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Abstract: An adaptive low-complexity space-time reduced-rank processor is proposed for interference
suppression in asynchronous DS code division multiple access (CDMA) systems based on a diversity-combined
decimation and interpolation method. The novel design approach for the processor employs an iterative
procedure to jointly optimise the interpolation, decimation and estimation tasks for reduced-rank parameter
estimation. Joint iterative least squares design parameter estimators are described and low-complexity
adaptive recursive least squares (RLS) algorithms for the proposed structure are developed. To design the
decimation unit, the optimal decimation scheme based on the counting principle is presented and low-
complexity decimation structures are proposed. Linear space-time receivers with antenna arrays based on the
proposed reduced-rank processor are then presented and investigated to mitigate multi-access interference
and intersymbol interference in an asynchronous DS-CDMA system uplink scenario. An analysis of the
convergence properties of the proposed space-time processor is carried out and analytical expressions are
derived to predict the mean squared error performance of the proposed processor with RLS algorithms.
Simulations show that the proposed processor outperforms the best known reduced-rank schemes at
substantially lower complexity.
T

1 Introduction
CODE division multiple access (CDMA) implemented with
direct sequence spread-spectrum signalling is a very effective
multiple-access technology, being widely deployed for
current communication systems. Such services include third-
generation cellular telephony, indoor wireless networks, and
terrestrial and satellite systems. In DS-CDMA systems,
the incorporation of multiuser receivers with antenna arrays
can provide an enhanced performance for multi-access
interference (MAI) and intersymbol interference (ISI)
mitigation [1, 2] because of the extra degrees of freedom
that facilitate the exploitation of spatial filtering. This
requires the joint processing of the data received at an
he Institution of Engineering and Technology 2009
antenna array with elements closely spaced, which leads to
the combination of multiuser detection and beamforming
[3, 4]. Multiuser detection exploits the temporal structure,
whereas beamforming exploits the spatial structure of the
interference.

To estimate the parameters of the receivers in dynamic
environments, the designer may resort to adaptive
estimation algorithms that can track the highly dynamic
conditions of the channel and usually have a good trade-off
between performance and computational complexity.
However, when the number of elements M for estimation
in the receiver is large, one has to cope with an increased
complexity and poor convergence performance. In
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particular, whenever the receiver is equipped with antenna
arrays, this implies the estimation of JM parameters, where
J is the number of sensors in the antenna array. In general,
when an adaptive estimator with a large number of taps is
used to suppress interference, it implies a slow response to
changing interference and channel conditions. This is
because the convergence speed of adaptive estimators is
governed by the number of adaptive elements used in the
estimation procedure.

Reduced-rank interference suppression for DS-CDMA
[5–19] is motivated by situations where the number of
elements in the receiver is large, and it is desirable to work
with fewer parameters for complexity and convergence
reasons. Several reduced-rank methods and systems have
been reported in the last decade. These techniques range
from the early computationally expensive eigen-
decomposition approaches [7–9], the promising multistage
Wiener filter (MWF) [10, 11] and the auxiliary-vector
filtering (AVF) methods [14–17] to the flexible adaptive
interpolated FIR filters with time-varying interpolators [18,
19]. The major problem with eigen-decomposition, that is
the MWF and the AVF techniques is that they rely on the
estimates of the full-rank covariance matrix R as a starting
point for the subspace decomposition. The estimation
process of a full-rank covariance matrix with time averages
can be problematic, requiring large data records, and may
experience tracking problems in dynamic situations. Prior
work on adaptive interpolated FIR filters with time-
varying interpolators [18, 19] employed fixed and uniform
decimation. In [19], we applied the same method of [18]
to the design of successive interference cancellation and
linear space-time DS-CDMA receivers. The main
problem with [18, 19] is that the performance is rank-
limited, which means that the performance degrades as the
number of elements in the reduced-rank estimator is
decreased.

In this work, we propose a reduced-rank space-time
processor based on a novel diversity-combined decimation
and interpolation system (USPTO Application No. 11/
427.471 - Patent Pending). A joint adaptive and iterative
procedure that optimises the interpolator, the decimation unit
and the reduced-rank estimator is employed to design the
proposed space-time processor. In the proposed scheme, the
number of elements for estimation is substantially reduced,
resulting in considerable computational saving and very fast
convergence performance for interference suppression. In
particular, the dimensionality reduction performed by the
proposed scheme is very accurate and not rank-limited as
with [18, 19]. This allows us to use very small reduced-rank
estimators without performance degradation. A unique
feature of the proposed processor is that, unlike existing
schemes, it does not rely on the full-rank covariance matrix R
(that may require a considerable amount of data to be
estimated) before projecting the received data onto a reduced-
rank subspace. Indeed, the proposed approach skips the
processing stage with R and directly obtains the subspace of
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interest through a set of simple interpolation and decimation
operations. We describe the optimal decimation scheme for
the proposed structure and present low complexity suboptimal
decimation alternatives. We also propose linear antenna-array
receivers designed with the proposed processor and compare
these receiver structures with schemes based on the full-rank
[3, 4], the MWF [10–12] and the AVF [14–17] approaches.
A convergence and tracking analysis of the proposed recursive
least square (RLS) algorithms with analytical expressions for
predicting the mean squared error, convergence proof of the
joint estimation algorithm and an evaluation of the
computational complexity of the proposed space-time
processor are also presented.

This article is organised as follows. Section 2 describes an
asynchronous space-time DS-CDMA system model.
Section 3 states the problem and discusses the design of the
space-time processor. Section 4 presents the proposed space-
time reduced-rank processor and space-time linear multiuser
receivers, and describes the least square (LS) design of the
parameter estimators. An RLS algorithm for the joint
optimisation of the interpolator, decimation unit and the
reduced-rank filter is presented in Section 5 along with
convergence and tracking analysis of the algorithm and its
computational complexity. Section 6 presents and discusses
the simulation results, whereas Section 7 gives the conclusions.

