the full-rank approach with RLS techniques. Another obser-
vation from (47) is that as i increases the excess MSE tends
to zero (for a ¼ 1) and it is independent from the eigen-

value spread of the matrix �̂R
�1

(i).

6.3 Computational complexity: Here, we illustrate the
computational complexity of the proposed structure and
algorithms and compare it with existing RLS algorithms,
as shown in Table 2. The STAR processor trades-off a com-
putational complexity of O((JM )2) required by the full-rank
RLS against two RLS algorithms operating in parallel, with
complexity O((JM/L)2) and O(NI

2). If the designer chooses
a small NI and the decimation factor L � 2 then the com-
plexity can be greatly reduced. Note that the MWF tech-
nique has a complexity O(DJM

2
), where the variable

dimension of the vectors JM ¼ JM � d varies according
to the orthogonal decomposition and the rank d ¼ 1, . . . , D.

In Fig. 3, we depict the curves that describe the compu-
tational complexity in terms of the arithmetic operations
(additions and multiplications) as a function of the
number of parameters JM for Lp ¼ 9 and D ¼ 4. The
curves indicate a significant computational advantage of
the STAR over the full-rank design. In comparison with
the existing MWF reduced-rank technique, the proposed
STAR processor is also substantially less complex and
more flexible in all situations since the designer can
choose the decimation factor L, allowing variable complex-
ity requirements.

Table 2: Computational complexity of RLS adaptation
algorithms

Number of operations per symbol

Algorithm Additions Multiplications

Full-rank 3(JM2 1)2 6(JM )2

þ(JM)2þ 2JM þ2JMþ 2

STAR 3 JM
L � 1

� 	2
þ3(NI � 1)2 6 JM

L

� 	2
þ6N2

I

þ JM
L � 1

� 	
NI þ JM

L NI

þNIJM þ JM
L

� 	2
þ3 JM

L

þN2
I þ 2 JM

L þ 2NI þNIþ 2

MWF D(4(JM � 1)2 þ 2JM) D(4JM
2
þ 2JM þ 3)
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7 Simulations

In this section, we evaluate the analytical results developed
in Section 6.2 for the STAR processor and RLS algorithms.
We also assess the bit-error rate (BER) performance of the
STAR system with J ¼ 1 and 3 antenna elements and
compare it with the full-rank [3] (without and with known
channels and DoAs) and the MWF [16] with antenna-array
schemes using the proposed linear and SIC detectors. The
full-rank receiver with known channels and DoAs corre-
sponds to the minimum MSE receiver with the filter con-
structed with the effective signature sequences and the
noise variance. Note that the work in [17] considers differ-
ent versions of the original MWF [14] with detectors incor-
porating diversity, while here we consider the space–time
MWF scheme of [16] and extend it to a SIC structure. In
our comparisons, it should be remarked that we selected
computational efficient versions of the MWF which are
equivalent to RLS algorithms, as reported in [15]. Thus
the comparison involves algorithms of the same type for
fairness.

The DS-CDMA system employs Gold sequences of
length N ¼ 31 and all channels assume that Lp ¼ 9 as an
upper bound. Another important issue in our studies is the
interpolator filter vk design. We have conducted exper-
iments in order to obtain the most adequate dimension for
vk(i), with values ranging from NI ¼ 3 to 6 (note that for
NI , 3 the new scheme did not perform well and using
NI , 6 was unnecessary). The results for a wide range of
scenarios indicate that performance is not sensitive to an
increase in the number of taps in vk(i). This is because the
reduced-rank projection based on the combined use of an
adaptive interpolator and an adaptive reduced-rank filter is
not able to compensate for the decimation with only 1 or
2 elements in the interpolator. When the interpolator size
becomes reasonably large (greater than 6), there is no
improved modelling and the adaptation becomes slower in
the proposed subspace projection. Thus, for this reason
and to keep the complexity low, we selected NI ¼ 3 for
the remaining experiments.

