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Adaptive Decision Feedback Detection with Parallel
Interference Cancellation and Constellation
Constraints for Multiuser MIMO systems

Peng Li, Rodrigo C. de Lamare, Jingjing Liu

Abstract—In this paper, a novel low-complexity adaptive de-
cision feedback detection with parallel decision feedback and
constellation constraints (P-DFCC) is proposed for multiuser
MIMO systems. We propose a constrained constellation map
which introduces a number of selected points served as the
feedback candidates for interference cancellation. By introducing
a reliability checking, a higher degree of freedom is introduced
to refine the unreliable estimates. The P-DFCC is followed by
an adaptive receive filter to estimate the transmitted symbol.
In order to reduce the complexity of computing the filters with
time-varying MIMO channels, an adaptive recursive least squares
(RLS) algorithm is employed in the proposed P-DFCC scheme.
An iterative detection and decoding (Turbo) scheme is considered
with the proposed P-DFCC algorithm. Simulations show that
the proposed technique has a complexity comparable to the
conventional parallel decision feedback detector while it obtains
a performance close to the maximum likelihood detector at a
low to medium SNR range.

Index Terms—RLS, multiuser detection, MIMO, adaptive re-
ceivers, iterative (Turbo) processing.

I. INTRODUCTION

MULTI-user detection (MUD) [1] algorithms have shown
that they can be applied to the uplink of 3G and next

generation multi-antenna communication systems. MUD can
also be applied to spatially multiplexed multi-input multi-
output (MIMO) wireless communication systems to form a
spatial division multiple access (SDMA) scheme. In such
systems, multiple users are operated within the same frequency
band simultaneously and the spatial dimension is exploited
which can significantly increase the bandwidth efficiency. In
order to successfully restore the signals from the received
signal combination, pre-coding [2], [3] and decoding [4], [5]
techniques are developed at the transmitter side and receiver
side respectively. Due to the fact that for a multiple access
uplink scenario, it is difficult for each user equipment (UE)
to know the channel state information (CSI) of others, in this
paper, we focus on the decoding part.

Several detection techniques have been developed for use at
the receiver to suppress the multi-access interference (MAI),
recover the simultaneously transmitted signals and increase
the throughput for the served UEs [4]. The optimal maximum
likelihood detection (MLD) [1] scheme has exponential com-
plexity with the number of data streams and the modulation
level, which is impractical for systems even with a moderate
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number of UEs. The cost effective ML solutions such as sphere
decoders (SD) [6] [7] approach the optimal performance with
reduced complexity [8], however, they still have a lower bound
complexity which is polynomial or exponential depending on
the number of UEs as well as the signal-to-noise ratio (SNR)
[9]. In order to avoid the high complexity of ML or near-
ML detectors, linear detectors which are based on minimum
mean square error (MMSE) or zero-forcing receiver filters
have been investigated. Generally, linear detectors experience
a performance loss and achieve a lower capacity. A decision
feedback receiver with successive decision feedback (S-DF)
[10] or with parallel decision feedback (P-DF) [12] can be
employed to achieve a higher capacity. These DF receiver
structures [4], [13], [15], [16], are preferred as they offer
an attractive performance and complexity trade-off, which is
usually a key concern in multiple access systems.

The S/P-DF architectures are able to provide high spectral
efficiencies when multiple transmit antennas are deployed
[3]. However, the application to systems with time-varying
channels is difficult due to the excessive computational load
for updating the receive filter coefficients and tracking the
channel [17]. The estimation of the receive filter weights and
the CSI requires matrix inversions and other operations that
lead to a significant number of computations.

As an alternative, the training aided adaptive techniques may
be deployed for multiuser systems in time-varying channels
[18]. Adaptive algorithms can be used to track the channels
and to avoid excessive computations when the channels are
varying. In [18], the authors developed a low-complexity
data-aided adaptive technique for detecting the time-varying
channels based on the GDF [13] structure, the weight vectors
are updated using the recursive least squares (RLS) based
algorithm. The multiple access interference introduced by
spatial multiplexing can be suppressed in a serial or parallel
manner and the transmitted symbols are estimated at each
stage. Despite its many benefits, there is a large performance
loss when one compares the performance of a DF based
receiver with that of the optimal detector. This is due to the
fact that (1) the DF structure can not provide the full receive
diversity order achieved by the optimal MLD in spatially
multiplexed systems. (2) The average performance of S/P-
DF is dominated by the data stream with the lowest SINR
and the effect of error propagation is inevitable [14]. (3)
With the adaptive solution, the receiver filter is directed by
the decisions made in the previous time instance. Therefore,
erroneous decisions lead to unreliable filter weights.
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To address these problems, an adaptive multiuser decision
feedback solution is proposed for time-varying multiple access
MIMO channels. The so-called adaptive decision feedback
detection with parallel interference cancellation and constella-
tion constraints (P-DFCC) algorithm proposes a constrained
constellation map which introduces a list which serves as
the feedback candidates for P-DF detection. By calculating
the bit and symbol reliability, a higher degree of freedom is
introduced to refine the unreliable estimates in the cancellation
stage. The proposed algorithm is able to significantly improve
the performance for a traditional adaptive S-DF or P-DF detec-
tor and close the gap from the MLD. Thanks to the reliability
calculation, the proposed algorithm obtains the combination
list at a small additional computational cost.

