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Abstract: This article proposes constrained adaptive algorithms based on the conjugate gradient (CG) method for
adaptive beamforming. The proposed algorithms are derived for the implementation of the beamformer according
to the minimum variance and constant modulus criteria subject to a constraint on the array response. A CG-based
weight vector strategy is created for enforcing the constraint and computing the weight expressions. The devised
algorithms avoid the covariance matrix inversion and exhibit fast convergence with low complexity. A complexity
analysis compares the proposed algorithms with the existing ones. The convergence properties of the CCM
criterion are studied, conditions for convexity are established and a convergence analysis for the proposed
algorithms is derived. Simulation results are conducted for both stationary and non-stationary scenarios,
showing the convergence and tracking ability of the proposed algorithms.
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1 Introduction
Linearly constrained adaptive filtering algorithms are
important in many applications of signal processing and
communications such as beamforming and interference
suppression for code-division-multiple-access (CDMA)
systems. In these applications, the linear constraints
correspond to prior knowledge of certain parameters such
as the direction of arrival (DOA) of the desired user in
antenna array processing [1] and the signature sequence of
the desired signal in CDMA interference suppression [2].

Numerous constrained adaptive algorithms have been
reported in the last decades [3]. Among the existing
algorithms, the stochastic gradient (SG) is a low complexity
algorithm but converges slowly for correlated data inputs.
The recursive least squares (RLS) [3] algorithm has fast
convergence but needs high complexity and suffers from
numerical instability. The conjugate gradient (CG)
algorithm has an attractive trade-off between performance
and complexity, since it enjoys a convergence comparable to
the RLS with a computational requirement which is
intermediate between the SG and RLS methods [4].
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Another class of algorithms are those based on the multi-
stage Wiener filter (MSWF) [5, 6] and the auxiliary-vector
filtering (AVF) [7, 8]. The basis vectors of the CG,
MSWF and AVF span the same Krylov subspace [9].
Their main differences lie on the computational cost,
structure of adaptation and ease of implementation. Many
adaptive algorithms based on the CG approach have been
reported [10–12]. However, the incorporation of
constraints in existing CG algorithms leads to a significant
increase in the computational cost. The linear constraint
here corresponds to the knowledge of the DOA of the
desired user. For wireless communications, this array
response is equivalent to a CDMA effective signature and
to a spatial signature of a multiple-input and multiple-
output (MIMO) system.

Another important issue that has been considered in a
number of recent works is the design criterion. The most
promising criteria found in the literature are the
constrained minimum variance (CMV) [13, 14] and the
constrained constant modulus (CCM) [15, 16] owing to
their simplicity and effectiveness. The CMV criterion aims
to minimise the beamformer output power while
IET Signal Process., 2010, Vol. 4, Iss. 6, pp. 686–697
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maintaining the array response on the DOA of the desired
signal. The CCM criterion is a positive measure [17] of
the average amount that the beamformer output deviates
from a constant modulus condition subject to a constraint
on the DOA of the desired signal.

In this paper, our first contribution is the development of
CG adaptive filtering algorithms for beamforming. We
derive two CG-based algorithms for the efficient
implementation of the beamformer design according to the
CMV and CCM criteria. The existing methods yield a
system of equations that requires the costly matrix inversion
for ensuring the constraint and obtaining the solution. The
proposed algorithms are motivated by the need to
circumvent this problem and for developing cost-effective
algorithms. A CG-based weight vector strategy is devised
to incorporate the constraint of the array response in the
proposed algorithms. We create a simple relation between
the CG-based weight vector and the matrix inversion and
the array response of the desired user. We develop an
iterative algorithm to calculate the CG-based weight vector.
By substituting the CG-based weight vector into the
proposed weight expression, we obtain the constrained
weight solution without the matrix inversion. The proposed
algorithms exhibit excellent performance with low
complexity and address the numerical instability found in
the RLS methods [3]. The second contribution of this
work is the analysis of the proposed algorithms. We first
study the convexity property of the CCM criterion and
then show a complexity comparison of the existing and
proposed algorithms. The convergence analysis of the
proposed algorithms is also derived to explain the impact of
the condition number [18] on the weight vector error.
Simulations evaluate the performance of the proposed
algorithms against the best known techniques.

2 System model and problem
statement
In this section, we describe a system model of a smart
antenna system. Based on this model, the beamformer is
designed according to the CMV and CCM criteria, and
the problem statement is introduced.

2.1 System model

Let us consider a smart antenna system equipped with a
uniform linear array (ULA) with m elements. For simplicity,
we consider a ULA even though the problem can be
extended to arbitrary antenna arrays. We focus on the
adaptive filtering strategy for adjusting the beamformer’s
weights wk′ (k′ = 1, . . . , m). Suppose that q(q ≤ m)
narrowband signals impinge on the ULA. The received
vector x(i) [ Cm×1 of the sensor array at time instant i is

x(i) = A(u)s(i) + n(i), i = 1, . . . , N (1)

where u = [u0, . . . , uq−1]T [ Rq×1 is the vector of the
Signal Process., 2010, Vol. 4, Iss. 6, pp. 686–697
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DOA, A(u) = [a(u0), . . . , a(uq−1)] [ Cm×q is the complex
matrix composed of the signal steering vectors
a(uk) = [1, e−2pj(d/lc) cos uk, . . . , e−2pj(m−1)(d/lc) cos uk ]T [
Cm×1 (k = 0, . . . , q − 1), where lc is the wavelength and d
(d = lc/2 in general) is the inter-element distance of the
ULA. In the following derivation, we assume that u0