2 Space-time DS-CDMA
system model
We consider the uplink of an asynchronous QPSK
DS-CDMA system with K users, N binary chips per
symbol and Lp paths. The transmitted signal for the kth
user is given by

xk(t) ¼ Ak

X1
i¼�1

bk(i)sk(t � iT ) (1)

where bk(i) [ {+1, + j} with j2 ¼ 21 denotes the ith
symbol for user k, the real valued spreading waveform and
the amplitude associated with user k are sk(t) and Ak,
respectively. The spreading waveforms are expressed by

sk(t) ¼
PN

i¼1 ak(i)f(t � iTc), where ak(i) [ {+1=
ffiffiffiffiffi
N
p

}, f(t)
is the chip waveform, Tc the chip duration and N ¼ T/Tc

the processing gain. Assuming that the receiver with linear
antenna arrays is synchronised with the main path and
fading is experienced by all antenna elements for each path
of each user signal, the coherently demodulated composite
received signal at the lth antenna element is

rl (t) ¼
XK

k¼1

XLp�1

m¼0

hk,m(t)e jQk,m xk(t � tk,m � dk)þ n(t) (2)

where Qk,m ¼ 2p(l � 1)(d=l) sin(fk,m) is the delay shift of
the mth path of the kth user, fk,m the direction of arrival
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(DoA) of the signal of user k and its mth path, d ¼ l=2 the
spacing between sensors and l the carrier wavelength.

The channel coefficient associated with the mth path and
the kth user is hk,m(t), dk [ [0, N ) is the delay of the kth
user and tk,m is the delay of the mth path of the kth user.
We assume that the delays are multiples of the chip
periods, the channel is constant during each symbol
interval, the spreading codes are repeated from symbol to
symbol, and the receiver with a J-element linear antenna
array is perfectly synchronised with the main path. The
complex envelope of the received waveforms after filtering
by a chip-pulse matched filter and sampled at the chip rate
yields the discrete-time samples for the user of interest

rl (n) ¼
XK

k¼1

XLp

m¼1

hk,me jQk,m xk,m(nTc � tk,m � dk)þ np(n) (3)

By collecting these samples from each antenna element and
organising them into a JM � 1 observation vector
corresponding to the ith signalling interval, we obtain

r(i) ¼
XK

k¼1

Akbk(i � 1)�p
dk
k (i � 1)þ Akbk(i)p

dk
k (i)

þ Akbk(i þ 1)~p
dk

k (i þ 1)þ n(i) (4)

where M ¼ Nþ Lp 2 1, the complex Gaussian noise vector

is n(i) ¼ [n1(i) � � � nJM (i)]T with zero-mean and covariance

matrix E[n(i)nH(i)] ¼ s2I . The operators (.)T and (.)H

denote the transpose and the Hermitian transpose,
respectively, and E[.] stands for the expected value. The
spatial signatures are �p

dk
k (i � 1) ¼ �F kHk(i � 1), p

dk
k (i) ¼

F kHk(i) and ~p
dk

k (i þ 1) ¼ �F kHk(i þ 1), where �F k, F k

and ~F k are block diagonal matrices with one-chip shifted
versions of segments of the signature sequence sk ¼

[ak(1) � � � ak(N )]T of user k that describe the asynchronism
of the system. The JLp � 1 space-time channel vector is

given byHk(i) ¼ [hT
k,0(i)jhT

k,1(i)j � � � jhT
k, J�1(i)]T with hk,l (i) ¼

[h
ðl Þ
k,0(i) � � � hðlÞk,L�1(i)]T being the channel of user k at antenna

element l with their associated DoAs fk,m. In the next
section, we explain how the space-time reduced-rank
processors can be designed and formulate the main problem.

3 Design of space-time
reduced-rank processors and
problem statement
In this section, we describe the minimum mean-squared error
(MMSE) design of linear space-time reduced-rank processors
and explain the problems that arise in their design. It is well
known that the combination of multiuser detection and
beamforming can provide an enhanced performance for MAI
and ISI suppression [3, 4] via temporal processing and spatial
The Institution of Engineering and Technology 2009
filtering. This inevitably leads to an increase in the number of
parameters to be estimated, increasing the complexity and the
need for training. A reduced-rank processor is required to
reduce the number of estimation elements and to improve the
convergence and tracking performances.

We first consider the design of a general linear space-time
processor with a JM-dimensional estimator wk ¼ [wk,1

wk,2 � � �wk, JM ]T whose goal is to suppress MAI and ISI
and provide an output signal estimate xk(i) by linearly
combining the estimator weights and the received samples
as follows

xk(i) ¼ wH
k r(i) (5)

To describe the MMSE estimator, we consider the MSE cost
function

J ¼ E[jbk(i)�wH
k r(i)j2] (6)

where bk(i) is the desired signal. The MMSE estimator is the
vector wk designed to minimise (6) and is expressed by

wk ¼ R�1p (7)

where R ¼ E[r(i)rH(i)] is the covariance matrix and
p ¼ E[b�k (i)r(i)] is the cross-correlation vector. The main
problem of (7) is that the designer has to estimate and
invert R and this requires a substantial amount of training
and high computational complexity when JM is large.
Alternatively, the set of parameters wk can be estimated via
standard stochastic gradient or LS estimation techniques
[20]. However, the laws that govern the convergence
behaviour of these estimation techniques imply that the
convergence speed of these algorithms is inversely
proportional to JM, the number of elements in the
estimator. Thus, a large JM implies slow convergence.