We also consider a spatially multiplexed multiuser iterative
detection and decoding (IDD) scheme incorporated with the
proposed structure. In this coded system, the soft-input soft-
output (SISO) detector is required to produce soft-decision
values in terms of log-likelihood ratio (LLR). The proposed
SISO detector uses the produced combination list to compute
the likelihood of each transmitted bit, the probability of the
decision is conveyed. This SISO detector is further concate-
nated with a SISO channel decoder to form a turbo structure
which allows a lower SNR requirement for the adaptive MUD
receiver. Computer simulations indicate that the proposed P-
DFCC algorithm significantly outperforms the conventional
S/P-DF schemes (i.e. [18]) and approaches the optimal per-
formance with very low additional detection complexity.

The main contributions of this paper are:
• An adaptive decision feedback based algorithm is devel-

oped for data detection in time-varying MIMO channels.
• A P-DF receiver structure is investigated with the adap-

tive scheme, the constellation constraints (CC) is incor-
porated in the receiver to enhance the performance of
interference cancellation.

• The error performance and the detection complexity of
the proposed algorithm are compared with several popular
existing S/P-DF and optimal detection schemes.

• A SISO detector is developed as a component of a
multiuser IDD receiver structure.

The organization of this paper is as follows. Section II gives
the multiuser spatial multiplexing MIMO system model as
well as the conventional S/P-DF detector and optimal detection
criterion. The proposed P-DFCC and its implementation are
described in section III and followed by a complexity com-
parison in section IV. The iterative detection and decoding
structure is introduced in Section V. The simulation results
are given in Section VI and Section VII concludes the paper.

II. SYSTEM AND DATA MODEL

Let us consider a model of an uplink MU-MIMO system
with K UEs and an access point (AP). Each UE is equipped
with a single antenna. At the receiver of the AP, NR receive
antennas are available for collecting and processing the sig-
nals. Throughout this paper, the complex baseband notation is
used while vectors and matrices are written in lower-case and
upper-case boldface, respectively. We assume that the signals

UE 1
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UE K
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s1
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H

Fig. 1. Spatially multiplexed multiple access system. We assume the trans-
mitted signal from K UEs are spatially uncorrelated and K ≤ NR.

of the UEs are perfectly synchronized at the AP, at each time
instant [i] K users simultaneously transmit K symbols which
are organized into a vector s[i] =

[
s1[i], s2[i], . . . , sK [i]

]T ,
where (·)T denotes the transpose operation, and whose entries
are chosen from a complex C-ary constellation set X =
{a1, a2, . . . , aC}. The symbol vector s[i] is transmitted over
time-varying channels and the received signal is processed by
the receiver at the AP with NR spatially uncorrelated antennas.
The received signal is collected to form an NR×1 vector with
sufficient statistics for detection

r[i] =
K∑

k=1

hk[i]sk[i] + v[i]

= H[i]s[i] + v[i],

(1)

where the NR×1 vector v[i] represents a zero mean complex
circular symmetric Gaussian noise with covariance matrix
E
[
v[i]vH [i]

]
= σ2

vI , σ2
v is the noise variance and I is the

identity matrix, E[·] stands for the expected value and (·)H de-
notes the Hermitian operator. The symbol vector s[i] has zero
mean and a covariance matrix E

[
s[i]sH [i]

]
= σ2

sI , where
σ2
s is the signal power for all transmitting UEs. Furthermore,

the elements of H[i] are the time-varying complex channel
gains from the k-th UE to the nR-th receive antenna, which
follow the Jakes’ model [20]. The NR×1 vector hk[i] includes
the channel coefficients of user k such that H[i] is formed
by the channel vectors of all users. As the optimal SINR-
based nulling and cancellation order (NCO) [18] requires a
high computational complexity, we determine the NCO by
computing the norms of the column vectors corresponding to
all users and we detect them in decreasing order of their norms.

A. Optimal Detection

The optimal ML detection algorithm tries all the possible
transmitted signal vectors with the given channel H , the
detector computes the Euclidean distance by J (s)Euclidean =
∥r −Hŝ∥2, the signal vector with the minimum Euclidean
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distance is determined as the estimate of the transmitted signal:

ŝML = arg max
s∈XK

P (r|s)

= arg max
s∈XK

1

(πσ2
v)

K
exp(−∥r −Hs∥2

σ2
v

)

= arg min
s∈XK

J (s)Euclidean,

(2)

Similarly to MAP detection, the algorithm requires an exhaus-
tive search of |X |K equations in (2) . The high complexity of
the metric calculation prevents the actual application of these
detectors in the real world, except for very small systems and
constellations.

