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Abstract—This article proposes novel sparsity-aware space-
time adaptive processing (SA-STAP) algorithms with l1-norm
regularization for airborne phased-array radar applications. The
proposed SA-STAP algorithms suppose that a number of samples
of the full-rank STAP data cube are not meaningful for processing
and the optimal full-rank STAP filter weight vector is sparse,
or nearly sparse. The core idea of the proposed method is
imposing a sparse regularization (l1-norm type) to the minimum
variance (MV) STAP cost function. Under some reasonable as-
sumptions, we firstly propose a l1-based sample matrix inversion
(SMI) to compute the optimal filter weight vector. However,
it is impractical due to its matrix inversion, which requires
a high computational cost when using a large phased-array
antenna. In order to compute the STAP parameters in a cost-
effective way, we devise low-complexity algorithms based on
conjugate gradient (CG) techniques. A computational complexity
comparison with the existing algorithms and an analysis of the
proposed algorithms are conducted. Simulation results with both
simulated and the Mountain Top data demonstrate that fast
signal-to-interference-plus-noise-ratio (SINR) convergence and
good performance of the proposed algorithms are achieved.

Index Terms—l1 regularization, Sparsity-aware Space-time
adaptive processing, Conjugate gradient techniques, Airborne
radar, Mountain Top data.

I. INTRODUCTION

Space-time adaptive processing (STAP) is an efficient tool
for detection of slow targets by airborne or spaceborne radar
systems in hostile environments, such as strong clutter and
jammers [1]–[4]. However, the full-rank adaptive STAP based
on linearly constrained minimum variance (LCMV) criterion
gives rise to two of the major limitations in practical applica-
tions of radar [2], [4]. First, the computational load required
to solve the interference matrix inversion is quite high. In
addition, the number of training data samples required for an
accurate estimate of the interference covariance matrix can
become impractical for high-dimensional problems, particu-
larly in heterogeneous environments. It is therefore desirable to
develop STAP techniques with low computational complexity
and that can provide high performance in small-sample support
situations.

The diagonal loading sample matrix inversion (LSMI) tech-
nique is considered to be a simple and robust approach for both
homogeneous and heterogeneous environments [5], but has a
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high computational cost. Reduced-rank techniques have been
investigated for solving the previously discussed problems in
the last decades [6]–[12], [14]–[22]. One of the most important
reduced-rank techniques is the class of the Krylov subspace
methods, which includes the auxiliary-vector filters (AVF)
[7], [8], the multistage Wiener filter (MWF) [9]–[13] and the
conjugate gradient (CG) algorithm [14]–[17]. These methods
project the observation data onto a lower-dimensional Krylov
subspace and can obtain an improved convergence and track-
ing performance. The main differences amongst them lie in
the computational cost, the structure of adaptation and the ease
of implementation. Knowledge-aided (KA) STAP techniques
have currently gained significant attention as an effective STAP
algorithm to mitigate the effects of the heterogeneity in the
secondary data by exploiting a priori knowledge [18], [19],
[23], [24]. However, the exact form of prior knowledge is
still problem-dependent and hard to be derived. More recently,
several authors have considered sparse recovery (SR) ideas for
moving target indication (MTI) and STAP problems [25]–[31].
These works based on SR techniques rely on the recovery
of the clutter spectrum in the angle-Doppler plane, which is
usually carried out via two steps: first, recovering the clutter
angle-Doppler profile by some SR algorithms; second, estimat-
ing the covariance matrix based on the result obtained in the
first step, and computing the Capon’s optimal filter. Although
some fast sparse recovery algorithms are proposed, e.g., the
fast iterated shrinkage/thresholding (FISTA) algorithm [27],
and the focal underdetermined system solution (FOCUSS)
based algorithm [30], it is more computationally expensive
than conventional STAP because the Capon’s optimal filter
requires a matrix inversion, and the recovery procedure needs
additional computations.

In airborne radar systems, most interference suppression
problems are rank deficient in nature [2]–[4], i.e., they require
less adaptive degrees of freedom (DOFs) than the full DOFs
provided by the array. In this case, the total adaptive DOFs
provided by the array will be much great than the number
that needed to suppress the interference. Motivated by this,
the authors in [32] proposed a sequential approach to obtain
a sparse solution for the transformation matrix that selects the
”best” DOFs to be retained in a partially adaptive beamformer.
Moreover, the property described above suggests that there is
a high degree of sparsity of the filter weight vector. Hence,
in our prior work, an l1 type regularization to the generalized
sidelobe canceler (GSC) STAP processor using the l1-based
online coordinate gradient (OCD) method [33] and the l1-
based recursive least squares method [34] is introduced to
exploit the sparsity of the received data and filter weights,
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resulting in an improvement in both convergence rate and
steady-state signal-to-interference-plus-noise ratio (SINR) per-
formance. In this paper, we extend the work presented in [33]
and [34] to the direct filter STAP processor (DFP) and focus
on a computationally efficient algorithm for implementation.
By adding the sparsity constraint (l1-norm regularization) to
the MV cost function, the proposed STAP technique is able
to automatically shrink the least relevant coefficients of the
filter to zero, thereby using only the most important DOFs and
creating a sparse filter. We derive the l1-regularized optimal
filter under some reasonable assumptions, and then propose
a sparsity-aware (SA) adaptive STAP strategy for airborne
radar systems. One approach to computing the parameters of
the filter is to use the l1-based SMI recursion algorithm to
compute the filter weights. However, it requires the matrix
inversion operation, which prevents its use in practice. The
CG method has a low computational complexity and is the
simplest Krylov subspace method since it only needs the
forward stage, unlike the MWF that requires both forward
and backward stages. Therefore, low complexity l1-based CG
type algorithms are devised. The simulations are conducted
using both simulated and measured data, which show that
the proposed algorithms exhibit improved performance as
compared to existing techniques.