A reduced-rank processor attempts to circumvent this
limitation in terms of speed of convergence and tracking
capability by reducing the number of adaptive coefficients
and extracting the most important features of the processed
data. This dimensionality reduction is accomplished by
projecting the received vector onto a lower dimensional
subspace. Specifically, we consider a JM � D projection
matrix SD which carries out a dimensionality reduction on
the received data as given by

�r(i) ¼ SH
D r(i) (8)

where, in what follows, all D-dimensional quantities are
denoted with a ‘bar’. The resulting projected received vector
�r(i) is the input to an estimator represented by the D � 1
vector �wk ¼ [ �wk,1 �wk,2 � � � �wk,D]T for time interval i. The
estimator output corresponding to the ith time instant and
user k is

xk(i) ¼ �wH
k �r(i) (9)
IET Signal Process., 2009, Vol. 3, Iss. 2, pp. 150–163
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If we consider the MMSE design in (6) with the reduced-
rank parameters, we obtain

�wk ¼
�R
�1

�p (10)

where �R ¼ E[�r(i)�rH(i)] ¼ SH
D RSD is the reduced-rank

covariance matrix and �p ¼ E[b�k (i)�r(i)] ¼ SH
D p is the

reduced-rank cross-correlation vector. The associated
MMSE for a rank D estimator is expressed by

MMSE ¼ s2
b � �p

H �R
�1

�p

¼ s2
b � pHSD(SH

D RSD)�1SH
D p (11)

where s2
b is the variance of bk(i). Based upon the problem

statement above, the rationale for reduced-rank schemes
can be simply put as follows. How to efficiently (or
optimally) design a transformation matrix SD with
dimensions JM � D that projects the observed data vector
r (i) with dimensions JM � 1 onto a reduced-rank data
vector r (i) with dimensions D � 1? In the next section, we
present the novel reduced-rank processor.

4 Proposed space-time
reduced-rank processor
In this section, we detail the structure of the proposed space-
time adaptive reduced-rank (STAR) processor, the design of
the linear space-time receiver, the LS estimation procedure
and the features of the processor. We will rely on a general
framework that was employed in [18, 19]; however, it
should be remarked that the proposed STAR processor is a
novel contribution. Specifically, the proposed scheme is the
first to perform the joint and iterative optimisation of the
interpolator, the decimation unit and the reduced-rank
estimator, and to introduce adaptive decimation with
multiple parallel branches along with several decimation
approaches. Fig. 1 shows the STAR processor, where an
interpolator and a reduced-rank receiver that are time-
varying are employed. The received vector r(i) ¼ [r(i)

0 � � �
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r(i)
JM�1]T is filtered by the interpolator filter vk(i) ¼ [v(i)

k,0 � � �

v(i)
k,NI�1]T and yields the interpolated received vector rk(i)

with JM samples. The vector rk(i) is then projected by the
decimation unit onto a D � 1 vector �rk(i), where
D ¼ JM=L and L is the decimation factor. The decimation
unit consists of B decimation matrices with dimensions
D �M and different patterns in parallel, leading to B
different D � 1 vectors �rk,b(i) with b ¼ 1, . . . , B. The
proposed architecture that employs B decimation branches
in parallel to improve parameter estimation is inspired by
the use of diversity to improve the reliability of wireless
communications links [21]. The decimation procedure
corresponds to discarding JM 2 D samples of rk(i) of each
set of JM received samples with different patterns, resulting
in B different decimated D � 1 vectors �rk,b(i). Then, the
inner product of �rk,b(i) with the D � 1 vector of the
reduced-rank estimator wk(i) ¼ [ �w(i)

k,0 � � � �w(i)
k , D � 1]T that

minimises a desired criterion is computed.

The front-end filtering operation is carried out by the
interpolator vk(i) on the received vector r(i) and yields
the interpolated received vector rk(i) ¼ V H

k (i)r(i), and the
JM � JM convolution matrix V H(i) with the coefficients of
the interpolator are given by

V H
k (i) ¼

v�(i)k,0 � � � v�(i)k,N1�1 � � � 0 0 0

0 v�(i)k,0 � � � v�(i)k,N1�1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 � � � 0 � � � v�(i)k,0

2
666664

3
777775

(12)

To facilitate the description of the scheme, we introduce an
alternative way of expressing the vector rk(i), that will be
useful when dealing with the different decimation patterns,
through the following equivalence

rk(i) ¼ V H
k (i)r(i) ¼ <o(i)v�k (i) (13)
Figure 1 Proposed STAR processor
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where the JM � NI matrix with the received samples of r (i)
implements convolution described by

<o(i) ¼

r(i)
0 r(i)

1 � � � r(i)
NI�1

r(i)
1 r(i)

2 � � � r(i)
NI

..

. ..
. . .

. ..
.

r(i)
JM�1 r(i)

JM � � � r(i)
JMþNI�2

2
666664

3
777775 (14)

The dimensionality reduction in the proposed system is
accomplished with the aid of a D � JM decimation matrix
Db(i), which is mathematically equivalent to signal
decimation with a chosen pattern on the JM � 1 vector
rk(i). The D � 1 decimated interpolated received vector for
branch b is obtained by

�rb(i) ¼ Db(i)rk(i) (15)

where the D �M decimation matrix Db(i) adaptively
minimises the squared norm of the error at time instant i.
In what follows, we present the proposed STAR receiver,
an LS design for the reduced-rank estimator and the
interpolator, and optimal and suboptimal decimation
schemes.

4.1 Proposed STAR linear receivers

The STAR linear receiver design employs a reduced-rank
FIR filter �wk(i) with D elements to yield an estimate of the
desired symbol. Here, we express the symbol estimate

xk(i) ¼ �wH
k (i)�rk(i) as a function of �wk(i), the decimator

Db(i) and vk(i), which is an important strategy to design
the interpolator and the reduced-rank receiver

xk(i) ¼ �wH
k (i)SH

D (i)r(i) ¼ �wH
k (i)(Db(i)V H

k (i))r(i)

¼ �wH
k (i)(Db(i)rk(i)) ¼ �wH

k (i)(Db(i)<o(i)v�k (i))

¼ �wH
k (i)(Db(i)<o(i))v�k (i) ¼ �wH

k (i)<b(i)v�k (i)

¼ vH
k (i)(<T

o (i) �w�k (i)) ¼ vH
k (i)uk(i) (16)

where uk(i) ¼ <
T
b (i) �w�k (i) is an NI � 1 vector, the D

coefficients of �wk(i) and the NI elements of vk(i) are
assumed complex, and the D � NI matrix <b(i) is
<b ¼ Db(i)<o(i).