corresponds to the direction of the desired user with
respect to the antenna array and is known beforehand by
the receiver. For implementation, u0 can be estimated by
DOA estimation algorithms [19]. The vector s(i) [ Cq×1 is
the source data with its entries are uncorrelated with each
other. The vector n(i) [ Cm×1 is the complex vector of
sensor noise, which is assumed to be a zero-mean spatially
and temporally white Gaussian process, N is the number of
snapshots and (.)T stands for transpose. The output of the
adaptive filter is given by

y(i) = wH(i)x(i) (2)

where w(i) = [w1(i), . . . , wm(i)]T [ Cm×1 is the complex
weight vector and (.)H stands for Hermitian transpose.

2.2 Design criteria and problem
statement

We present the design criteria that will be considered for the
development of the proposed adaptive algorithms. The CMV
criterion solves the following optimisation problem

min Jmv(w) = wHRw

subject to wH(i)a(u0) = g, i = 1, . . . , N
(3)

where R = E[x(i)xH(i)] [ Cm×m is the covariance matrix, g
is set to ensure the convexity of the cost function and a(u0)
is the steering vector of the desired user.

The CCM criterion solves the following optimisation
problem

min Jcm(w) = E[(|y(i)|p − dp)2]

subject to wH(i)a(u0) = g, i = 1, . . . , N
(4)

where the constant dp is suitably chosen to guarantee that the
weight solution is close to the global minimum [20] and in
general, p ¼ 2 is selected to consider the cost function as
the expected deviation of the squared modulus of the
beamformer output to a constant, say dp = 1.

In order to solve (3) and (4), we resort to the method of
Lagrange multipliers [3]. The weight expressions are

wcmv =
gR−1a(u0)

aH(u0)R−1a(u0)
(5)

wccm =
gR−1

y a(u0)

aH(u0)R−1
y a(u0)

(6)
687
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where Ry = E[ey(i)x(i)xH(i)] [ Cm×m is a matrix with cross-
correlations between y(i) and x(i), and ey = ||y(i)|2 − 1|. It is
worth noting that (6) is not a solution for the CCM criterion
since Ry depends on y(i), which is a function of wccm. A
solution can be obtained by setting an initial value of wccm

and running an iterative procedure, which will be shown in
the following part.

Considering the expressions in (5) and (6), we can
manipulate and organise them into the following systems of
equations

(aH(u0)R−1a(u0))Rwcmv = ga(u0) (7)

(aH(u0)R−1
y a(u0))Rywccm = ga(u0) (8)

where the terms aH(u0)R−1a(u0) and aH(u0)R−1
y a(u0) are

responsible for ensuring the constraints. The inversions of
R and Ry increase the computational load and suffer from
numerical instability. Numerous iterative algorithms can be
used to solve general systems of equations [3, 18, 19, 21].
Among them, the CG is an efficient method with very
attractive trade-off between performance and complexity.
Here, we plan to use the CG-based algorithm to enforce
the constraint and adjust the beamformer’s coefficients.

3 Proposed adaptive algorithms
In this section, we devise a CG-based weight vector strategy
to incorporate the constraint of the array response and
the matrix inversion in (5) and (6), and propose two
adaptive filtering algorithms, that is, the conventional
conjugate gradient (CCG) and the modified conjugate
gradient (MCG), for the beamformer design according to
the CMV and CCM criteria, respectively. The proposed
methods avoid the matrix inversion and exhibit excellent
performance with low complexity.

3.1 CG algorithm

The CG algorithm can be employed for solving optimisation
problems of the form [22, 23]

min J (v) = vHRv − 2<{bHv} (9)

where R [ Cm×m is the covariance matrix of x(i), b [ Cm×1 is
the cross-correlation vector between x(i) and the desired
response d(i), and v [ Cm×1 is the CG weight vector. The
operator <(·) selects the real part of the argument. The CG
algorithm solves (9) by iteratively updating the CG weight
vector as

vk = vk−1 + ak pk (10)

where pk is the direction vector with conjugacy, that is,
pH

k Rpl = 0 for k = l, ak is calculated by substituting (10)
into (9) and then minimising with respect to ak, and k ¼
1, . . . , K is the iteration number. Note that K ≤ m since
8
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the covariance matrix is composed of at most m
independent vectors [24].

The direction vector pk is obtained by a linear combination
of the previous direction vector and the negative gradient
vector gk = b − Rvk [22], which can be expressed as

pk+1 = gk + bk pk (11)

where bk is chosen to provide conjugacy for the direction
vectors. The CG algorithm and its properties can be found
in [18, 24, 25].