This paper is organized as follows. Section II introduces
the STAP signal model for airborne radar. In Section III, we
first introduce the strategy of the SA-STAP algorithm. Then l1-
based SMI and l1-based CG type algorithms are developed and
their computational complexity is also shown. Furthermore, we
conduct an analysis of the proposed algorithms. In Section IV,
some examples of performance of the proposed algorithms
with both simulated and the Mountain Top data are shown.
Finally, the conclusions are given in Section V.

Notation: In this paper, scalar quantities are denoted with
italic typeface. Lowercase boldface quantities denote vectors
and uppercase boldface quantities denote matrices. The op-
erations of transposition, complex conjugation, and conjugate
transposition are denoted by superscripts T , ∗, and H , re-
spectively. The symbols ⊗ represents the Kronecker product
and ⊙ denotes the Hadamard matrix product. Finally, the
symbol E {·} denotes the expected value of a random quantity,
operator ℜ[·] selects the real part of argument, and the symbol
∥ · ∥p denotes the lp-norm operation of a vector.

II. SIGNAL MODEL AND PROBLEM STATEMENT

The system under consideration is a pulsed Doppler radar
residing on an airborne platform. The radar antenna is a uni-
form linear array (ULA) which consists of M elements. The
platform is at altitude hp and moving with constant velocity
vp. The chosen coordinate system is shown in Fig.1(a). The
angle variables ϕ and θ refer to elevation and azimuth. The
radar transmits a coherent burst of pulses at a constant pulse
repetition frequency (PRF) fr = 1/Tr , where Tr is the pulse
repetition interval (PRI). The transmitter carrier frequency is
fc = c/λc, where c is the propagation velocity and λc is the
wavelength. The coherent processing interval (CPI) length is
equal to NTr. For each PRI, K time samples are collected

to cover the range interval. After matched filtering to the
radar returns from each pulse, the received data set for one
CPI comprises KNM complex baseband samples, which is
referred to as the radar datacube shown in Fig.1(b). The data
are then processed at one range of interest, which corresponds
to a slice of the CPI datacube. The slice is an M ×N matrix
which consists of M × 1 spatial snapshots for pulses at the
range of interest. It is convenient to stack the matrix column-
wise to form the NM × 1 vector x[k], termed a space-time
snapshot, where k is the range sample index and 1 ≤ k ≤ K
[2]–[4].

Target detection in airborne radar systems can be formulated
into a binary hypothesis problem, where the hypothesis H0

corresponds to target absence and the hypothesis H1 corre-
sponds to target presence, given as

H0 : x =xu

H1 : x =αss+ xu,
(1)

where αs is a complex gain and the vector s, which is the
NM × 1 normalized space-time steering vector in the space-
time look-direction, defined as

s =
st(fd)⊗ ss(fs)

∥st(fd)⊗ ss(fs)∥2
, (2)

where st(fd) denotes the N × 1 temporal steering vector
at the target Doppler frequency fd and ss(fs) denotes the
M × 1 spatial steering vector in the direction provided by the
target frequency fs. The vector xu encompasses any undesired
interference or noise component of the data including clutter
xc, jamming xj and thermal noise xn. Generally, we assume
the thermal noise is spatially and temporally uncorrelated, and
the jamming is temporally uncorrelated but spatially strongly
correlated. As for the clutter, a general model for the clutter
space-time snapshot is given by [36]

xc[k] =

Nr∑
m=1

Nc∑
n=1

σc/k;m,n

(
αt(k;m,n)⊙ st(fd/k;m,n)

)
⊗
(
αs(k;m,n)⊙ ss(fs/k;m,n)

)
,

(3)

where Nr is the number of range ambiguities, Nc is the num-
ber of independent clutter patches that are evenly distributed
in azimuth about the radar, αt(k;m,n) is a vector describing
the normalized pulse-to-pulse voltages, and αs(k;m,n) ac-
counts for spatial decorrelation. σc/k;m,n describes the average
voltage for the mnth clutter patch and kth range. The clutter-
jammer-noise (for short, calling interference in the following
part) covariance matrix R can be expressed as

R = E
{
xux

H
u

}
= Rc +Rj +Rn, (4)

where Rc = E
{
xcx

H
c

}
, Rj = E

{
xjx

H
j

}
and Rn =

E
{
xnx

H
n

}
, denote clutter, jammer and thermal noise covari-

ance matrix, respectively.
Generally, the space-time processor linearly combines the

elements of the data snapshot, yielding the scalar output [4]

y = wHx, (5)

where w is the NM × 1 weight vector. The idea behind
LCMV approach is to minimize the STAP output power whilst
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constraining the gain in the direction of the desired signal. This
leads to the following power minimization with constraints

min
w

J(w) = E
{
∥wHx∥22

}
s.t. wHs = 1. (6)

Using the method of Lagrange multipliers, the optimal full-
rank LCMV STAP weights are given by [1]

wLCMV =
R−1s

sHR−1s
. (7)

III. SA-STAP WITH L1-NORM REGULARIZATION

In this section, we detail the design of the proposed SA-
STAP strategy, derive the l1-based SMI recursion algorithm
and the l1-based CG type algorithms and detail their complex-
ity. Finally, the analysis of the proposed SA-STAP algorithms
is shown.