B. Successive and Parallel DF Receivers

Let ŝ[i] =
[
ŝ1[i], ŝ2[i], . . . , ŝK [i]

]T
represent the detected

symbol vector. The soft symbol estimates uk[i] are obtained
by calculating the difference between the output of the forward
receive filter and the output of backward receive filter as
described in [18] and given by

uk[i] = ωH
f,k[i]r[i]− ωH

b,k[i]dk[i], (3)

where the column vector ωf,k[i] ∈ CNR×1 denotes the
forward receive filter. The column vector ωb,k[i] indicates a
backward receive filter with the dimension k−1 for successive
decision feedback (S-DF) detection, or K − 1 for parallel
decision feedback (P-DF) detection.

1) S-DF: S-DF detection is illustrated in Fig.2(a), where
the backward receive filter ωb,k[i] ∈ Ck−1 has k weight
elements, and the size of ωb,k[i] increases as k raises. The
forward filters ωf,k[i] act as the nulling vectors of the V-
BLAST algorithm. Then for each data stream k = 1, . . . ,K,
the decisions are accumulated and cancelled by the (k − 1)-
dimensional filter ωb,k[i]. The backward receive filter is ini-
tialized by ωb,1 = 0 for the first user. For the following users,
the (k−1)-dimensional detected symbol vector is obtained as

dk[i] =
[
ŝ1, ŝ2, . . . , ŝk−1

]T
. (4)

The S-DF detection can provide a diversity order of NR −
K + k for each user k assuming that perfect interference
cancellation is performed by the receiver.

2) P-DF: By assuming perfect interference cancellation, P-
DF is able to provide a higher diversity order compared to the
S-DF based detection algorithms. Similar to S-DF scheme,
the P-DF first processes the received signal r[i] by the forward
receive filter ωf,k[i] ∈ CNR×1. However, as shown in Fig.2(b),
the backward receive filter is different from S-DF, which
is given as ωb,k[i] ∈ C(K−1)×1, and the decision feedback
symbol vector is defined as

dk[i] =
[
ŝ1, . . . , ŝk−1, 0, ŝk+1 . . . , ŝK

]T
. (5)

where the decisions for user ŝk = Q{uk[i]} are obtained by
applying a slicer represented by Q{·}.

For notational convenience, the forward and backward filters
can be concatenated together as [18]

ω̃k[i] =

{
ωf,k[i], k = 1[
ωT

f,k[i],ω
T
b,k[i]

]T
, k = 2, . . . ,K.

(6)

The input can also be concatenated as

r̃k[i] =

{
r[i], k = 1[
rT [i],dT

k [i]
]T

, k = 2, . . . ,K.
(7)

Then, we can rewrite the soft estimates (3) as

uk[i] = ω̃H
k [i]r̃k[i]. (8)

The forward and backward filters can be jointly optimized
by using an MMSE criterion or solving a lest squares prob-
lem. For the sake of computational complexity, in the pro-
posed structure the recursive least squares (RLS) algorithm is
adopted for the design of the forward and backward filters.
It should be noted that other advanced parameter estimation
algorithms such as reduced-rank techniques [12], [21] can also
be used.

III. ADAPTIVE P-DF WITH CONSTELLATION
CONSTRAINTS

A. Computation of P-DF filters

As a result, the structure and the signal processing model
of the proposed DF detector are depicted in Fig.3. We denote
the receive filter of each user as ω̃k[i] (k = 1, . . . ,K), and the
value of each entry can be obtained by solving the standard
least squares (LS) problem. The LS cost function with an
exponential window is given by

Jk[i] =
i∑

τ=1

λi−τ
∣∣∣ŝk[τ ]− ω̃H

k [i]r̃k[τ ]
∣∣∣2, (9)

where 0 ≪ λ < 1 is the forgetting factor, the scalar ŝk[τ ]
denotes the detected signal in the time index τ or the known
pilots where ŝk[τ ] = sk[τ ]. The optimal tap weight minimizing
Jk[i] is given by

ω̃k[i] = Φ−1
k [i]pk[i], (10)

where the time-averaged cross correlation matrix is obtained
by Φk[i] =

∑i
τ=1 λ

i−τ r̃k[τ ]r̃
H
k [τ ] and Φk[0] = 0, the

time-averaged cross correlation vector is defined by pk[i] =∑i
τ=1 λ

i−τ r̃k[τ ]ŝ
∗
k[τ ].