3.2 CG-based weight vector strategy

According to the CG optimisation problem, by taking the
gradient of (9) with respect to v, equating it to a null
vector and rearranging the expression, we obtain v = R−1b.
This expression is equivalent to the numerator of (5) if b is
replaced by a(u0) and the preset g is not considered, which is

v = R−1a(u0) (12)

where b = E[d∗(i)x(i)] = a(u0) if we assume that the source
data and the noise are mutually independent [26]. It should
be remarked that a(u0) is a constant known beforehand by the
receiver unlike b that has to be estimated in practice. From
(12), we can employ the CG algorithm to calculate v
iteratively. Expression (12) is fundamental for this work as
it creates a new CG-based weight vector v. We devise a
simple relation with the matrix inversion and the steering
vector of the desired user. In the proposed algorithm, v is
iterated and then substituted into (5) to replace R−1a(u0)
for the calculation of wcmv. Note that v in (12) is not the
weight solution for (3) but regarded as an intermediate
weight vector for enforcing the constraint and avoiding the
matrix inversion. Besides, the numerical problems caused
by the matrix inversion can be addressed in the proposed
strategy.

3.3 Proposed CG algorithms

In this part, we introduce the proposed CCG and the MCG
algorithms with respect to the CMV and CCM criteria,
respectively. For the CCG algorithm, the iteration
procedure for the CG-based weight vector v is executed
per snapshot. For the ith snapshot, R and Ry are replaced
by their recursive forms [3], which are fixed throughout the
K iterations of the CCG operation. Since the CG
algorithm was elaborated in [18], we omit the details here
and summarise the procedures for the CMV and CCM
criteria in Figs. 1 and 2, respectively, where l and ly are
the forgetting factors, and d and dy are the regularisation
parameters to initialise the covariance matrix.

The CCG algorithm operates K iterations per snapshot
and runs the reset periodically [24, 25] for convergence.
These operations increase the computational load in the
IET Signal Process., 2010, Vol. 4, Iss. 6, pp. 686–697
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sample-by-sample update. Here, we describe an MCG
algorithm with only one iteration per snapshot. Compared
with the existing methods, the proposed algorithm enforces
the constraint with low complexity, avoids the matrix
inversion and instability and keeps fast convergence without
the reset procedure.

Figure 1 CMV-CCG algorithm

Figure 2 CCM-CCG algorithm
T Signal Process., 2010, Vol. 4, Iss. 6, pp. 686–697
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3.3.1 Proposed CMV-MCG algorithm: The MCG
algorithm was motivated from [27] for adaptive filtering.
Here, we bring the idea into the paper for the beamformer
design. Note that the iteration number k is replaced by the
snapshot number i since, in the proposed algorithm, only
one iteration will be performed per snapshot. For
simplicity, we will remove k in the subscript of terms.

The CG-based weight vector is expressed by

ṽcmv(i) = ṽcmv(i − 1) + ãcmv(i)p̃cmv(i) (13)

where p̃cmv(i) is the direction vector, ãcmv(i) is the
corresponding coefficient and, in what follows, all the
quantities related to the proposed MCG algorithm
are denoted by an over tilde. Note that ṽcmv(i) formulates
the relation with R̂(i) and a(u0) to enforce the constraint
and solve the systems of equations.

From [27], one way to make the CG algorithm work with
one iteration per snapshot is the application of the
degenerated scheme. Under this condition, we need to
ensure that the coefficient ãcmv(i) satisfies the convergence
bound [27, 28], which is given by

0 ≤ p̃
H
cmv(i)g̃cmv(i) ≤ 0.5p̃

H
cmv(i)g̃cmv(i − 1) (14)

For deriving ãcmv(i), we consider a recursive expression for
the negative gradient vector

g̃cmv(i) = (1 − l)a(u0) + lg̃cmv(i − 1)

− ãcmv(i)R̂(i)p̃cmv(i) − x(i)xH(i)ṽcmv(i − 1) (15)

Premultiplying (15) by p̃
H
cmv(i), taking the expectation of both

sides and considering p̃cmv(i) uncorrelated with x(i), a(u0)
and ṽcmv(i − 1) [27] yield

E[p̃
H
cmv(i)g̃cmv(i)] ≃ lE[ p̃

H
cmvh(i)g̃cmv(i − 1)]

− lE[ p̃
H
cmv(i)a(u0)]

− E[ãcmv(i)[ p̃
H
cmv(i)R̂(i)p̃cmv(i)] (16)

where the optimal solution Rṽcmv,opt = a(u0) and
E[ṽcmv(i − 1) − ṽcmv,opt] ≈ 0 have been used with the
assumption that the algorithm converges. Making a
rearrangement of (16) and following the convergence
bound (14), we obtain

(l− 0.5)E[ p̃
H
cmv(i)g̃cmv(i − 1)] − lE[ p̃

H
cmv(i)a(u0)]

E[p̃
H
cmv(i)R̂(i)p̃cmv(i)]

≤ E[ãcmv(i)] ≤
lE[ p̃

H
cmv(i)g̃cmv(i − 1) − p̃

H
cmv(i)a(u0)]

E[ p̃
H
cmv(i)R̂(i)p̃cmv(i)]

(17)
689
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The inequalities in (17) are satisfied if we define

ãcmv(i) = [ p̃
H
cmv(i)R̂(i)p̃cmv(i)]−1{l[ p̃

H
cmv(i)g̃cmv(i − 1)

− p̃
H
cmv(i)a(u0)] − h̃p̃

H
cmv(i)g̃cmv(i − 1)} (18)

where 0 ≤ h̃ ≤ 0.5.