A. SA-STAP Strategy

In airborne radar systems, most interference suppression
problems are rank deficient in nature, which means that they
require less adaptive DOFs than those offered by the array,
the additional DOFs that are not required can be discarded
so that only those that are important are retained, which
has been exploited by several techniques including reduced-
dimension [35], reduced-rank [6]–[12], [14]–[19] and partially
STAP technique [32]. Furthermore, full DOFs will lead to slow
convergence, i.e. requiring many snapshots to train the filter,
which is difficult to obtain especially in non-homogeneous
clutter environments. As a result, the total adaptive DOFs
provided by the array will be much greater than those required
to suppress the interference. In other words, the required length
of the filter weight vector (required DOFs) to suppress the
clutter is much less than NM , which corresponds to the
number of nonzero elements or significant elements in the full
filter weight vector is much less than NM . From this point
of view, there is a high degree of sparsity to be exploited in
the filter weight vector. However, in practice it is not easy
to estimate the required DOFs related to the sparsity and to
decide which DOFs are the most important ones. The authors
in [33], [34] proposed an l1 regularized STAP algorithm for
GSC structure to exploit the sparsity of the received data and
filter weights. In this paper, we extend this work to a more
general framework for airborne radar systems, by employing
the sparse regularization to the MV STAP cost function, which
is described as the following optimization problem

min
w

E
{∥∥wHx

∥∥2
2

}
+ 2λΓ (w) s.t. wHs = 1, (8)

where λ is a positive scalar which provides a trade-off between
the sparsity and the output interference power. The larger
the chosen λ, the more components are shrunk to zero [37].
The sparse regularization is usually conducted by the l0-norm
constraint [38]–[40]. However, since this kind of optimization
problem is known to be NP-hard, one of the approximation
algorithms, called l1-norm, is considered for the convexity and
simple complexity [39]. In the following, we adopt the l1-norm
regularization, i.e., Γ (w) = ∥w∥1. Now, the question that
arises is how to effectively solve the l1 regularized MV STAP.

Albeit convex, the cost function J1(w) is non-differentiable
which leads to a difficulty with the use of the method of
Lagrange multipliers directly. Thus, inspired by [38], we
propose an approximation to the regularization term, which
is given by

Γ (w) = ∥w∥1 ≈ wHΛw, (9)

where

Λ = diag
{

1

|w1|+ ϵ
,

1

|w2|+ ϵ
, · · · , 1

|wNM |+ ϵ

}
, (10)

where ϵ is a small positive constant (e.g., ϵ = 0.01 ∼ 0.1 is
acceptable),and wi, i = 1, 2 · · · ,MN are the entries of the
filter weight vector w. Thus the regularization term wHΛw
has a quadratic structure, if we assume that the diagonal matrix
Λ is fixed. The minimization can be performed iteratively by
assuming that the term Λ is fixed and computed with the
current solution w [38]. By fixing the term Λ, we compute
the partial derivative of (9) with respect to w∗, which is given
as follows

∂∥w∥1
∂w∗ ≈

∂
(
wHΛw

)
∂w∗ = Λw. (11)

The above constrained optimization problem described by
(8) can be transformed into an unconstrained optimization
problem by the method of Lagrange multipliers, whose cost
function becomes

L = E
{∥∥wHx

∥∥2
2

}
+ 2λ∥w∥1 + 2ℜ

{
κ∗ (wHs− 1

)}
, (12)

where κ is a complex Lagrange multiplier. Computing the
gradient terms of (12) with respect to w∗ and κ∗, we get

∇Lw∗ = Rw + λΛw + κ∗s

∇Lκ∗ = wHs− 1.
(13)

By equating the above gradient terms to zero, we obtain the
filter weight vector

w =
[R+ λΛ]

−1
s

sH [R+ λΛ]
−1

s
. (14)

By inspecting (14), we verify that there is an additional
term λΛ in the inverse of the interference covariance matrix
R, which is due to the l1-norm regularization. One should note
that the filter weight vector expression in (14) is not a closed-
form solution since Λ is a function of w. Thus it is necessary
to develop an iterative procedure to compute the filter weight
vector, which will be shown in the following parts.

B. L1-Based SMI Recursion Algorithm

In practice, because the interference covariance is unknown
to us, it is most common to compute the interference covari-
ance matrix estimate as [2]–[4]

R̂ =
1

L

L∑
n=1

x[n]xH [n], (15)

where {x[n]}Ln=1 are known as the secondary or training data.
In our following derivation, to develop an iterative procedure,
we add an exponential weighting factor to the interference
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covariance matrix, which may allow the STAP algorithms to
accommodate possible non-stationarities in the input. We write
the R̂[k] as

R̂[k] =
i∑

n=1

βk−nx[n]xH [n] = βR̂[k − 1] + x[i]xH [i], (16)

where β is the forgetting factor, and R̂[0] = δI, where δ is
a small positive quantity and I is the identity matrix. Since
Λ[k] is a function of w[k], we assume that the filter weight
values do not change significantly in a single snapshot step,
which is reasonable because we want the instantaneous error
of the filter weight vector to change slowly [41]. Hence, Λ[k]
can be approximated by

Λ[k] ≈Λ[k − 1] =

diag
{

1

|w1[k − 1]|+ ϵ
, · · · , 1

|wNM [k − 1]|+ ϵ

}
.