Using the recursive least squares (RLS) algorithm [19],
the optimal weights in (10) can be calculated recursively as
follows:

qk[i] = Φ−1
k [i− 1]rk[i], (11)

kk[i] =
λ−1qk[i]

1 + λ−1rHk [i]qk[i]
, (12)

Φ−1
k [i] = λ−1Φ−1

k [i− 1]− λ−1kk[i]q
H
k [i], (13)

ω̃k[i] = ω̃k[i− 1] + kk[i]ξ
∗
k[i], (14)

where

ξk[i] =

{
sk[i]− ω̃H

k [i− 1]r̃k[i], Training Mode,
ŝk[i]− ω̃H

k [i− 1]r̃k[i], Decision-directed Mode.
(15)

As indicated in (15), this adaptive detection algorithm works
in two modes. The first one is employed with the training
sequence, while the second one is the decision-directed mode
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Fig. 2. Block diagram of the conventional (a) S-DF scheme and (b) P-DF scheme. An RLS algorithm is employed to iteratively obtain the filter weights.

that is switched on after the filter weights converge. In the
decision-directed mode, the mean square error (MSE) of the
estimated symbols has a major impact on the performance of
adaptive DF algorithms. This is because the detection error
of the current user may propagate throughout the detection of
the following users. Moreover, in time-varying channels a poor
ξk[i] can easily damage the ω̃k[i] in equation (14) resulting in
burst errors.

B. P-DF with Constellation Constraints
In order to address this problem, the proposed P-DF

with constellation constraints (P-DFCC) structure introduces
a number of selected constellation points as the candidate
decisions when the filter output uk[i] is determined unreliable.
After the system is switched to the decision-directed mode, the
concatenated filter output uk[i] is checked by the CC device
which is illustrated in Fig. 4. The CC structure is defined
by the threshold distance dth, which can be a constant or
determined in terms of SNR. The reliability of the estimated
symbol is determined by the Euclidean distance between the
symbol estimates and its nearest constellation points, which
are given by

dk = min
ac∈X

{|uk[i]− ac|}, (16)

where ac denotes the constellation point which is the nearest
to the soft estimation uk[i] of the k-th symbol. The CC device
distinguishes the reliable estimation from the unreliable ones,
which allows the P-DFCC to avoid redundant processing with
reliable feedbacks and maintain the complexity at the same
level of the conventional P-DF structure. The following is
devoted to describe the detection of ŝk[i] for the k-th user.

Let us define two regions for the QPSK constellation map:
(1) The region inside the square obtained by connecting
four ac, the ac are assumed to have the form, ac =

(
±

ϵ/2,±(ϵ/2)j
)

, where ϵ is the distance between two nearest

ŝ
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Fig. 3. Block diagram of the proposed P-DFCC multi-user detector. There
are K − 1 interference symbols for each user’s backward filter.

constellation symbols. The estimate uk[i] is considered inside
the square if the following equations hold{∣∣ℜ{uk[i]}

∣∣ ≤ ϵ/2∣∣ℑ{uk[i]}
∣∣ ≤ ϵ/2.

(17)

where ℜ{·} and ℑ{·} denote the real part and the imaginary
part of a complex-valued quantity, respectively.

(2) Otherwise, the estimate is in the region outside the
square obtained.

1) CASE 1 inside the square: In the first case, the estimate
uk[i] is considered as unreliable if the following equation holds

dk > dth. (18)

where dk denotes the distance between the estimated symbol
uk[i] and its nearest constellation point and ac is each element
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Fig. 4. The constellation constraints (CC) device. The CC procedure is
invoked as the soft estimates uk[i] dropped into the shaded area. Parameter
ϵ denotes the distance between 2 nearest constellation symbols.

of the constellation points. Otherwise, the estimated symbol is
closer to the constellations and the decision is considered as
reliable.

2) CASE 2 outside the square: In this case, the equations of
(17) do not hold, where the estimated symbol uk[i] is outside
the square. In this case, the decision is determined unreliable if
the distance from uk[i] to I(in-phase)-axis and Q(quadrature)-
axis is small. Therefore, the estimate is unreliable if any of
the following equations holds∣∣ℜ{uk[i]}

∣∣ < ϵ/2− dth, (19)

∣∣ℑ{uk[i]}
∣∣ < ϵ/2− dth. (20)

Otherwise, the estimated symbol is far away from the axis
borders and the estimate is considered as reliable.