The direction vector p̃cmv(i) is defined by

p̃cmv(i + 1) = g̃cmv(i) + b̃cmv(i)p̃cmv(i) (19)

where b̃cmv(i) is computed for avoiding the reset procedure by
employing the Polak–Ribiere approach [24, 27, 29, 30],
which is stated as

b̃cmv(i) = [g̃H
cmv(i − 1)g̃cmv(i − 1)]−1

× [g̃cmv(i) − g̃cmv(i − 1)]Hg̃cmv(i) (20)

Until now, we derived the proposed MCG algorithm for the
CMV criterion, whose weight solution is given by

w̃cmv(i) = [aH(u0)ṽcmv(i)]−1
gṽcmv(i) (21)

The proposed CMV-MCG algorithm is summarised in
Fig. 3. We remove the subscript ‘cmv’ for compact
expressions. Clearly, compared with (5), the weight
solution in (21) ensures the constraint and solves the
systems of equations without the matrix inversion and thus
avoids numerical instability.

3.3.2 Proposed CCM-MCG algorithm: Regarding the
CCM criterion, w̃ccm(0) needs to be initialised for the
iteration procedure. Correspondingly, the negative gradient
vector is given by

g̃ccm(i) = (1 − ly)a(u0) − ãccm(i)R̂y(i)p̃ccm(i)

+ ly g̃ccm(i − 1) − ey(i)x(i)xH(i)ṽccm(i − 1) (22)

Figure 3 CMV-MCG algorithm
90
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Following the same derivation as for the CMV criterion, we
will obtain the CCM-MCG algorithm, which is summarised
in Fig. 4. Comparing with the CCG algorithm, the MCG is
a non-reset and low-complexity algorithm with one
iteration per snapshot. It achieves superior performance by
utilising the Polak–Ribiere approach, as will be shown in
simulations.

4 Analysis of the proposed
algorithms
In this section, we investigate the convexity, convergence and
complexity of the proposed algorithms.

4.1 Global convergence and properties

The CMV criterion, as can be seen in (3), is a second-order
function. Its analysis has been proved in [13]. Here, we
focus on the CCM criterion in (4), which is a fourth-
order function with an elaborate structure of the undesired
local minima. We show in Appendix 1 that the convexity
of the CCM cost function can be enforced by properly
selecting the coefficient g. Therefore the global
convergence for the constrained adaptive algorithms can
be guaranteed.

4.2 Computational complexity

In this part, we detail the computational complexity of the
proposed and analysed algorithms. The comparison of the
complexity with respect to different algorithms is listed in
Table 1, where r is the rank. It is obvious that the
complexity of the proposed CCG algorithms depends on
the number of iterations K. For the case of the MCG, the
complexity is lower than the other studied algorithms
except the SG, which sacrifices the performance as a trade-
off. Note that, compared with the RLS method, the

Figure 4 CCM-MCG algorithm
IET Signal Process., 2010, Vol. 4, Iss. 6, pp. 686–697
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Table 1 Comparison of the computational complexity

Algorithm Additions Multiplications

CMV-SG 4m 2 2 4m + 3

CCM-SG 4m 4m + 7

CMV-CCG K(m2 + 4m 2 2) + 2m2 2 1 K(m2 + 4m + 1) + 3m2 + 3m

CCM-CCG K(m2 + 4m 2 2) + 2m2 + m 2 2 K(m2 + 4m + 1) + 3m2 + 5m

CMV-MCG 2m2 + 7m 2 3 3m2 + 9m + 4

CCM-MCG 2m2 + 8m 2 3 3m2 + 11m + 5

CMV-RLS 4m2 2 m 2 1 5m2 + 5m 2 1

CCM-RLS 4m2 2 m 5m2 + 5m + 2

CMV-MSWF (r 2 1)m2 + rm + m + 4r2 2 2r 2 2 (r 2 1)m2 + 2rm + 5r2 + 5r

CCM-MSWF (r 2 1)m2 + rm + m 2 4r2 2 2r 2 1 (r 2 1)m2 + 2rm + 5r2 + 5r + 3

AVF r (4m2 + m 2 2) + 5m2 2 m 2 1 r (5m2 + 3m) + 8m2 + 2m
complexity of the MCG algorithm reduces significantly if m
(e.g. m ¼ 60) is large for some applications in sonar or radar.
The reduction is not visible if m is small, for example, m ¼ 4
for wireless communications [31]. However, the proposed
algorithm achieves an efficient implementation for the
beamformer design and avoids numerical instability that
occurs in the RLS method.

4.3 Convergence analysis

Theoretically, the CG-type algorithms are completed after at
most K ¼ m iterations for each snapshot. Actually,
accumulated floating point roundoff errors in the iterations
cause the residual (negative gradient) to gradually lose
accuracy and destroy the conjugacy of the direction vectors
[18, 25]. The convergence analysis is regarded as an
explanation about this error. In this paper, the algorithms
are proposed according to the CMV and the CCM criteria,
respectively. They are not applied directly for the weight
solutions. The convergence property in this part should be
analysed in consideration of the above cases. The subscripts
‘cmv’ and ‘ccm’ will be removed in the following terms for
compactness.