(17)

However, we note that the computational complexity of
the l1-based SMI recursion algorithm is proportional to
O
(
(NM)

3
)

, which is not practical, especially in large an-
tenna arrays. In the next section, we will develop some low
complexity algorithms.

C. L1-Based CG Algorithms

In order to reduce the computational complexity of the l1-
based SMI recursion algorithm, we introduce low complexity
adaptive algorithms based on CG techniques to iteratively
compute the filter weights. There are two different basic strate-
gies for using the CG method. One is the conventional CG
(CCG) [15], [16], which executes several iterations per sample
and runs the reset periodically for convergence. The other
is the modified CG (MCG) [14], [16], [17], which operates
only one iteration per sample. CCG has a faster convergence
than MCG, but a higher computational complexity. In the
following, we detail the derivation of the l1-based SA-STAP
algorithms based on these two strategies, called l1-based CCG
algorithm and l1-based MCG algorithm. For simplicity, we
firstly introduce an auxiliary vector given by

v[k] =
[
R̂[k] + λΛ[k]

]−1

rt. (18)

Then the STAP filter weight vector can be described as w[k] =
v[k]/ (sv[k]). The solution of v[k] described by (18) is also
the solution of the following minimization problem [16]:

minJ (v) = vH
[
R̂+ λΛ

]
v − 2ℜ

{
vHs

}
. (19)

Then the CG-based weight vector is expressed by

v[k] = v[k − 1] + α[k]p[k], (20)

where p[k] is the direction vector, α[k] is the corresponding
adaptive step size.

For the l1-based CCG algorithm, the iteration procedure
for the CG-based weight vector v is executed per sample.
For the kth sample, it assumes constant R̂[k] + λΛ[k] within
the internal iterations, and D internal iterations are performed

per input data sample. The main difference between the l1-
based CCG algorithm and the existing CCG algorithm after
the derivation is that we add an additional term λΛ[k] to the
estimated interference covariance matrix R̂[k]. A summary of
the algorithm is shown in Table I.

The l1-based CCG algorithm operates multiple iterations
per sample and runs the reset periodically for convergence,
which increases the computational load in the sample-by-
sample update. In the following, we detail the derivations of
the l1-based MCG algorithm with one iteration per sample for
STAP. From [14], one way to realize the conjugate gradient
method with one iteration per snapshot is the application
of the degenerated scheme, which means that the residual
vector g[k] will not be completely orthogonal to the subspace
spanned by the direction vectors {p[0],p[1], · · · ,p[k − 1]}.
Under this condition, the adaptive step size α[k] has to fulfill
the convergence bound given by

0 ≤
∣∣pH [k]g[k]

∣∣ ≤ 0.5
∣∣pH [k]g[k − 1]

∣∣ , (21)

where g[k] is the negative gradient vector of J (v) in (19).
Thus, g[k] can be written as

g[k] = −∇J (v)v∗ = −
[
R̂[k] + λΛ[k]

]
v[k] + s, (22)

which can be calculated recursively by

g[k] = (1− β) s+ βg[k − 1]− α[k]
[
R̂[k] + λΛ[k]

]
p[k]

−
{
λ [1− β]Λ[k] + x[k]xH [k]

}
v[k − 1].

(23)

In the previous equation, we use the approximation that
Λ[k − 1] ≈ Λ[k]. Premultiplying (23) by pH [k], taking the
expectation of both sides and considering p[k] uncorrelated
with s, x[k] and v[k − 1] [14], we obtain

E
[
pH [k]g[k]

]
≈βE

[
pH [k]g[k − 1]

]
− βE

[
pH [k]s

]
− E

[
α[k]pH [k]

(
R̂[k] + λΛ[k]

)
p[k]

]
.

(24)

Here, it is assumed that the algorithm converges
with the assumption that E [v[k − 1]− vopt] ≈ 0,
E
[
x[k]rH [k]v[k − 1]

]
≈ s, and E [λ [1− β]Λ[k]v[k − 1]] ≈

0. Making a rearrangement of (25) and following the
convergence bound (21), we obtain

α[k] =
[
pH [k]

(
R̂[k] + λΛ[k]

)
p[k]

]−1 {
β
[
pH [k]g[k − 1]

−pH [k]s
]
− µpH [k]g[k − 1]

}
.

(25)

where 0 ≤ µ ≤ 0.5. The direction vector is a linear com-
bination from the previous direction vector and the negative
gradient, which is described as

p[k] = g[k − 1] + ν[k]p[k], (26)

where ν[k] is computed for avoiding the reset procedure by
employing the Polak-Ribiere approach, which often has an
improved performance [14], [16], and is stated as

ν[k] =
[g[k]− g[k − 1]]

H
g[k]

gH [k − 1]g[k − 1]
. (27)
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The proposed l1-based MCG STAP algorithm is summarized
in Table II.