This can be further extended to multi-tier constellations
(eg.16-QAM) where the outer-tier would be similar to CASE
2, but we should also include two additional equations in
addition to (19) and (20) which are given as

min
∣∣ℜ{uk[i]} ± ϵ

∣∣ < ϵ/2− dth, (21)

min
∣∣ℑ{uk[i]} ± ϵ

∣∣ < ϵ/2− dth. (22)

where
∣∣ℜ{uk[i]} ± ϵ

∣∣ are the distances between uk[i] and
two vertical lines across the points (0,±ϵ), respectively. The
matrices

∣∣ℑ{uk[i]} ± ϵ
∣∣ are similarly defined as the distances

between uk[i] and two horizontal lines across points (±ϵ, 0),
respectively. Therefore, for 16-QAM constellations, the es-
timate is considered as unreliable if any one of the four
equations above (19-22) holds. On the other hand, for the
inner-tier constellations, if

min
∣∣ak[i]− uk[i]

∣∣ ≥ dth ∀c, (23)

was true, the estimate is considered as unreliable. The CC
device distinguishes the reliable feedback signals from the
unreliable ones, which allows the P-DFCC to maintain the
complexity at the same level of the conventional DF structure.

Reliable: If the filter output uk[i] is dropped into the lighted
area of the constellation map, the decision is considered
reliable. The tentative decision of sk[i] is obtained by

Lk[i] = argac
min

∣∣ac − uk[i]
∣∣ (24)

Unreliable: If it is the case that uk[i] is determined unre-
liable, we proceed by organizing the Euclidean distance ob-
tained by (16) in decreasing order, a list of tentative decisions
of sk[i] is obtained as given by

Lk[i] , {c1, c2, . . . , cτ}k, (25)

where 1 ≤ τ ≤ |X |, and

de[c1] ≤ de[c2] ≤ . . . , de[cτ ], (26)

where de[·] denotes the Euclidean distances between uk and
cτ .

Therefore, for each user we obtain a tentative decision list
Lk. By listing all the combinations of the elements across
K users, a length Γ tentative decision list is formed. Each
column vector on the list denotes a possible transmission
symbol vector s′l where l = 1, . . . , Γ . The size of the list
is obtained by

Γ =

K∏
k=1

|Lk|, 1 ≤ Γ ≪ |X |K , (27)

where | · | denotes cardinality. In order to obtain an improved
performance, the maximum likelihood (ML) rule can be used
to select the best among the Γ candidate symbol vectors.
The cost function for the ML selection criterion, which is
equivalent to the minimum Euclidean distance criterion and
the selected vector is given by

s′ML = arg min
l=1,...,Γ

∥∥r[i]−Hs′l[i]
∥∥2, (28)

where s′ML is the ML selected vector, which can be used as
the feedback symbols as well as the decision vector.

The number of Γ could be considered as a reflection of the
trade-off between complexity and performance. By assuming
a large threshold dth, the proposed scheme is able to tolerate a
higher error probability and results in a smaller Γ but suffers
from a performance loss. For an extreme case where dth = inf ,
the proposed detector is equivalent to a conventional D-DF
detector. In contrast, if dth = 0, we have Γ = |X |K which
means the proposed receiver performs DF detection with an
ML rule that allows the search for an ML solution for each
user. It is also worth to mention that a maximum τmax can
be set to guarantee 1 ≤ Γ ≪ |X |K , which prevent high
complexity in very low SNR range.

By introducing a constellation constraint, (a) the detection
diversity is directly related to the threshold dth: a decrease
in the value of dth could result in a longer list which may
increase the diversity order. (b) In the low SNR region, it is
also likely to obtain a longer list than that in a high SNR
region, hence the diversity order tends to be higher. On the
other hand, for the high SNR region, all the symbol estimates
are considered reliable and the diversity order tends to be the
same of a conventional P-DF (this is similar to increasing the
threshold dth). This implies that the gain provided by P-DFCC
is higher for a small to medium region of SNR.
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C. Channel Estimation

As we discussed in the previous sections, the MIMO chan-
nel state information is required for the ML rule (28) and
for generating the cancellation ordering codebook for ordered
processing [9]. The LS channel estimation algorithm has been
investigated in [22]. Based on a weighted average of error
squares, the estimated channel minimizes the cost function
whose expression at time instant i is defined as

JĤ [i] =
i∑

τ=1

λi−τ
∣∣∣r[τ ]− Ĥ[i]s[τ ]

∣∣∣2, (29)

where Ĥ[i] is the channel matrix estimate at time instant i.
The quantities r[τ ] and s[τ ] are the received signal and the
pilot symbol vectors at the time instant τ , respectively.