The detected QPSK symbol of the proposed STAR linear
receiver is obtained through the following expression

b̂k(i) ¼ sgn(Re[ �wH
k (i)�rk(i)])þ sgn(=[ �wH

k (i)�rk(i)]) (17)

where Re[.] selects the real part, = ¼ [�] selects the imaginary
part, sgn(.) is the signum function and �rk(i) is the D � 1
reduced-rank received vector provided by the STAR
processor.
The Institution of Engineering and Technology 2009
4.2 Least squares design for the
STAR processor

Here, we describe the parameter estimation procedure for the
STAR processor. The exponentially weighted LS design of
wk(i) and vk(i) considers the cost function given by

J
( �wk(i),vk(i))
LS ¼

Xi

l¼1

ai�l
jbk(l )� vH

k (i)<(l ) �w�k (i)j2 (18)

By fixing w̄k(i), taking the gradient of (18) with respect to
vk(i) and equating it to a null vector, the interpolator
weight vector that minimises (18) is expressed by

vk(i) ¼ b( �wk(i)) ¼ �R
�1

uk
(i)�puk

(i) (19)

where uk(i) ¼ <
T
b (i) �w�k (i), �puk

(i) ¼
Pi

l¼1 a
i�l b�k (l )uk(l ) and

�Ruk
(i) ¼

Pi
l¼1 a

i�l uk(l )uH
k (l ). By fixing vk(i), taking the

gradient of (18) with respect to �wk(i) and equating it to a
null vector, the interpolated filter/processor weight vector
that minimises (18) is given by

�wk(i) ¼ g(vk(i)) ¼ �R
�1

k
�pk(i) (20)

where �rk(i) ¼ <
T
b (i)v�k (i), �p

k
(i) ¼

Pi
l¼1 a

i�1b�k (l )�rk(l ) and

�Rk(i) ¼
Pi

l¼1 a
i�l �rk(l )�rk

H(l ). The associated sum of error
squares (SES) expressions are given by

J (vk) ¼ J LS(g(vk), vk) ¼ 1b � �pk
H

(i) �R
�1
k (i)�pk(i) (21)

J LS( �wk, b( �wk)) ¼ 1b � �puk

H
(i) �R

�1
uk

(i)�puk
(i) (22)

where 1b ¼
Pi

l¼1 a
i�1
jb(l )j2 is the energy of the desired

response. This structure trades off a full-rank matrix inversion
against the inversion of two matrices with ranks D and NI.
Note that (19) and (20) are not closed-form solutions for
vk(i) and wk(i) since (19) is a function of �wk(i) and (20)
depends on vk(i), and it is necessary to iterate (19) and (20)
with an initial guess to obtain a solution.

4.3 Adaptive decimation schemes

Here, we propose the optimal approach and three alternative
procedures for designing the decimation unit of the novel
reduced-rank scheme, where the common framework is the
use of parallel branches with decimation patterns that yield
B decimated vectors �rk,b(i) as candidates. Mathematically,
the signal selection scheme chooses the decimation
pattern Db(i) and, consequently, the decimated interpolated
observation vector �rb(i) that minimises jek,b(i)j2, where
ek,b(i) ¼ bk(i)� �wH

k (i � 1)�rk,b(i) is the error signal at branch
b. Once the decimation pattern is selected for the time
instant i, the decimated interpolated vector is computed as
�r(i) ¼ Db(i)rk(i). The decimation pattern D(i) is selected
IET Signal Process., 2009, Vol. 3, Iss. 2, pp. 150–163
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on the basis of the following criterion

D(i) ¼ Db(i) when b ¼ arg min
1�b�B

jek,b(i)j2 (23)

where the optimal decimation pattern Dopt for the proposed
scheme with decimation factor L is derived through the
counting principle, where we consider a procedure that has
JM samples as possible candidates for the first row of Dopt

and JM � mþ 1 samples as candidates for the following
D � 1 rows of Dopt, where m denotes the mth row of the
matrix Dopt, resulting in a number of candidates equal to

B ¼ JM � (JM � 1) � � � (JM �D þ 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D terms

¼
JM !

(JM �D)!
(24)

The optimal decimation scheme previously described is,
however, too complex for practical use because it requires D
permutations of JM samples for each symbol interval and
carries out an extensive search over all possible patterns.
Therefore a decimation scheme that renders itself to
practical and low-complexity implementations is of great
interest.

To consider a general framework for suboptimal
decimation schemes with decimation factor L and using B
parallel branches, we describe the following structure

(25)

where m(m ¼ 1, 2, . . . , D) denotes the mth row and rm is
the number of zeros chosen according to the following
proposed alternative decimation patterns:

A. Uniform (U) decimation with B ¼ 1. We make
rm ¼ (m� 1)L. This corresponds to the use of a single
branch on the decimation unit with a fixed pattern as in
[17, 18] and joint optimisation between the interpolator
and the reduced rank.

B. Pre-Stored (PS) decimation. We select
rm ¼ (m� 1)Lþ (b� 1), which corresponds to the
utilisation of uniform decimation for each branch b out of
B branches, and the different patterns are obtained by
picking up adjacent samples with respect to the previous
and succeeding decimation patterns.

C. Random (R) decimation. We choose rm as a discrete
uniform random variable, which is independent for each
Signal Process., 2009, Vol. 3, Iss. 2, pp. 150–163
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row m out of B branches and whose values range between 0
and JM � 1.