From the above discussions, two aspects should be noted:
First, the performance of our proposed algorithms (both l1-
based SMI and l1-based CG-type algorithms) depends on
the regularization parameter λ. An approach to choose λ
is introduced in [34], which can be easily extended to our
proposed algorithms, but is not discussed in this paper due to
space limitations. Second, the convergence analysis in [16]
is suitable to our proposed CG-type algorithms, where the
convergence is governed by

∥ςi+1[k]∥G[k] ≤ 2

(√
τmax/τmin − 1

τmax/τmin + 1

)i

∥ς0[k]∥G[k], (28)

where ςi[k] = vopt[k]− vi[k] is the CG-based weight vector
error at the ith iteration for the kth snapshot, vopt[k] is the
optimal solution at the kth snapshot, τmax and τmin are the
maximal and minimal eigenvalues with respect to G[k] =
R̂[k] + λΛ[k], and ∥ςi[k]∥G[k] = ςHi [k]G[k]ςi[k]. From the
above equation, we note that the convergence behavior of the
proposed algorithms is related to the CG-based weight vector
error ς0[k] and the condition number τmax/τmin.

D. Complexity Analysis

In this section, we detail the computational complexity in
terms of complex additions and complex multiplications of
the proposed l1-based SMI, l1-based CG type algorithms, and
other existing STAP algorithms, namely the LSMI, the AVF,
the MWF and the conventional CG type algorithms, as shown
in Table III. It should be noted that the rank D may not
be equal to the clutter rank, and can be smaller than that.
This is because the principle of the Krylov subspace approach
is different from that of the eigen-decomposition approach.
An eigen-decomposition approach would usually require an
SVD on the full-rank covariance matrix and the selection of
the D eigenvectors associated with the D largest eigenvalues,
which is high related to the clutter rank. In contrast to
that, the Krylov-based approach does not require an eigen-
decomposition and selects the D basis vectors which minimize
the desired cost function and will form the projection matrix,
where D can be decreased without significantly degrading the
SINR [12]. In the table, D is the rank for the CCG type, the
AVF and the MWF algorithms, and L = NM is the system
size. Seen from the table, the computational complexity of l1-
based SMI is similar to the conventional LSMI algorithm, both
requiring one to calculate the matrix inversion. With respect to
the proposed l1-based CG type algorithms, the computational
complexity is nearly the same as the conventional CG type
algorithms. Note that the complexity of the CCG type, the AVF
and the MWF algorithms is dependent on the rank D. This is a
tradeoff between complexity and performance. We found that
the rank of the proposed l1-based CCG algorithm with D = 7
works well (while the best rank for AVF and MWF is much
larger), as will be verified in the following simulations. The
low-rank characteristic will bring computational savings. The
computational complexity of all algorithms is shown in Fig.2,
where we use the best rank obtained from the simulations for

these algorithms (D = 7 for CCG type, D = 18 for AVF
and D = 14 for MWF). We see that the proposed CG type
algorithms have much lower complexity than the AVF and
MWF algorithms.

Furthermore, the filter weights need to be repeatedly com-
puted for target detection in airborne radar systems, especially
in heterogeneous environments. In this case, our proposed
algorithms can work in an iterative way and do not need to
recompute all the filter weights, which can lead to significant
computational savings. Usually, secondary data of the sliding
window are used in detection procedures, where the parameter
that defines the length of the sliding window is K. Assume
Ri[K] denotes the estimated interference covariance matrix
according to (16) and wi[K] denotes the filter weight vector
at the cell under test (CUT) of the ith range bin, respectively.
Consider the case of the i + 1th CUT, we first remove the
impact of i+ 1th CUT, given by

βRi+1[K − 1] = Ri[K]− x[i+ 1]xH [i+ 1]. (29)

Since an exponentially decaying data window is used, we do
not need to remove the first snapshot used to compute the
filter weights. Then, similarly, we consider the case of adding
snapshots. Two snapshots, one is at the primary ith CUT and
another is the new snapshot xnew which was not included in
the sliding window before, should be added to the i+1th CUT
secondary data. The procedure can be written as

Ri+1[K] =βRi+1[K − 1]+

βxnewx
H
new + x[i+ 1]xH [i+ 1].

(30)

As for the filter weight vector wi+1[K] at the i+1th CUT, it
can be updated using the new interference covariance matrix
and the filter weight vector wi[K − 1].

In addition, the proposed algorithms adopt an adaptive fil-
tering approach, which can obtain a near optimum interference
rejection at a low cost [42]. The advantage of this approach
is that filtering can be accomplished in a pipeline mode as
the echo pulses come in. The required number of calculations
for filtering can be realized easily with nowadays digital
technology [41].

E. Analysis of the SA-STAP Algorithm

At this point, we have finished the derivation of the SA-
STAP algorithms. The following simulation results will show
that the proposed SA-STAP algorithms have a faster SINR
convergence speed and better SINR steady-state performance
than the conventional algorithms. This translates into a supe-
rior detection performance. However, why do the SA-STAP
algorithms work is an interesting question. This section will
try to explain that from two points of view.