According to the CG theorem, the direction vector pk+1(i)
at the kth iteration for the ith snapshot is constructed by the
residual gk(i) and subtracting out any components that are
not the conjugacy with the previous pk(i). In other words,
the direction vectors are built from the residuals. Thus, the
subspace spanned by the residuals is equal to the subspace
spanned by the direction vectors.

On the other hand, we know that gk(i) is a linear
combination of the previous residuals and R̂(i)pk(i). If
defining Sk(i) as the subspace spanned by the direction
ss., 2010, Vol. 4, Iss. 6, pp. 686–697
-spr.2009.0243
vectors and recalling pk+1(i) [ Sk(i) imply that each new
Sk+1(i) is formed from the previous Sk(i) and R̂(i)Sk(i), we
have

Sk(i) = span{ p1(i), R̂(i)p1(i), . . . , R̂
k−1

(i)p1(i)}

= span{ g0(i), R̂(i)g0(i), . . . , R̂
k−1

(i)g0(i)} (23)

As we know, the residual vector can be written as

gk(i) = a(u0) − R̂(i)vk(i) = R̂(i)@k(i) (24)

where @k(i) = vopt(i) − vk(i) is the CG-based weight error at
the kth iteration and vopt(i) is the optimal solution at the ith
snapshot. According to (24), the second expression in (23) is
given by

Sk(i) = span{R̂(i)@0(i), R̂
2
(i)@0(i), . . . , R̂

k
(i)@0(i)} (25)

which is the well known Krylov subspace [18]. For a fixed k,
this subspace holds an important property, which is

@k+1(i) = I +
∑k

j=1

cj(i)R̂ j(i)

( )
@0(i) (26)

where I is an identity matrix and the coefficient cj(i) is a
function of al (i), where l ¼ j, . . . , k + 1 and bl ′(i) with
l ′ = j, . . . , k. To prove this property, substituting ak(i) and
691
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pk+1(i) into vk+1(i) iteratively, we obtain

vk+1(i) = v0(i) +
∑k+1

j=1

aj(i)pj(i)

= v0(i) +
∑k+1

j=1

aj(i)[gj−1(i) + bj−1(i)gj−2(i) + · · ·

+ bj−1(i) · · ·b2(i)g1(i) + bj−1(i) · · ·b1(i)p1(i)]

= v0(i) + {Lgk
(i)gk(i) + Lgk−1

gk−1(i) + · · ·

+ Lg1
(i)g1(i) + Lp1

(i)p1(i)} (27)

where

Lgk
(i) = ak+1(i), Lgk−1

(i) = ak(i) + ak+1(i)bk(i), Lg1
(i) = a2

(i) + a3(i)b2(i) + a4(i)b3(i)b2(i) + · · · + ak+1(i)bk(i)bk−1

(i) · · ·b2(i) and

Lp1
(i) = a1(i) + a2(i)b1(i) + a3(i)b2(i)b1(i) + · · · + ak+1(i)

bk(i)bk−1(i) · · ·b1(i).

In (27), the coefficients Lgl
(i) for l ¼ 1, . . . , k are constants

and p1(i) = g0(i). Thus, this implies that { g0(i), . . . ,
gk(i)} [ Sk(i). Subtracting (27) from vopt(i) and combining
the expressions in (24), (25) and (27), we obtain

@k+1(i) = @0(i) +
∑k

j=1

cj(i)R̂ j(i)@0(i) (28)

where cj(i) has been defined in (26). Making a rearrangement
leads to (26).

The importance of (26) is to measure the error energy norm
‖@k+1(i)‖R̂(i) = (@H

k+1(i)R̂(i)@k+1(i))1/2 for the convergence
analysis. The expression in parentheses of (26) can be written
as a polynomial Pk(R̂(i)) of degree k [25]. Then, we have

@k+1(i) = Pk(R̂(i))@0(i) (29)

where we require that P0(R̂(i)) = I since the algorithm cannot
converge at the initial step. @0(i) can be defined as a linear
combination of distinct eigenvectors with respect to R̂(i),
which yields @0(i) =

∑
j jj(i)zj(i), where jj(i) are scalars not

all zero and j is the index that corresponds to the number of
the eigenvectors zj(i). If we notice that Pk(R̂(i))zj(i) =
Pk(tj(i))zj(i) [25], where tj(i) is the eigenvalue corresponding
to zj(i), (29) can be expressed as

@k+1(i) =
∑

j

jj(i)Pk(tj(i))zj(i) (30)

‖@k+1(i)‖2
R̂(i)

=
∑

j

j2
j (i)P2

k (tj(i))tj(i) (31)

The proposed algorithm tries to find the polynomial Pk(tj(i))
2
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that minimises (31) for the convergence, which should be fast
even with the worst eigenvector. Therefore, this implies

‖@k+1(i)‖2
R̂(i)

≤ min
Pk

max
t(i)[L(R̂(i))

P2
k (t(i))

∑
j

j2
j (i)tj(i)

= min
Pk

max
t(i)[L(R̂(i))

P2
k (t(i))‖@0(i)‖2

R̂(i)
(32)

where L(R̂(i)) is the set of the eigenvalues with respect to R̂(i).
In order to analyse the connection between the error energy
norm and the eigenvalues in (32), we employ the Chebyshev
polynomials, which yields [25]

Pk(t(i)) = Tk[(tmax(i) + tmin(i) − 2t (i))/(tmax(i) − tmin(i))]