To minimise the cost function, the gradient of the cost
function with regard to the estimated channel matrix should
be equated to a zero matrix as

∇Ĥ[i]JĤ [i] = 0NR,K . (30)

By solving the above equation, the LS estimate of the channel
matrix is obtained as

Ĥ[i] =
( i∑

τ=1

λi−τr[τ ]sH [τ ]
)( i∑

τ=1

λi−τs[τ ]sH [τ ]
)−1

= D[i]Φ−1[i].
(31)

In order to avoid the matrix inversion operation (·)−1, a
recursive algorithm is developed. Let us define

Φ−1[i] = P [i], (32)

where D[i] can be obtained iteratively by

D[i] = λD[i− 1] + r[i]s[i]H (33)

and P [i] is calculated iteratively by using the matrix inversion
lemma,

P [i] = λ−1P [i− 1]− λ−2P [i− 1]s[i]s[i]HP [i− 1]

1 + λ−1s[i]HP [i− 1]s[i]
. (34)

The initial state of the parameters are set as D[0] = 0NR,K

and P [0] = δ−1
c I , where δc is a small constant.

IV. ITERATIVE DETECTION AND DECODING

In the previous section, we have introduced the concept of
constellation constraints and its implication for an uncoded
multi-user detection algorithm. In order to reduce the SNR
requirement for a MIMO receiver, error-control coding is
essential for the system. Iterative detection and decoding
(IDD) has been recognized as central technique for solving a
large number of decoding and detection problems in wireless
communications. In this section, the we are interested in
developing IDD algorithms for spatially multiplexed multi-
user data streams.

For a multi-user MIMO IDD transmission system, the
message is first encoded by an encoder, the coded bits are
then interleaved and the coded bits are mapped to symbols
before radiating from a transmitting antenna. At the receiver

side, the P-DFCC detector is applied to detect the transmitted
symbols and convert the symbol probability to bit probability
in the form of LLRs. The extrinsic information Le(·) is then
exchanged between the detector and the decoder with several
iterations. The a posteriori probability of the transmitted bits
are then finally obtained at the output of the decoder.

On one hand, the encoder and decoder blocks are considered
as the outer code of a serially concatenated structure, when
a non-systematic convolutional coded (NSC) is applied, the
BCJR [23] based MAP or log-MAP decoding algorithm can
be applied as well as the lower complexity alternative named
soft-output Viterbi algorithms (SOVA) [24]. Instead of using
a convolutional code as the channel code, turbo codes and
LDPC [26] codes along with advanced decoding algorithms
[27] can also be used in this structure to obtain a near-capacity
performance [7] [28]. On the other hand, the mapping and
MIMO detection blocks are considered as the inner component
of the serially concatenated structure. In general, MAP is
the optimal algorithm used as the SISO detection component
in the IDD receiver. The MAP detector provide the optimal
BER performance, however, the complexity is extreme. In
order to solve this problem, a “list” version of SD was
developed by Hochwald and ten Brink without significant loss
of performance [7]. The complexity of the MIMO detection is
further brought down by introducing soft parallel interference
cancellation (SPIC) in [25], [25] at the cost of a performance
loss. In this section, we adapt the proposed P-DFCC detection
algorithm into the IDD structure.

In the coded systems, the model in (1) is used repeatedly
to describe transmit streams of data bits which are separated
into blocks. For a given block, the symbol vector s is obtained
by mapping b = [b1, ..., bj , ..., bK·J ] coded bits. The quantity
J is the number of bits per constellation symbol. For coded
transmissions, the vector b is designated as the output of a
forward error-correction code of rate R < 1 that introduces re-
dundancy. The transmission rate is then RKJ bits perreceived
vector. In the IDD processing, the detector makes decisions
by using the knowledge of correlations across time instants
[i], i = 0, 1, . . . , I provided by the channel decoder, and the
channel decoder needs to decode the bit information by using
the likelihood information on all blocks obtained from the soft
output detector.

For each user, a block of received signals r[i] is used
to compute the a posteriori probability in the form of log-
likelihood-ratios (LLRs), with P-DF, the MIMO input-output
relation (1) has been transformed in to K parallel data streams.
By assuming these K streams are statistically independent, we
may approximate the intrinsic a posteriori LLRs as [30]

Λp
1[bj,k[i]] ≈ log

P [bj,k[i] = +1|uk[i]]

P [bj,k[i] = −1|uk[i]]
∀j, k, (35)

where the equation can be solved by using Bayes’ theorem
and we leave the details to the references [7], [25]. We denote
the intrinsic information provided by the decoder as Λp

2[bj,k[i]]
and the bit probability is obtained as

P [bj,k[i]] = log
P [bj,k[i] = +1]

P [bj,k[i] = −1]
∀j, k. (36)
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From [25], the bit-wise probability is obtained by

P [bj,k[i] = b̄j ] =
exp

(
b̄jΛ

p
2[bj,k[i]]

)
1 + exp

(
b̄jΛ

p
2[bj,k[i]]

) ,
=

1

2

[
1 + b̄j tanh

(1
2
Λp
2[bj,k[i]

)]
.