7.1 MSE convergence performance: analytical
results

Here, we verify that the results (47) given in Section 6.2 on
convergence analysis of the STAR processor can provide a

Fig. 3 Complexity in terms of arithmetic operation against the
number of received samples (JM) for analysed processors
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means of estimating its MSE performance. The steady-state
MSE between the desired and the estimated symbol by the
space–time processor with linear receivers obtained
through simulation is compared with those computed with
the expressions derived in Section 6.2. To illustrate the use-
fulness of our analysis, we carried out experiments, where
the channels have three paths with random complex gains,
are normalised to unit power, the system is made synchro-
nous (dk ¼ 0 for k ¼ 1, . . . , K ), the DoAs are uniformly dis-
tributed in a sector with 1208, the RLS algorithms use a ¼ 1
and the spacing between paths is obtained from a discrete
uniform random variable between 1 and 3 chips for each
run in a scenario with perfect power control. The exper-
iments are averaged over 1000 independent runs and over
the user population.

The results, shown in Fig. 4 for J ¼ 1 and 3, indicate that
the analytical results closely match those obtained through
simulation upon convergence, confirming the validity of
our analysis. Specifically, we verify that the use of
antenna arrays (J ¼ 3) can significantly improve the MSE
performance as compared with the single-antenna version
through the use of spatial filtering and the improved rejec-
tion of interferers. Also, the adaptive reduced-rank estima-
tors converge in about 2M/L symbols, which agrees with
the theory detailed in Section 6.2.

7.2 BER performance

In this section, we show the average BER performance of
the proposed space–time adaptive linear and SIC multiuser
receivers. The parameters of the algorithms are optimised
(number of stages D ¼ 4 of MWF, interpolator length
NI ¼ 3 and a ¼ 0.998 for RLS algorithms [20]). The chan-
nels experienced by different users are i.i.d. whose coeffi-
cients for each user k are hk,m(i) ¼ pk,mlk,m(i), where
lk,m(i) (m ¼ 0, 1, . . . , Lp 2 1, E[jlk,m(i)j2] ¼ 1) are
obtained with Clarke’s model [21]. The results are shown
in terms of the normalised Doppler frequency fdT (cycles/
symbol) and we use three-path channels with relative
powers pk,m

2 given by 0, 23 and 26 dB, where in each
run the spacing between paths is obtained from a discrete
uniform random variable between 1 and 3 chips. The

Fig. 4 MSE for analytical and simulated results against the
number of received symbols for processors with linear receivers
using

a J ¼ 1
b J ¼ 3
Solid lines stand for simulated results, whereas dotted lines correspond
to analytical results
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unknown DOAs fk,m for each path and user are uniformly
distributed between 0 and 2p/3 (1208) for all simulations
and the delay dk of the users that describe the system asyn-
chronism is taken from a discrete uniform random variable
between 0 and 30 chips. The system has a power distri-
bution among the users for each run that follows a log-
normal distribution with associated standard deviation of
3 dB and all experiments are averaged over 1000 trials
and over the users in the system.

To assess the BER convergence performance of the
space–time processors against time, the adaptive linear
and SIC receivers are adjusted with 200 symbols during
the training period and then switch to decision-directed
mode for the remaining 1800 symbols. The results, illus-
trated in Fig. 5, show that the reduced-rank methods signifi-
cantly outperform the full-rank receiver and the best
performance is obtained by the proposed STAR processor.
For small data support, the STAR with L ¼ 4 can achieve
improved performance over the STAR with L ¼ 2.
However, as the data support is increased, the STAR with
L ¼ 2 is able to outperform the processor with L ¼ 4 at
steady state. This is because the reduced-rank scheme
trades-off a faster convergence performance against a

Fig. 5 Average BER performance against the number of received
symbols with fdT ¼ 0.0005 for

a Linear
b SIC receivers

Fig. 6 BER performance against

a Eb/N0

b Number of users
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higher MSE or BER performance at steady state. With a
higher decimation factor (e.g. L ¼ 4 against L ¼ 2), the pro-
posed scheme is able to converge faster but loses degrees of
freedom to achieve a lower BER at steady state. The pro-
posed SIC receivers outperform the linear schemes and as
the number of antenna elements J is increased so is the per-
formance. In particular, the convergence speed of receivers
is further increased through the use of reduced-rank tech-
niques combined with IC carried out by the proposed SIC
detectors. The STAR offers extra flexibility since the
designer can adjust L in order to trade-off faster response
against improved steady-state performance.