Tk[(tmax(i) + tmin(i))/(tmax(i) − tmin(i))]

(33)

where Tk(v) = 1/2
[
(v+

��������
v2 − 1

√
)k + (v−

��������
v2 − 1

√
)k]

denotes the Chebyshev polynomials of degree k. This
polynomial obeys the oscillating property of Chebyshev
polynomials on the domain tmin(i) ≤ t (i) ≤ tmax(i) [24].
The derivation of (33) is given in Appendix 2. Since the
maximum value of the numerator of (33) is 1, we substitute it
into the error energy norm, which should have

‖@k+1(i)‖R̂(i) = (@H
k+1(i)R̂(i)@k+1(i))1/2

≤ Tk

tmax(i) + tmin(i)

tmax(i) − tmin(i)

( )−1

‖@0(i)‖R̂(i)

= Tk

k(i) + 1

k(i) − 1

( )−1

‖@0(i)‖R̂(i)

= 2

�����
k(i)

√
+ 1�����

k(i)
√

− 1

( )k

+
�����
k(i)

√
− 1�����

k(i)
√

+ 1

( )k
⎡
⎣

⎤
⎦

−1

× ‖@0(i)‖R̂(i) (34)

where k(i) = tmax(i)/tmin(i) is the condition number. The
second term inside the brackets tends to zero as k increases, so
the convergence is governed by

‖@k+1(i)‖R̂(i) ≤ 2

�����
k(i)

√
− 1�����

k(i)
√

+ 1

( )k

‖@0(i)‖R̂(i) (35)

From (35), the CG-based weight vector converges following
the iteration procedure. We know that w(i) is impacted by
gk(i) according to the proposed method. This implies the
convergence of the proposed algorithm.

In conclusion, the convergence behaviour of the proposed
algorithms is related to the CG-based weight error @0(i) and
the condition number k(i), which should oscillate around
k(i) ¼ 1 for the optimal solution, that is, the convergence
is finished in one iteration. The convergence analysis is
suitable to the CMV and the CCM criteria if we use the
different matrix definitions R̂(i) and R̂y(i).
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5 Simulation results
The simulations are carried out under both stationary and non-
stationary scenarios for a ULA containing m sensor elements
with half-wavelength spacing. For each experiment, 1000
runs are executed to obtain the curves. In all simulations, the
desired signal power is s2

0 = 1 and the noise is spatially and
temporally white Gaussian. The BPSK modulation scheme is
employed and g ¼ 1 is set to satisfy the condition for the
convexity of the CCM criterion (see Appendix 1 and (41)).

5.1 Comparison with the Krylov subspace
methods

We compare the proposed algorithms with the SG [13], RLS
[3], MSWF [6] and AVF [7] methods according to the
CMV criterion by showing the output signal-to-interference-
plus-noise ratio (SINR) against the input signal-to-noise ratio
(SNR). The ULA is equipped with m ¼ 10 sensor elements.
We consider that the system has three interferers with equal
power level of the desired user. The step size for the CMV-
SG algorithm is set to mcmv = 0.0002. The iteration number
is K ¼ m/2 for the CCG algorithm. In Fig. 5, the output
SINRs of the studied algorithms are very close to that
obtained from (5) except for the SG method. The MSWF
and RLS algorithms show superior performance over the
other methods. The AVF converges faster than the other
methods. A general shortcoming of these algorithms is the
high computational cost. Conversely, the proposed MCG
algorithm converges quickly and reaches a comparable high
performance with low complexity. It is worth noting that the
MSWF and AVF algorithms do not show advantages in the
current scenario since they are more suitable to the large array
(e.g. m ≥ 30) scenarios [5, 6, 9].

5.2 SINR performance

Fig. 6 compares the proposed algorithms with the SG and
RLS methods. There are five interferers in the system with

Figure 5 Output SINR against the number of snapshots
with q ¼ 4, m ¼ 10, SNR ¼ 20 dB, l ¼ 0.998, h̃ = 0.49,
d ¼ 0.002, d̃ = 0.001 and mcmv ¼ 0.0002
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one 5 dB, one 0 dB and three 20.5 dB above the desired
power. It is observed that the SINRs of the RLS and
proposed algorithms increase with higher input SNR,
whereas the SG results show only a small improvement.
The proposed MCG curves approach the RLS ones but
with lower complexity. Also, the performance of the MCG
algorithms is better than that of the CCG methods, which
verifies the advantage of the Polak–Ribiere approach.
Clearly, the adaptive algorithms for the CCM criterion
achieve superior performance in contrast to those of the
CMV criterion. For efficient presentation and convenience,
we only illustrate the simulation results with respect to the
CCM criterion in the following parts.

5.3 Performance against number of users

In this part, we illustrate the performance of the proposed
algorithms with an increasing number of users. We
consider the input SNR ¼ INR ¼ 20 dB. The fact that the
number of the interferers increases deteriorates the output
SINR of all the algorithms as shown in Fig. 7. However,
the results of the proposed algorithms are still in good
match with that of the RLS method. As the number of the
interferers reach a reasonably large value, the performance
of the new algorithms is much closer to the RLS when
compared with a small number of users, which shows that
the proposed algorithms are robust in a severe environment.