The uniform approach of case A. corresponds to a single
branch on the decimation unit; however, one can exploit the
processed samples through a more elegant and effective
method with the deployment of several branches in parallel.
In this regard, the pre-stored decimation (PS-DEC) of case
B. in which the designer utilizes uniform decimation for
each branch b, and the different patterns are obtained by
choosing adjacent samples with respect to the previous and
succeeding decimation patterns. This is particularly
advantageous since it is very simple, consists of sliding
patterns in parallel and can be easily implemented by digital
signal processors. The random decimation scheme of case
C. requires the use of a discrete uniform random generator
for producing the B decimation patterns that are employed
in parallel. Note that rm does not have to be changed for
each interval, but it can be used for the whole set of data. In
the next section, we present an iterative solution via adaptive
RLS algorithms, provide an analysis and detail the
complexity of the proposed algorithms.

5 Adaptive RLS algorithms and
their analysis
In this section, we describe RLS algorithms [20] that jointly and
iteratively estimate the parameters of the reduced-rank and the
interpolator filters of the proposed STAR processor, depicted in
Fig. 1, based on the LS criterion presented in the previous
section. The convergence properties of the proposed joint
iterative interpolation, decimation and estimation method is
considered in the Appendices, where we establish the
existence of solutions and that the method leads to an
optimisation problem with multiple global minima and no
local minima. By considering the analysis in the Appendices,
it suffices to examine the behaviour of the reduced-rank
estimator �wk(i). We present a convergence and tracking
analysis of the proposed RLS algorithms and devise analytical
expressions for predicting the MSE achieved by the
processor. The computational complexity of the proposed
processor equipped with the RLS algorithms is detailed and
compared with that of existing methods.

5.1 RLS algorithms

Let us consider r (i) and the adaptive processing carried out
by the proposed STAR processor, as depicted in Fig. 1.
We compute the JM � 1 vector rk(i) with the aid of Vk(i)
and then compute the decimated interpolated observation
vectors �rk,b(i) for the B branches with the decimation
patterns Db(i), where 1 � b � B. We choose the vector
�rk,b(i) that minimises the squared norm of the a priori error

ek,b(i) ¼ bk(i)� �wH
k (i � 1)�rk,b(i) (26)
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Based on the signal selection that minimises jek,b(i)j2, we
choose the corresponding reduced-rank observation vector
�rk(i) and select the error of the proposed iterative RLS
algorithm ek(i) as the error ek,b(i) with the smallest squared
magnitude of the B branches of the decimation unit

�rk(i) ¼ �rk,b and ek(i) ¼ ek,b(i)

when b ¼ arg min
1�b�B

jek,bj
2 (27)

To compute the parameter estimates and avoid the inversion
of �Rk(i) required in (19), we use the matrix inversion lemma
(MIL) [20], and define Puk

(i) ¼ �R
�1
uk

(i) and the gain vector
Guk

(i) as

Guk
(i) ¼

a�1Puk
(i � 1)uk(i)

1þ a�1uH
k (i)Puk

(i � 1)uk(i)
(28)

and, thus, we can rewrite Puk
(i) as

Puk
(i) ¼ a�1Puk

(i � 1)� a�1Guk
(i)uH

k (i)Puk
(i � 1) (29)

By rearranging (28), we have Guk
(i) ¼ a�1Puk

(i � 1)uk(i)�

a�1Guk
(i)uH

k (i) Puk
(i � 1)uk(i) ¼ Puk

(i)uk(i). Using the LS

solution in (19) and the recursion puk
(i) ¼ a puk

(i � 1)þ
uk(i)b

�
k (i) we arrive at

vk(i) ¼ vk(i � 1)þ Gvk
(i)e�k (i) (30)

where the a priori estimation error is described
by ek(i) ¼ bk(i)� vH

k (i � 1)uk(i) ¼ bk(i)�wH
k (i � 1)�rk(i).

Similar recursions for the reduced-rank estimator �wk(i) can
be devised by using (20). To avoid the inversion of �Rk(i)
we use the MIL again, and define Pk(i) ¼ �R

�1
k (i) and the

gain vector Gk(i) as

Gk(i) ¼
a�1Pk(i � 1)�rk(i)

1þ a�1rH
k (i)Pk(i � 1)�rk(i)

(31)

and, thus, we can rewrite Pk(i) as

Pk(i) ¼ a�1Pk(i � 1)� a�1Gk(i)�r
H
k (i)Pk(i � 1) (32)

By rearranging (31), we have Gk(i) ¼ a�1Pk(i � 1)�rk(i)�

a�1Gk(i)�r
H
k (i)Pk(i � 1)�rk(i) ¼ Pk(i)�rk(i). Using the LS

solution in (20) and the recursion pk(i) ¼ apk(i � 1)þ
�rk(i)b

�
k (i) we obtain

�wk(i) ¼ �R
�1
k (i)p̂k(i) ¼ aPk(i)pk(i � 1)þ Pk(i)�rk(i)b

�
k (i)

(33)
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Substituting (32) into (33) yields

�wk(i) ¼ wk(i � 1)Gk(i)e
�
k (i) (34)

The RLS algorithm for the proposed STAR processor trades
off the computational complexity of O((JM)2) against two
RLS algorithms operating in parallel, with complexity
O((D)2) and O(N 2

I ), respectively, with D and NI � JM , as
will be explained in the subsequent sections.

5.2 Convergence analysis

This part is devoted to the analysis of the trajectory of the
mean tap vectors of the proposed structure. Even though
this work focuses on asynchronous systems, it is very
difficult to analyse these estimators when the input vectors
are statistically dependent. For this reason and in order to
provide substantial insight with respect to the reduced-rank
method and processor, our analysis focuses on synchronous
DS-CDMA systems [22] (dk ¼ 0 for k ¼ 1, . . . , K ) and
exploits the so-called independence theory [20, 22] that
consists of four points, namely:

1. The received data vectors r(1), . . . , r(i) and their
interpolated counterparts �rk(1), . . . , �rk(i) constitute a
sequence of statistically independent vectors.