First, to understand the behavior, we write the filter weight
vector using the eigenvalue decomposition (EVD) of R̂. We
assume that the eigenvalues of the estimated interference
covariance matrix are γ̂n with the corresponding eigenvectors
denoted by un, n = 1, 2, · · · , NM . The eigenvalues are
ordered as,

γ̂1 ≥ γ̂2 ≥ · · · ≥ γ̂NM = γ̂min. (31)
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Thus, through the EVD, the estimated interference covariance
matrix can be written as

R̂ =
NM∑
n=1

γ̂nunu
H
n . (32)

Substituting (32) into (14), the filter weight vector of the SA-
STAP algorithm can be written as

wSA = ςSA

{
rt −

NM∑
n=1

γ̂n +∆n − γ̂min

γ̂n + δSA
min +∆n

(
uH
n rt

)
un

}
, (33)

where δSA
min = min

(
λ

|wn|+ϵ

)
, n = 1, 2, · · · , NM , ∆n is

the difference between λ
|wn|+ϵ and δSA

min, and ςSA is a scalar
quantity, which does not affect the SINR.

By inspecting (33), we observe that the SA-STAP belongs
to the class of diagonal loading STAP techniques in a sense.
Moreover, it is equivalent to an adaptive diagonal loading tech-
nique, which will apply to each eigenbeam of the interference
covariance matrix different weights and exploit the sparsity of
the filter weights and the received data.

Second, we examine the relationship between the SINR per-
formance and the l1-norm-sum quantity of the filter weights.
Assume the scene is the same as the one with homogeneous
environment introduced in the next section. We compute the
SINR loss and the l1-norm-sum quantity of the filter weights
against the number of snapshots using the SMI algorithm.
The results are plotted in Fig.3. From the figure, we find that
the better the SINR performance, the smaller the l1-norm-
sum quantity of the filter weights. From this point of view,
a constraint on the l1-norm-sum quantity of the filter weights
can lead to fast convergence, which in fact exploits the sparsity
of the received data and filter weights.

IV. PERFORMANCE ASSESSMENT

In this section, we assess the proposed SA-STAP algorithms
using both simulated and measured data and compare them
with the existing algorithms, such as the conventional CCG,
MCG, MWF, AVF and LSMI algorithms. We measure the
SINR, the SINR loss and the probability of detection curves,
where the SINR and the SINR loss are defined as follows [4],
respectively.

SINR =

∣∣ŵHx
∣∣2

|ŵHRŵ|
, (34)

SINRloss =

∣∣ŵHx
∣∣2

|ŵHRŵ| |sHR−1s|
, (35)

where R is the exact interference covariance matrix at the
detection range bin and ŵ is the estimated filter weights using
the neighbor secondary data.

A. Simulated Data

Consider a monostatic sidelooking radar with M = 10
antenna elements and N = 8 pulses in one CPI, giving a
space-time steering vector of length L = 80. We assume

a simulated scenario with the following parameters: half-
wavelength spaced antennas, uniform transmit pattern, carrier
frequency 450MHz, PRF set to 300Hz, platform velocity of
50m/s and height of 9000m, the clutter uniformly distributed
from azimuth −π/2 to π/2 with clutter-to-noise-ratio (CNR)
of 40dB, two jammer located at −45 and 60 with jammer-to-
noise-ratio (JNR) of 40dB, the target located at 0◦ azimuth
with Doppler frequency of 100Hz and signal-to-noise-ratio
(SNR) of 0dB, and the thermal noise power is 0.01W. We
consider the inner clutter motion (ICM) in simulated data.
One common model, referred to as the Billingsley model, was
developed by Billingsley of MIT Lincoln Laboratory [3]. The
only parameters required to specify the clutter Doppler power
spectrum are essentially the shape parameter b and the wind
speed parameter ω. In this paper, we assume b = 3.8 and
ω = 51.45 miles per hour (mph). All presented results are
averages over 100 independent Monte Carlo runs.

In our first example, we consider the SINR performance
versus the rank D of the proposed l1-based CCG algorithm,
the conventional CCG algorithm, the AVF algorithm and the
MWF algorithm. A total of K = 160 snapshots are considered.
The results in Fig.4 show that our proposed l1-based CCG
algorithm can obtain its best performance when the rank
is larger than D = 7. It requires a much lower rank to
obtain its best performance than that of AVF (D = 18)
and MWF (D = 14) algorithms. The low-rank characteristic
will bring considerable computational savings, which is very
important for STAP in radar systems. One should note that the
performance of the conventional CCG algorithm will degrade
when the rank is too large, while our proposed l1-based
CCG can always keep good performance resulting in further
robustness. Since the SINR performance is much worse when
the rank is lower than the best rank, thus, we will use D = 7
for CCG type algorithms, D = 18 for the AVF algorithm and
D = 14 for the MWF algorithm in the following examples.

In the second example, we examine the effect of the
regularization parameter λ on the SINR performance of our
proposed l1-based SMI and l1-based CG type algorithms. The
results with simulated data are shown in Fig.5(a), (b) and (c).
From the figures, we verify that too small or too large values
of the regularization parameter λ will lead to performance
degradation. This is because of the following conditions.
When λ is too small, the proposed algorithms behave like the
conventional algorithms, which results in slower convergence.
And when λ is too large, many elements of the STAP filter
weights will be shrunk to zero or be very close to zero, which
leads to performance degradation due to decreasing number of
DOFs to suppress the interference. Moreover, there is a range
of values of λ in the proposed algorithms which can improve
the SINR steady-state performance and also the convergence
speed. Hence, the approach to choose λ introduced by [34] can
be easily extended to our proposed algorithms. Due to space
limitations, strategies to automatically choose λ will not be
discussed in this paper and the reader is referred to [34].