(37)

where b̄j = {+1,−1}. Let us simplify the notation
P
[
sk[i]

]
:= P

[
sk[i] = cq

]
where cq is an element chosen

from the constellation X = {c1, . . . , cq, . . . , cA}. The symbol
probability P [sk[i]] is obtained from the corresponding bit-
wise probability, and assuming the bits are statistically inde-
pendent, we have

P
[
sk[i]

]
=

J∏
j=1

P
[
bj,k[i] = b̄j

]
,

=
1

2J

J∏
j=1

[
1 + b̄j tanh

(1
2
Λp
2[bj,k[i]

])]
.

(38)

From (37) and (38) we can conclude that
∑

|X | P
[
sk[i]

]
= 1.

By organizing the probabilities obtained by (38) in decreasing
order of values, a list of tentative decisions of sk[i] is obtained
in each stream as given by

LIDD
k [i] , {c1, c2, . . . , cτ}k, (39)

where 1 ≤ τ ≤ |X | and

Pr[c1] ≥ Pr[c2] ≥ . . . , P r[cτ ], (40)

and
Pr[cq] , P

[
sk[i] = cq

∣∣uk

]
. (41)

For the IDD coded structure we replace (25) with (39), thanks
to the error correction, for a moderate SNR, the size of LIDD

k is
significantly smaller than that value in (39). The pseudo-code
for implementing the proposed P-DFCC with IDD structure is
detailed in Algorithm. 1.

V. SIMULATIONS

In this section, several numerical examples are given to
demonstrate the overall system performance of using our
algorithms. In the following simulations, unless otherwise
stated, we consider that the proposed algorithms and all their
counterparts operate with a channel with independent and
identically-distributed (i.i.d) block fading model. The channel
model is of Rayleigh random fading and the coefficients are
taken from complex Gaussian random variables with zero
mean and unit variance. Other parameters are also assumed:
QPSK is used; The transmitted vectors s[i] are grouped into
frames consisting of 500 vectors where the first s[1], . . . , s[10]
vectors are training vectors. In each frame, the channel be-
tween a transmit and receive antenna pair is fixed and a single
path is assumed.

Fig. 5 demonstrates the MSE for the symbol estimation
across all 8 user streams in terms of RLS iterations with
8 receiver antennas configuration. Eb/N0 = 20 dB, and
the normalized Doppler frequency fdT equals to 10−3. The
proposed P-DFCC scheme shows the improvement in terms

Algorithm 1 Algorithm soft-output log-Max-DFCC Detection
Require: r ∈ CNR×1, H ∈ CNR×K , constellation set A, σ2

v ,
n← 0, L(bp1k,j), TI .

1. Find the set of symbol vectors X 1
k,j∩LIDD

k and X 0
k,j∩LIDD

k

2. for lo← TI {Turbo Iteration} do
3. for k ← 1, . . . ,K do
4. for j ← 1, . . . , J do
5. for s ∈ X 1

k,j ∩ LIDD
k do

6. b← demap(s), bk,j ← 0

7. P(x) ← 1
2 (2b[k,j] − 1)L(b

(p1)
k,j ) {Symbol

probability}
8. λ1

n ← lnP(x)− ∥r−Hs∥2

σ2
v

9. end for
10. for s ∈ X 0

k,j ∩ LIDD
k do

11. b← demap(s), bk,j ← 0

12. P(x) ← 1
2 (2b[k,j] − 1)L(b

(p1)
k,j ) {Symbol

probability}
13. λ0

n ← lnP(x)− ∥r−Hs∥2

σ2
v

14. end for
15. L(b

(e1)
k,j ) ← max{λ1

n, n = 1, . . . , |X 1
k,j |} −

max{λ0
n, n = 1, . . . , |X 0

k,j |}
16. end for {Antenna stream}
17. end for {Bit Label}
18. Deinterleave extrinsic L(b

(e1)
k,j )

19. Perform BCJR decoding and compute L(b
(e2)
k,j )

20. Interleaving extrinsic L(b
(e2)
k,j ) and feedback to detector.

21. end for {Turbo Iteration}
22. Decision of systematic bit is obtained via sign{L(mk)}

of MSE. From the figure we can see that the P-DFCC has the
ability to track the fading channel with fdT = 10−3.
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P−DFCC

Fig. 5. MSE of the estimated symbols in terms of RLS iterations, with 8 users.
After 10 training vectors transmitted, the decision-directed mode is switched
on.

The performance is also measured in terms of bit error rate
(BER), obtained by 104 Monte Carlo runs. In our simulations,
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the SNR per transmitted information bit is defined as

Eb

N0

∣∣∣
dB

= 10 log10

( NR

R log2 C
· σ

2
s

σ2
v

)
. (42)

The total transmitted power Es = K · σ2
s which is evenly

distributed across K active users. The NR receive antennas
collect a total power of NREs which carries K log2 C coded
bits or RK log2 C information bits. R ≤ 1 is the channel
coding rate which introduces information redundancy. The
coding rate R = 1 is assumed for the simulations without
channel coding.
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Fig. 6. BER vs. Eb/N0, the proposed P-DFCC detection achieves a near opti-
mal performance in a 4 user system configuration. The constellation threshold
dth introduces a trade off between the performance and the complexity.