2. At time i, r (i) and �rk(i) are statistically independent of the
bk(1), . . . , bk(i � 1).

3. At time i, bk(i) depends on r(i) and rk(i), but is
independent of the previous bk(n), for n ¼ 1, . . . , i � 1.

4. The vectors r(i) and �rk(i) and the sample bk are mutually
Gaussian-distributed random variables.

To proceed, we drop the user k index for simplicity and
define the tap error vectors ew(i) and ev(i) at time index

ew(i) ¼ �w(i)� �wopt, ev(i) ¼ v(i)� v(i)� vopt (35)

where �wopt and vopt are the optimum tap vectors that achieve
the MMSE for the proposed structure. Here, we evaluate the
convergence speed of the proposed scheme through the MSE
analysis of RLS algorithms. In our studies, as no local
minima was verified (Appendix 9.1), it suffices to study the
convergence of only one of the parameters since they always
converge to the same value. By using an analysis similar to
[20] and replacing the expected value with time averages,
we express the weight error vector of the reduced-rank least
squares solution as

ew(i) ¼ �w(i)� �wopt ¼
�̂R
�1

(i)
Xi

i¼1

r(l )e�o (l ) (36)
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Using the definition for the weight error correlation matrix

K (i) ¼ E[ew(i)eH
w (i)] ½20� we have

K (i) ¼ E �̂R
�1

(i)
Xi

l¼1

Xi

j¼1

r(l )e�o (1)eo(j)rH(j) �̂R
�1

(i)

" #
(37)

Assuming that eo(i) is taken from a zero-mean Gaussian
process with variance s2, we have

E[eo(l )e
�
o (j)] ¼

s2, l ¼ j
0, l = j

�

and

K (i)¼ s2E �̂R
�1

(i)
Xi

l¼1

Xi

j¼1

r(l )rH(j) �̂R
�1

(i)

" #
¼ s2E[ �̂R

�1
(i)]

(38)

By invoking the independence theory and using the fact that

the estimate of the covariance matrix given by �̂R
�1

(i) is
described by a complex Wishart distribution [20], the

expected value of the time averaged estimate �̂R
�1

(i) becomes

E[ �̂R
�1

(i)]¼
1

i�D� 1
�R
�1

, i>Dþ 1 (39)

where �R
�1

is the theoretical reduced-rank covariance matrix
and thus

K (i)¼
s2 �R

�1

i�D� 1
, i>Dþ 1 (40)

By considering the a priori estimation error e(i) as

e(i)¼ eo(i)� eH
w (i� 1)r(i) (41)

and expressing its mean-squared value, we have

J 0(i)¼E[je(i)j2]

¼E[je(i)j2]þE[rH(i)ew(i� 1)eH
w (i� 1)r(i)]

�E[eH
w (i� 1)r(i)e�o (i)]�E[eo(i)rH(i)ew(i� 1)]

(42)

By exploiting the fact that the measurement eo(i) is zero mean
with variance s2 and the elements in the second, third and
fourth terms of the above equation are statistically
independent, we may simplify the results in (42) and express
the mean-squared error of the proposed RLS algorithm as

J 0(i)¼ s2
þ tr[ �RK (i)]¼ s2

þ
s2D

i�D� 1
, i>Dþ 1 (43)

The above result indicates that the learning curve of the RLS
algorithm with the proposed reduced-rank structure
Signal Process., 2009, Vol. 3, Iss. 2, pp. 150–163
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converges in about 2D iterations, in contrast to the RLS with
the full-rank estimation scheme, that requires about 2JM
iterations [20]. This means that the proposed scheme
converges L times faster than the full-rank approach with
RLS techniques, where L is the decimation factor. Another
observation from (43) is that as i increases, the excess MSE
tends to zero (for a ¼ 1) and it is independent from the

eigenvalue spread of the covariance matrix �̂R
�1

(i).

5.3 Tracking analysis

In this Section, we present a tracking analysis of the proposed
STAR processor with RLS algorithms using a = 1. Our
analysis is based on the first-order Markov process described by

�wopt(i þ 1) ¼ awopt(i)þ �v(i) (44)

where �v(i) ¼ DH
D (i)v(i) is the projected process noise

with E[ �v(i) �vH(i)] ¼ �Q, v(i) is the process noise with
E[v(i)vH(i)] ¼ Q and a is close to 1. We take into account
the independence theory [20], briefly outlined in the previous
subsection and assume that the variations represented by the
process noise v(i) are slow and that v(i) is independent of
both r(i) and the noise eo(i).

By rewriting (34) as �w(i) ¼ w(i � 1)þ �̂R
�1

(i)�r(i)e�k (i) and
using (44) and bk(i) ¼ wH

opt(i � 1)�r(i)þ eo(i), we can write
the weight error vector ew as

ew(i) ¼ [I � �̂R
�1

�r(i)�rH(i)]ew(i � 1)

þ �̂R
�1

(i)�r(i)e�o (i)þ (1� a) �wopt(i � 1)� �v(i)

(45)

By assuming that a is very close to 1 and using the
approximation E[ �̂R(i)] ’ ( �R(i)=(1� a)) [20] for i large, we
obtain

ew(i) ’ [I � (1� a) �R
�1

�r(i)�rH(i)]ew(i � 1)

þ (1� a) �R
�1

(i)�r(i)e�o (i)� �wi, for i large (46)

Using direct averaging, we obtain

ew(i) ’ aew(i � 1)(1� a) �R
�1

(i)�r(i)e�o (i)� �v(i), for i large

(47)

Computing the covariance matrix of ew(i), that is K (i) ¼
E[ew(i)eH

w (i)] and using the independence assumption [20]
we obtain

K (i) ’ a2K (i � 1)þ (1� a)2
s2 �R

�1
þ �Q, for i large (48)

For the steady-state solution, we have K (i) ¼ K (i� 1) and
then (1� a2)K (i) ’ (1� a)2

s2 �R
�1
þ �Q. Using the
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approximation (1� a2) ’ 2(1� a), we obtain

K (i) ’ 1� a

2
s2 �R

�1
þ

1

2(1� a)
�Q, for i large (49)

The above equation is the fundamental relation to evaluate
the tracking capability of the proposed reduced-rank
processor with RLS algorithms. The MSE is computed by
substituting (49) into (43), which yields