In the next example, we evaluate the SINR loss performance
against the number of snapshots of the proposed algorithms
with the existing algorithms, as depicted in Fig.6. The curves
show that: (1) the SINR performance of the proposed l1-based
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SMI algorithm is a suboptimal algorithm, but exhibits the best
performance compared with other algorithms. (2) l1-based CG
type algorithms outperform conventional CG type algorithms
in terms of convergence rate and steady-state performance;
(3) the SINR performance of the l1-based CCG algorithm is
better than the AVF and MWF algorithms. (4) Although the l1-
based MCG algorithm shows slower SINR convergence than
the MWF algorithm, we can obtain a better SINR performance
when the number of snapshots is larger than 100. One should
note that the proposed CG type algorithms have a much
lower computational complexity than LSMI, AVF and MWF
algorithms.

In the fourth example, we present the probability of detec-
tion Pd versus SNR with the target injected at the azimuth of
0◦ and Doppler frequency 100Hz in Fig.7. We assume the false
alarm rate Pfa is set to 10−6 and the number of the secondary
data is K = 110. The plots illustrate a similar trend to the
SINR loss performance in the second example. Note that we
obtain a performance gain of about 1dB in terms of SNR for
l1-based CG type algorithms, as compared with conventional
CG type algorithms.

Fig.8 shows the SINR performance against the target
Doppler frequency at the azimuth of 0◦ with a total of
K = 100 snapshots. Here, we suppose the potential Doppler
frequency space is from −100Hz to 100Hz. The parameters
of all algorithms are the same as the second example. The
curves in the figure demonstrate a similar trend to the results of
previous examples. Additionally, the l1-based SMI algorithm
displays much better performance to the slow targets than other
algorithms.

B. Measured Data

In this section, we apply the proposed algorithms to the
Mountain-Top data set. This data set was collected from com-
manding sites (mountain tops) and radar motion is emulated
using a technique developed at Lincoln Laboratories [6], [43].
The sensor consists of 14 elements and the data are organized
in CPIs of 16 pulses. Here, we use the data file t38pre01v1
CPI6, which could be obtained from the internet [44]. The
pulse PRF was 625Hz and the instance bandwidth after pulse
compression was 500kHz. There are 403 independent range
samples available for the training data support. The clutter
was located around 245◦ azimuth and the target was at 275◦

with a Doppler frequency 156Hz. All the data processed
following are through pulse compression firstly. Note that the
clutter and target have the same Doppler frequency, hence
separation is impossible in the Doppler domain but possible in
the spatial domain. The estimated clutter and target spectrum
using all 403 samples is given in Fig.9, which shows a serious
heterogeneity.

Fig.10(a) and Fig.10(b) display the STAP output power
of all algorithms in the range of 147-162 km. Here, the
interference covariance matrix is estimated using a symmetric
sliding window with a total of 20 snapshots for Fig.10(a) and
40 snapshots for Fig.10(b). For each CUT, the snapshots do not
include the 6 snapshots around the CUT. In the figures, we also
give the unadapted weight vector, which equals the steering

vector w = s. We see that the target is clearly not detectable
without adaptive processing. To have a clear comparison
amongst different algorithms, we show the differences between
the output power at the range bin of the target (154 km) and
the next highest power peak in Table IV, where ”-” presents
the target not detectable. Here, 6 range bins around the range
bin of the target is not used for comparison since they are
the guide cells. Seen from the table, we find that: (1) the
proposed l1-based SMI algorithm obtains the best detection
performance in both situations, which is the same conclusion
as that using simulated data; (2) the proposed l1-based CG type
algorithms obtain better performance than the conventional
CG type algorithms (although the proposed l1-based MCG
algorithm has a pseudo target at the range 153km, when
the secondary data record is 20 snapshots, the conventional
MCG algorithm can not detect the target at all.); (3) the
proposed l1-based CCG algorithm outperforms the AVF and
MWF algorithms in both situations. Hence, we can conclude
that our proposed algorithms show a robust performance in
heterogeneous environments.

V. CONCLUSIONS

In this paper, we have proposed novel SA-STAP algorithms
with l1-norm regularization for target detection in airborne
radar systems. The proposed SA-STAP algorithms employed
a sparse regularization to the MV cost function to exploit the
sparsity of the received data and filter weights. To solve this
kind of optimization problem, an l1-based SMI algorithm was
directly developed, but it required a matrix inversion resulting
in a high computational cost. Accordingly, we have proposed
low-complexity SA-STAP algorithms based on CG techniques.
A detailed analysis of the computational complexity and
the performance of the SA-STAP algorithms were carried
out. Simulation results with both simulated and measured
data have shown that the proposed algorithms outperformed
conventional algorithms and exhibited a robust performance
in heterogeneous environments.
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TABLE I
THE l1-BASED CCG ALGORITHM

Initialization:
R̂[0] = δI, v[0] = s,ηCCG,
Recursion: For each snapshot k = 1, · · · , L