5.4 Array beampatterns

Fig. 8 shows the beampatterns of the array with respect to the
existing and proposed algorithms. The DOA of the desired
user is u0 = 508. There are five interferers with one 5 dB
(u1 = 408), one 0 dB (u2 = 708), and three 25 dB
(u3 = 208, u4 = 308 and u5 = 608) above the desired
power. The input SNR ¼ 20 dB and the number of
snapshot is N ¼ 1000. From Fig. 8, the mainlobe beams

Figure 6 Output SINR against input SNR with q ¼ 6, m ¼ 16,
l ¼ ly ¼ 0.998, h̃ = 0.49, d ¼ dy ¼ 0.0018, d̃ = 0.0015,
d̃ y = 0.001, mcmv ¼ 0.0002 and mccm ¼ 0.00015
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of the studied algorithms are directed at the direction of the
desired user. The proposed algorithms have nulls at the
DOAs of the interferers, especially for the MCG method,
which forms the nulls as deep as those of the RLS method.
Also, the noise level is suppressed sufficiently by the
proposed algorithms, which is comparable to that of the
RLS method and much lower than the SG method.

5.5 Performance with mismatch

The mismatch condition is analysed in Fig. 9, which includes
two experiments. Fig. 9a shows the output SINR of each
method against the number of snapshots with the known
DOA of the desired user. The system works under the
same condition as that in Fig. 6 with a defined SNR ¼
20 dB. The performance under the mismatch scenario is

Figure 7 Output SINR against the number of users (q) with
m ¼ 16, SNR ¼ 20 dB, ly ¼ 0.998, h̃ = 0.49, dy ¼ 0.002,
d̃y = 0.001 and mccm ¼ 0.00015

Figure 8 Array beampattern against degree with m ¼ 16,
q ¼ 6, SNR ¼ 20 dB, ly ¼ 0.998, h̃ = 0.49, dy ¼ 0.002,
d̃y = 0.0013, mccm ¼ 0.00013
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given in Fig. 9b. The estimated DOA of the desired user is
a constant value 18 away from the actual direction. It
indicates that the mismatch problem induces a worse
performance to all the algorithms. The convergence rate of
all the methods reduces, whereas the devised algorithms are
more robust to this mismatch compared with the SG
method and work with lower computational complexity
compared with the RLS method, especially for the MCG
algorithm, whose curve reaches the steady state rapidly and
is very close to that of the RLS.

5.6 Performance in non-stationary
scenarios

We evaluate the performance of the proposed and analysed
algorithms in a non-stationary scenario. In Fig. 10, the

Figure 9 Output SINR against the number of snapshots
with m ¼ 16, q ¼ 6, SNR ¼ 20 dB, mccm ¼ 0.00015

a Ideal steering vector condition
b Steering vector with mismatch 18

Figure 10 Output SINR against the number of snapshots
in a scenario where additional interferers suddenly
enter and/or leave the system with m ¼ 16, q1 ¼ 6,
q2 ¼ 8, SNR ¼ 20 dB, ly ¼ 0.998, h̃ = 0.49, dy ¼ 0.003,
d̃y = 0.0025, mccm ¼ 0.00016
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system starts with five interferers, one with 0 dB and the rest
20.5 dB above the desired power. Two more users with one
5 dB and one 20.5 dB above the desired power enter the
system at the 1000th snapshot. We see that the SINRs of
the algorithms reduce at the same time. The proposed
algorithms rapidly track the change and recover to a steady
state. The CCG algorithm exhibits a faster convergence
rate at the beginning of the second stage since the reset
procedure makes a good start for obtaining the fresh weight
solution and so saves convergence time. The MCG
algorithm recovers quickly and achieves a better solution.
The CCM-RLS method achieves the best output but with
a relatively slow response at the second stage.

Fig. 11 depicts the coefficients ãccm(i) and b̃ccm(i) of the
proposed MCG algorithm in the non-stationary scenario,
respectively. Both ãccm(i) and b̃ccm(i) are close to zero in
the steady-state condition since, for ãccm(i), according to
ṽccm(i) = ṽccm(i − 1) + ãccm(i)p̃ccm(i), ãccm(i) = 0 means
that ṽccm(i) = ṽccm(i − 1), which coincides with the
convergence, and for b̃ccm(i), according to b̃ccm(i) =
[g̃H

ccm(i − 1)g̃ccm(i − 1)]−1[g̃ccm(i) − g̃ccm(i − 1)]H g̃ccm(i),
the residual vector g̃ccm(i) will be close to zero after the
algorithm converges and so b̃ccm(i) 
 0. The only
interruptions for both figures occur as the extra interferers
come into the system, which verifies the adaptability of the
coefficients.