Fig.6 shows the BER against Eb/N0. The channel is esti-
mated by LS algorithms, the P-DF-RLS detector (λ = 0.998)
proposed in [18] exhibits about 7dB performance loss when
the target BER equals 10−3 compared with the performance
of SD. As for the SD, with a sufficiently large sphere radius
selected, the SD can always produce an ML solution. With the
constellation constraint threshold dth = 0.05, the proposed P-
DFCC-RLS (λ = 0.998) algorithm shows a near-optimal BER
performance at the target BER equal to 10−3. From Fig.6, we
can verify that the optimal ML detector (or sphere decoder)
is able to attain full diversity.

It is also worth to mention that, a MMSE-based successive
decision feedback (S-DF) detector is able to obtain a diversity
order of NR −K + k, and the BER performance is bounded
by the user with the worst performance. The diversity order
of the traditional P-DF algorithm is usually lower than the
channel power sorted S-DF [9], this is due to the problem
of error propagation. In P-DF, an erroneous symbol would
propagate through all other user’s data stream. However, if all
the detected symbols are highly reliable, P-DF may provide
a higher diversity order than S-DF, this can be verified by
assuming a perfect cancellation scenario, where P-DF achieves
full receive diversity order while S-DF has only NR−K+ k.

By introducing a reliability checking procedure, the diver-
sity order of the proposed P-DFCC can be adjusted. The
control of the diversity order is twofold: (1) the selection of
dth. From Fig.6 we can see that the diversity order is directly
related to the threshold dth. Namely, decrease the value of
dth could change the shape of the constellation constraint and
increase the diversity order. (2) The received SNR region. In
the low SNR region, the scheme is likely to list a higher
number of candidates than those generated in a high SNR
region and the performance approaches the ML detector. On
the other hand, for the high SNR region, all the symbol
estimates are considered reliable and the diversity order tends
to be the same of a conventional P-DF. Therefore, for the
proposed P-DFCC scheme the gain is higher for a small to
medium region of SNR.

Fig. 7. BER vs. Eb/N0, the proposed P-DFCC detection achieves a near
optimal performance in a 4-user system configuration with 16-QAM symbols

Another simulation is carried out with 16-QAM symbols.
The SNR against BER curves are plotted in Fig.7. The
threshold is set to dth = 0.1. With QPSK modulation the
proposed P-DFCC detection algorithm is able to achieve a
better performance compared with traditional P-DF as well as
S-DF algorithms.

Fig.8 presents the comparison of BER performance for var-
ious normalized Doppler frequency fdT (in the time-varying
channels) when Eb/N0 = 14 dB. In this simulation, each
channel between a transmit and receive antenna pair varies
accodrding to the Jakes’ model [20]. LS channel estimation is
applied to the unknown channel. The length of the training
sequence is I = 20. The simulation results show that the
proposed P-DFCC significantly improves the traditional P-DF
detector and approaches the SD performance in time-varying
channels.

In Fig. 9, the complexity is given by counting the required
complex multiplications as the number of users increases. P-
DFCC has a complexity slightly above the P-DF while it
achieves a significant performance improvement. The thresh-
old dth is introduced to reduce the complexity and improve the
performance. We use fixed complexity sphere decoders (FSD)
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Fig. 9. Complexity in terms of arithmetic operations against the transmit
antennas, the P-DFCC has a comparable complexity with P-DF algorithm.
dth = 0.3.

[29] to compare the complexity. It should be noted that FSD
is one of the lowest complexity SD algorithms that are known.

The curves in Fig.10 are given for convolutionally coded
BER performance on a Rayleigh block fading channel. The
proposed P-DFCC with dth = 0.3 improves the conventional
P-DF detection performance about 3 dB at the target coded
BER equals to 10−4. The P-DFCC detector approaches the
optimal MAP detection performance with only 1.5 dB perfor-
mance loss when coded BER = 10−4.

VI. CONCLUSION

In this paper, we have derived an adaptive decision feedback
based detector for MIMO transmission systems with varying
channels. In this context, we have presented a novel way to
improve the BER performance by using the parallel decision
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Fig. 10. Coded BER curves of QPSK over 4×4 MIMO channels; block size
1000 message bits, code rate R = 1/2, memory 2 convolutional code.

feedback with constellation constraints approach, a threshold
is introduced to reduce the complexity and improve the per-
formance. This approach has the ability to reduce the MSE
of traditional parallel decision feedback detection, effectively
improve the BER performance of parallel interference cancel-
lation schemes and obtain a close to optimal performance with
a low additional detection complexity.
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