STEP 1: Start:
R̂[k] = βR̂[k − 1] + x[k]xH [k],
Λ[k] = diag

{
1

|w1[k−1]|+ϵ
, · · · , 1

|wNM [k−1]|+ϵ

}
,

G[k] = R̂[k] + λΛ[k],
g0[k] = s−G[k]v0[k], p1[k] = g0[k], ρ0[k] = gH

0 [k]g0[k],
STEP 2: For d = 1, · · · , D and ρd−1[k] > ηCCG

zd[k] = G[k]pd[k],
αd[k] =

[
pH
d [k]zd[k]

]−1
ρk−1[k],

vd[k] = vd−1[k − 1] + αd[k]pd[k],
gd[k] = gd−1[k]− αd[k]zd[k],
ρd[k] = gH

d [k]gd[k],
νd[k] =

ρd[k]
ρd−1[k]

,
pd+1[k] = gd[i] + νd[k]pd[k],

STEP 3: After end STEP 2
v0[k + 1] = vd[k],
w[k] = v0[k]

sHv0[k]
,

Final output:
y[k] = wH [k]x[k].
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Fig. 1. The radar platform geometry and the radar CPI datacube

TABLE II
THE l1-BASED MCG ALGORITHM

Initialization:
R̂[0] = δI, v[0] = s, w[0] = s, g[0] = s, p[1] = s,
Recursion: For each snapshot k = 1, · · · , L
R̂[k] = βR̂[k − 1] + x[k]xH [k],
Λ[k] = diag

{
1

|w1[k−1]|+ϵ
, · · · , 1

|wNM [k−1]|+ϵ

}
,

G[k] = R̂[k] + λΛ[k],
α[k] =

[
pH [k]G[i]p[k]

]−1

×
{
β
[
pH [k]g[k − 1]− pH [k]s

]
− µpH [k]g[k − 1]

}
,

v[k] = v[i− 1] + α[i]p[i],
g[k] = (1− β) s+ βg[k − 1]− α[k]G[k]p[k]

−
{
λ [1− β]Λ[k] + x[k]xH [k]

}
v[k − 1],

ν[k] = [g[k]−g[k−1]]Hg[k]

gH [k−1]g[k−1]
,

p[k + 1] = g[k − 1] + ν[k]p[k],
w[k] = v[k]

sHv[k]
,

Output:
y[k] = wH [k]x[k].

TABLE III
COMPARISON OF THE COMPUTATIONAL COMPLEXITY

Algorithm Additions Multiplications
LSMI O

(
L3

)
+O

(
L2

)
O
(
L3

)
+O

(
L2

)
l1-based SMI O

(
L3

)
+O

(
L2

)
O
(
L3

)
+O

(
L2

)
MWF DL2 + (4D −D2)L 2DL2 + (5D −D2)L

+D3

3
− 3D2

2
− D

3
+ 2D3

3
− 2D2 + 16D

3

AVF (2D + 1)L2 + (4D 2(D + 1)L2

+1)L− 4D − 1 +7DL+ L
CCG (D + 2)L2 + (4D (D + 3)L2

+2)L− 2D − 2 +5DL+ 3L
MCG 3L2 + 10L− 4 4L2 + 13L+ 2

l1-based CCG (D + 3)L2 + (4D+ (D + 3)L2

3)L− 2D − 2 +7DL+ L
l1-based MCG 5L2 + 11L− 4 4L2 + 13L+ 2

TABLE IV
RESULTS OF MOUNTAIN TOP DATA

Algorithms 20 snapshots 40 snapshots
unadapted - -

LSMI 7.1dB 12.4dB
l1-based SMI 9.3dB 15.1dB

MWF 4.6dB 10.0dB
AVF 5.6dB 11.9dB
CCG 5.2dB 11.9dB
MCG - 6.2dB

l1-based CCG 7.1dB 13.0dB
l1-based MCG 0dB 9.5dB
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Fig. 5. Impact of regularization parameter λ on the SINR performance against the number of snapshots. Parameters: β = 0.9998, ηCCG = 10−5 and
R[0] = 0.001I for CG type algorithms. (a) SINR performance of the l1-based SMI algorithm with different λ; (b) SINR performance of the l1-based CCG
algorithm with different λ; (c) SINR performance of the l1-based MCG algorithm with different λ.
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Parameters: the diagonal loading factor for LSMI, AVF and MWF algorithms
is 10dB to the thermal noise power; β = 0.9998 and R[0] = 0.001I for CG
type algorithms; λ = 1 for the l1-based SMI, λ = 2 for the l1-based CCG
algorithm and λ = 1 for the l1-based MCG algorithm; ηCCG = 10−5.
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Fig. 7. Probability of detection performance versus SNR with K = 110
snapshots. Pfa = 10−6 and the other parameters are the same as the second
example.
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Fig. 8. SINR performance against Doppler frequency with K = 100
snapshots and Doppler frequency space from −100 to 100Hz. The other
parameters are the same as the second example.
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Fig. 9. The estimated clutter and target spectrum using all 403 samples. The
target is located at azimuth of 15◦ referred to the boresight with normalized
Doppler frequency of 0.25.
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(a) The output power after STAP using 20 snapshots
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(b) The output power after STAP using 40 snapshots

Fig. 10. Range plots of Mountain Top data using different STAP algorithms.
D = 3 for CCG type algorithms, D = 18 for the AVF algorithm and D = 14
for the MWF algorithm. ”Non” presents the case using the unadapted weight
vector.