J 0(i) ’ s2
þ

1� a

2
s2Dþ

1

2(1� a)
tr[ �R �Q], for i large

(50)

where the second and third terms represent the misadjustment
MSTAR(i) ¼ ((1� a)=2)s2Dþ (1=2(1� a))tr[ �R �Q] for the
proposed STAR processor and RLS algorithms. The
expression in (50) shows that the proposed reduced-rank
algorithm has an advantage over the full-rank processor,
whose MSE is J Full�Rank(i) ’ s2

þ (1� a=2)s2M þ (1=2
(1� a))tr[RQ] [20], because the terms depend on D rather
than M, as that which occurs with the full-rank RLS
algorithm, and D�M. The third term of (50) is often
significantly less than the full-rank one, that is, tr[RQ], as
verified in our studies. This is because the optimal reduced-
rank transformation SD implements the Karhunen–Lòeve
transform assuming the knowledge of the channel and the
noise variance, and this transform concentrates a part of the
energy of the data using the most appropriate eigenvalues
[20]. Thus, the tracking of the proposed scheme and
algorithms should be superior to that to the full-rank as
verified in our studies and simulations.

5.4 Computational complexity

In this section, we illustrate the computational complexity of
the proposed structure and algorithms. In Table 1, we show
the computational complexity required by the proposed and
existing RLS algorithms. The STAR processor trades off a
computational complexity of O((JM )2) required by the full-
rank RLS against two RLS algorithms operating
simultaneously, with complexity O((D)2) and O(N 2

I ). If the
designer chooses a small NI and B and the decimation factor
L sufficiently large, then the complexity can be greatly
The Institution of Engineering and Technology 2009
reduced as that of the estimators rank D ¼ JM=L is
inversely proportional to L. The MWF technique has a
complexity O(D �J M2), where the variable dimension of the
vectors �J M ¼ JM � d varies according to the orthogonal
decomposition and the rank d ¼ 1, . . . , D. The reduced-
rank PC method with a subspace tracking algorithm [9] has
a complexity O((JM )2) and the AVF with non-orthogonal
auxiliary vectors [17] has a complexity O((DJM)2).

In Fig. 2, we show curves which describe the computational
complexity in terms of the arithmetic operations (additions and
multiplications) as a function of the number of parameters JM.
We consider Lp ¼ 8, NI ¼ 3 and assume that D ¼ 4 for all
reduced-rank approaches. We also include the computational
cost of the algorithm of Song and Roy [8], which is capable
of significantly reducing the cost required by an eigen-
decomposition. The curves indicate that a significant
computational advantage of the STAR over the full-rank
design is verified for the RLS algorithms. In comparison with
the existing MWF and AVF reduced-rank techniques, the
proposed STAR processor with RLS algorithms is also
substantially less complex and more flexible for practical
purposes because the designer can choose the decimation

Figure 2 Complexity in terms of arithmetic operations
against number of received samples (JM) for the analysed
processors with RLS algorithms
Table 1 Computational complexity of RLS adaptation algorithms

Algorithm Number of operations per symbol

Additions Multiplications

Full-rank 3(JM 2 1)2
þ (JM)2

þ 2JM 6(JM)2
þ 2JMþ 2

STAR 3D2
þ 3(NI 2 1)2

þ (D 2 1)NIþ NIJMþ D2
þ NI

2
þ (Bþ 1)Dþ 2NI 6D2

þ 6NI
2
þ DNIþ (Bþ 2)Dþ NIþ 2

PC (JM)3
þ D2

þ 3(D 2 1)2
þ 2D O((JM)3)þ 6D2

þ 2Dþ 2

MWF D(4(JM� 1)2
þ 2JM) D(4JM

2
þ 2JMþ 3)

AVF D((JM)2
þ 3(JM 2 1)2) 2 1þ D(5(JM 2 1)þ 1)þ 2JM D(4(JM)2

þ 4JMþ 1)þ 4JMþ 2
IET Signal Process., 2009, Vol. 3, Iss. 2, pp. 150–163
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factor L and the number of branches B. In the next section, we
demonstrate the performance of the proposed scheme, analysis
and algorithms via simulations.

6 Simulations
In this section, we evaluate the analytical results in terms of the
MSE of the reduced-rank processor and RLS algorithms, as
outlined in Section 5, via simulations experiments. We also
assess the bit error rate (BER) and the convergence
performance of the proposed STAR scheme with J antenna
elements and compare them with those of the full-rank
processor [2, 4], MWF [12], AVF with non-orthogonal
AVs [17] and MMSE, which assumes the knowledge of the
channels, DoAs and the noise variance. The DS-CDMA
system employs Gold sequences of length N ¼ 31 and
QPSK modulation, and all channels assume Lp ¼ 8 as an
upper bound, which means that the filters have
JM ¼ J(Nþ Lp 2 1) ¼ J . 38 taps. Another important issue
in our studies was the interpolator filter vk(i) design. We
have conducted experiments in order to obtain the most
adequate dimension for the interpolator vk(i), with values
ranging from NI ¼ 3 to NI ¼ 6. Note that for NI , 3, the
new scheme did not perform well and using NI . 6 was
unnecessary. The results for a wide range of scenarios
indicate that performance is not sensitive to an increase in
the number of taps in vk(i). This is because the reduced-
rank projection based on the combined use of the adaptive
interpolator, decimator and a reduced-rank estimator is not
able to construct a good subspace projection with only one
or two elements in the interpolator. When the interpolator
size becomes reasonably large (greater than 6), there is no
improved modelling and the adaptation becomes slower in
the proposed subspace projection. Thus, for this reason and
to keep the complexity low, we adjusted NI and selected
NI ¼ 3 for the remaining experiments because this value
yielded the best performance.