6 Conclusions
This paper proposed CG-based adaptive algorithms with
respect to the CMV and CCM criteria for adaptive
filtering with application to beamforming. We created a
connection between the CG-based weight vector and the
weight expressions of the design criteria to enforce the
constraint and avoid the matrix inversion and numerical
instability. A complexity comparison was given for
illustrating the advantage of the proposed algorithms over

Figure 11 Step size values a and b of the proposed CCM-
MCG algorithm in a scenario where additional interferers
suddenly enter and/or leave the system
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the existing ones. The CCM convexity property was
established and a convergence analysis for the proposed
algorithms was derived. Simulation results showed that the
proposed algorithms achieve comparable fast convergence
and tracking abilities with low complexity in the studied
scenarios.
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9 Appendix 1: convexity
condition for the CCM criterion
We consider cost function (4), which can be written as

Jcm = E[|y(i)|4 − 2|y(i)|2 + 1]

= E[|wH(i)x(i)xH(i)w(i)|2] − 2E[|wH(i)x(i)|2] + 1

(36)

where dp = 1 and x(i) =
∑q−1

k=0 Bkdka(uk) + n(i) from (1) with
Bk being the signal amplitude and dk is the transmitted bit of
the kth user (k¼ 0, . . . , q 2 1), respectively. Note that we have
replaced sk in (1) by Bkdk. For the sake of analysis, we will
follow the assumption in [32] and consider a noise-free case.
For small noise variance s2

n, this assumption can be
considered as a small perturbation and the analysis will still
be applicable. For large s2

n, we remark that the term g

can be adjusted to make (4) convex. Under this assumption,
we write the input vector as x(i) ¼ ABd(i), where
B = diag[B0, . . . , Bq−1] and d(i) = [d0(i), . . . , dq−1(i)]T.
For simplicity, we remove the time instant i in
the quantities. Letting rk = BkwHa(uk) and r =
[r0, . . . , rq−1]T, (36) can be written as

Jcm = E[rHddHrrHddHr] − 2E[rHddHr] + 1 (37)

Since dk are independent random variables, the evaluation of
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the first two terms in the brackets of (37) reads

rHddHrrHddHr =
∑q−1

k=0

∑q−1

j=0

|dk|2|dj |2r∗k rkr∗j rj

rHddHr =
∑q−1

k=0

|dk|2r∗k rk

(38)

Substituting (38) into (37) and using the constrained
condition wHa(u0) = g, we have

Jccm = E[|d0|2B2
0g

2 + �rH�d�d
H
�r]2 − 2E[|d0|2B2

0g
2

+ �rH�d�d
H
�r] + 1 (39)

where d0 and B0 denote the transmitted bit and amplitude

relevant to the desired signal, �d = [d1, . . . , dq−1]T and

�r = [r1, . . . , rq−1]T. To examine the convexity property of

(39), we compute the Hessian H with respect to �rH and �r,

that is H = (∂/∂�rH)(∂Jccm/∂�r) yields

H = 2E[(|d0|2B2
0g

2 −1)�d�d
H + �d�d

H
�r�rH�d�d

H +�rH�d�d
H
�r�d�d

H
]

(40)

where H should be positive semi-definite to ensure the
convexity of the optimisation problem. The second and third
terms in (40) yield positive semi-definite matrices, while the
first term provides the condition |d0|2B2

0g
2 − 1 ≥ 0 to ensure

the convexity of Jccm. Since �r can be expressed as a linear
function of w, that is, �r = Cw, where B′ =
diag(B1, . . . , Bq−1) [ R(q−1)×(q−1), A′ = [a (u1), . . . ,
a(uq−1)] [ Cm×(q−1) and C = B′HA′H [ C(q−1)×m. This
expression shows that Jccm(w) is a convex function of w as
Jccm(�r) = Jccm(Cw) is of �r when

g2 ≥ 1

|d0|2B2
0

(41)

The optimisation problem is convex if the condition in (41) is
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satisfied. Note that this condition holds for all constant
modulus constellations.

10 Appendix 2: derivation of (33)
We employ Chebyshev polynomials [33] for minimisation of
(32) since they increase in magnitude more quickly outside
the range [21, 1] than any other polynomial that is
restricted to have magnitude less or equal to one inside
this range. The Chebyshev polynomials of degree k,
Tk(v) = 1/2[(v+

��������
v2 − 1

√
)k + (v−

��������
v2 − 1

√
)k] can be

written on the region [21, 1] as [34]

Tk(v) = cos(k cos−1 v), − 1 ≤ v ≤ 1 (42)

in which we deduce that the Chebyshev polynomials hold
|Tk(v)| ≤ 1 for 21 ≤ v ≤ 1 and oscillate rapidly on the
region [21, 1]

Tk( cos(lp/k)) = ( − 1)l , l = 0, 1, . . . , k (43)

where it is clear that the k zeros of Tk must fall between the
k + 1 extrema of Tk in the range [21, 1].

Similarly, function (33) oscillates in the range
+Tk[(tmax(i) + tmin(i))/(tmax(i) − tmin(i))]−1 on the
domain [tmin(i), tmax(i)]. Note that Pk(t(i)) still keeps the
requirement that Pk(0) = 1.

Furthermore, it is important to show that there is no other
polynomial better than Pk in the range [tmin(i), tmax(i)].
We use the contradiction way to prove this fact.
Suppose that there is such a polynomial Qk that satisfies
Qk(t(i)) , Tk[(tmax(i) + tmin(i))/(tmax(i) − tmin(i))]−1 on
the range [tmin(i), tmax(i)]. It follows that the polynomial
Pk − Qk has a zero at t(i) ¼ 0 and also k zeros on the
range [tmin(i), tmax(i)]. In other words, Pk − Qk is a
polynomial of degree k with at least k + 1 zeros, which is
impossible. Hence, we conclude that the Chebyshev
polynomial of degree k optimises (32).
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