We also consider the average BER performance of adap-
tive linear and SIC receivers against Eb/N0 and number of
users, as depicted in Figs. 6 and 7, respectively. The recei-
vers are adjusted with 200 symbols during the training
period, then switch to decision directed mode and process
2000 data symbols. The curves are averaged over 1000
independent trials and over the K users.

The results show that the proposed STAR processor with
L ¼ 2 achieves the best BER performance, followed by the
full-rank and the MWF. Specifically, the STAR with L ¼ 2
can save up to 1 dB in Eb/N0 as compared with full-rank
estimator for the same BER performance. The STAR pro-
cessors are capable of approaching the performance of the
full-rank scheme with perfect channel knowledge at much
lower complexity. In terms of system capacity, the gains
are more pronounced for the receivers equipped with
more sensors in the antenna array and a comparison
between the results for linear and SIC receivers (Figs. 6
and 7) shows that SIC receivers are considerably better
than linear ones. Specifically, the plots show that the SIC
receivers accommodate up to 4 more users than the linear
detectors with J ¼ 1, whereas the space–time SIC
schemes handle up to 6 more users than the linear ones
with J ¼ 3, for the same BER performance.

8 Conclusions

A flexible STAR processor for interference suppression in
DS-CDMA systems with RLS algorithms was proposed.
Linear and SIC space–time receivers with antenna arrays
based on reduced-rank STAR processors were introduced
and investigated in an uplink scenario. The results have
shown that the STAR reduced-rank processors can
achieve superior performance to full-rank and the MWF

Fig. 7 BER performance against

a Eb/N0

b Number of users
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reduced-rank schemes and that the proposed SIC receiver is
significantly better than the linear detector.
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11 Appendix: convergence properties

The importance of this investigation lies on the establish-
ment that the design of the proposed STAR processor is
based on joint optimisation problem that has a unique sol-
ution and does not present local minima. To study the con-
vergence properties of the interpolated LS design, we
consider the associated SES expressions in (30) and (31).
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We note that points of global minimum of JLS(wk,
vk) ¼

P
l¼1
i ai2l

jbk(l) 2 vk
H
R(l)wk

�j
2 can be obtained by

vopt ¼ arg minvk
J(vk) and wopt ¼ g(vopt) or wopt ¼ arg

minwk
JLS(b(wk), wk) and vopt ¼ b(wopt). At a minimum

point JLS(vk, g(vk)) equals JLS(b(wk), wk) and the
minimum SES for the proposed structure is achieved. We
further note that since J(vk) ¼ J(tvk), for every t = 0, then
if vk

q is a point of global minimum of J(vk) then tvk
q is

also a point of global minimum. Therefore points of
global minimum (optimum interpolator filters) can be
obtained by vk

q ¼ arg minkvkk¼1 J(vk). Since the existence
of at least one point of global minimum of J(vk) for
kvkk ¼ 1 is guaranteed by the theorem of Weierstrass
[22], then the existence of (infinite) points of global
minimum is also guaranteed for the cost function in (27).
This establishes the existence of the solution of the optimis-
ation problem. Because at a minimum point (30) equals
(31), the designer can consider only one of the parameter
vectors, either wk or vk, for analysis purposes.

In the context of global convergence, a sufficient but not
necessary condition is the convexity of the cost function,
which is verified if its Hessian matrix is positive semi-
definite, that is aHHa � 0, for any vector a. First, let us con-
sider the minimisation of (27) with fixed interpolators. Such
optimisation leads to the following Hessian

H ¼
@

@wH
k

(JLS(�))

@wk

¼
Xi
l¼1

ai�lrk(l)rHk (l) ¼ Rk(i) (48)

which is positive semi-definite and ensures the convexity of
the cost function for the case of fixed interpolators. Consider
now the joint optimisation of the interpolator vk and receiver
wk through an equivalent cost function to (27)

~JLS(zk) ¼
Xi
l¼1

ai�1
jb(l) � zHk B(l)zkj

2] (49)

where

B(l) ¼
0 0

<(l) 0

� �
is an (NIþ JM/L) � (NIþ JM/L) matrix. The Hessian (H)
with respect to zk ¼ [wk

Tvk
T]T is

H ¼
@

@zHk

@( ~JLS(�))

@zk
¼

Xi
l¼1

ai�l(zHk B(l)zk � bk(l))B
H (l)

 !

þ
Xi
l¼1

ai�l(zHk BH (l)zk � b�k (l))B(l)

 !

þ
Xi
l¼1

ai�lB(l)zkzHk BH (l)

 !

þ
Xi
l¼1

ai�lBH (l)zkzHk B(l)

 !

(50)

By examining H we note that the third and fourth terms
yield positive semi-definite matrices aH(

P
l¼1
i ai2lB(l)

zkzk
HBH(l))a � 0 and aH(

P
l¼1
i ai2lBH(l) zkzk

HB(l)]a) � 0,
zk = 0), whereas the first and second terms are indefinite
matrices. Thus, the cost function cannot be classified as
convex. However, for a gradient search algorithm, a desir-
able property of the cost function is that it shows no
points of local minimum, that is, every point of minimum
is a point of global minimum (convexity is a sufficient,
IET Commun., Vol. 2, No. 2, February 2008



but not necessary, condition for this property to hold) and it
is conjectured that the problem in (27) has this property.

To support this claim, we carried out the following
studies. First, we considered the scalar case of the function
in (27), defined as f(w, v) ¼ (b2 wrv)2 ¼ b2 2 2b
wrvþ (wRv)2, where r is a constant. By choosing v (the

Fig. 8 Every point of minimum is a point of global minimum

a Contour plots of the function f(v, w) ¼ (1 2 w * r * v)2

b Error-performance surface of space–time interpolated LS receivers
at Eb/N0 ¼ 15 dB for L ¼ 4
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‘scalar’ interpolator) fixed, it is evident that the function
f(w, v) ¼ (b2 wc)2, where c is a constant, is a convex
one, whereas for a time-varying interpolator the curves
shown in Fig. 8a, indicate that the function is no longer
convex but it does not exhibit local minima. Secondly, by
taking into account that for small interpolator filter length
NI(NI . 3), vk can be expressed in spherical coordinates
and a surface can be constructed. Specifically, we expressed
the parameter vector vk as

vk ¼ r[ cos (u) cos (f) cos (u) sin (f) sin (u)]T

where r is the radius, u and f were varied from 2p/2 to p/2
and 2p to p, respectively, and (27) was plotted for various
scenarios. The plot of the error-performance surface of
J(vk), depicted in Fig. 8b, reveals that J(vk) has a global
minimum value (as it should) but do not exhibit local
minima, which implies that (29) has no local minima either.
If the cost function in (27) had a point of local minimum
then J(vk) in (27) should also exhibit a point of local
minimum even though the reciprocal is not necessarily true:
a point of local minimum of J(vk) may correspond to a
saddle point of JLS(vk, wk), if it exists. In addition, an import-
ant feature that advocates the non-existence of local minima is
that the algorithm always converge to the same minimum
value, for a given experiment, independently of any interp-
olator initialisation (except for vk(0) ¼ [0 � � � 0]T that elimin-
ates the signal) for several scenarios.
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