6.1 MSE performance: analytical and
simulated results

Here, we verify the results (43) of Section 5 on convergence
analysis of the space-time processor, which can provide a
means of estimating the excess MSE. The steady-state
MSE between the desired and the estimated symbol by the
space-time processor with linear receivers obtained through
simulation is compared with the steady-state MSE-
computed via the expressions derived in Section 5.2. To
illustrate the usefulness of our analysis, we have carried out
some experiments. The channels have three paths with
random complex gains and equal average power, are
normalized to unit power, the system is made synchronous
(dk ¼ 0 for K ¼ 1, . . . , K ), the DoAs are uniformly
distributed in a sector with 1208 (i.e. between 0 and 2p/3),
the RLS algorithms use a ¼ 1 and the spacings between
paths are obtained from discrete uniform random variables
between 1 and 3 chips for each run in a scenario with
Signal Process., 2009, Vol. 3, Iss. 2, pp. 150–163
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perfect power control. The curves are averaged over 200
independent runs and the proposed PS-DEC is used.

The results, shown in Fig. 3 for J ¼ 1 and J ¼ 3 indicate
that upon convergence, the analytical results closely match
those obtained through simulation , confirming the validity
of our analysis. Specifically, we verify that the use of
antenna arrays ( J ¼ 3) can significantly improve the MSE
performance compared with the single-antenna version
through the use of spatial filtering and the improved
rejection of interferers. We also observe that the adaptive
reduced-rank estimators converge in about D symbols,
which agrees with the theory detailed in Section 5.

6.2 BER performance of space-time
adaptive linear receivers

In this part, we focus on the BER performance of the proposed
space-time adaptive linear receivers. We compare the
performance of three different space-time processors used in
conjunction with linear detectors, namely, the full-rank
processor, the MWF, the AVF and the proposed STAR
reduced-rank schemes. The parameters of the algorithms are
optimised (number of stages D ¼ 5 for the MWF and
D ¼ 8 for the AVF, interpolator length NI ¼ 3 and
a ¼ 0:998 for RLS algorithms [20]), and the system has
perfect power control. The channels have three paths with
relative gains at 0, 23 and 29 dB, the coefficients are
obtained with Clarke’s model [21] and the spacing between
paths is computed as in the first experiment. The DoAs are
generated with the same procedure outlined in the previous
subsection, whereas the asynchronism dk is given by uniform
discrete random variables between 1 and N � 1 chips.

To assess the proposed decimation methods, we compute
the convergence performance of the BER of the processors

Figure 3 MSE convergence performance for analytical and
simulated results against number of received symbols for
the processors with B ¼ 16
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with only one element at the antenna array for the uniform
(U-DEC), the random (R-DEC), the pre-stored (PS-
DEC) and the optimal (OPT-DEC) schemes. The
adaptive receivers are adjusted with 200 symbols during the
training period and then switch to a decision-directed
mode for the remaining 1800 symbols. The results, shown
in Fig. 4, indicate that the proposed scheme with the
optimal decimation (OPT-DEC) achieves the best
performance, followed by the proposed method with pre-
stored decimation (PS-DEC), the random decimation
system (R-DEC), the uniform decimation (U-DEC), the
AVF, the MWF and the full-rank approach. It should be
remarked the substantial performance improvement of the
proposed OPT-DEC, PS-DEC and R-DEC schemes over
the U-DEC is noteworthy, which is equivalent to the
method reported in [18, 19]. Because of its exponential
complexity, the optimal decimation algorithm is not
practical and the PS-DEC is the one with the best trade-
off between performance and complexity.

In the next experiment, we evaluate the effect of the
number of decimation branches B on the performance for
various ranks D ¼ JM=L with a data support of 1500
QPSK symbols, for the PS-DEC decimation approach,
with J ¼ 1 and J ¼ 3 sensor elements in the antenna array.
The results, depicted in Fig. 5, indicate that the
performance of the proposed scheme is improved and
approaches the optimal MMSE estimator with J ¼ 1 and
J ¼ 3 antenna elements, which assumes that the DoAs,
channels and the noise variance are known, as B is increased.

The convergence performance of the BER is illustrated in
Fig. 6 with the adaptive linear receivers equipped with J ¼ 1
and J ¼ 3. The curves show that the reduced-rank methods
significantly outperform the full-rank receiver and the best
performance is obtained by the proposed STAR processor.
The performance improves as the number of antenna elements

Figure 4 BER performance against number of symbols with
different decimation schemes for rank D ¼ 4 and B ¼ 12
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J is increased, and we verify that the proposed methods are
able to present a substantial performance advantage over the
best known methods and very fast convergence.

In the last experiment, we consider the BER performance
of the space-time adaptive linear receivers against Eb=N0 and
the number of users, as depicted in Fig. 7. The BER is
measured for data records with 1500 QPSK symbols and a
scenario where the receivers employ pilot signals for
estimating their parameters with RLS algorithms. The
results show that the proposed STAR processor achieves a
BER performance very close to the optimal MMSE, which
assumes known channels and DoAs, and is followed by the
AVF, MWF and full-rank processor. Specifically, the
STAR can save up to 4 dB in Eb=N0 when compared with
the AVF and the MWF for the same BER with J ¼ 1. In
addition, the designer can accommodate up to six more

Figure 6 BER performance against B for a data record of
1500 symbols

Figure 5 BER performance against number of symbols for
B ¼ 16 and D ¼ 4
IET Signal Process., 2009, Vol. 3, Iss. 2, pp. 150–163
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users when compared with the AVF and the MWF for the
same BER with J ¼ 1. In terms of system capacity and
performance, the gains are more pronounced for the
receivers equipped with more sensors in the antenna array.
In general, the use of antenna arrays with reduced-rank
processors can significantly improve the performance, while
keeping the complexity relatively low.

7 Conclusions
A low-complexity space-time adaptive reduced-rank processor
for interference suppression in asynchronous DS-CDMA
systems with adaptive RLS estimation algorithms was
proposed and analysed via analytical expressions and

Figure 8 Error performance surface of space-time processor
at Eb/N0 ¼ 15 dB for D ¼ 4 and B ¼ 12

Figure 7 BER performance

a Against Eb/N0 (N ¼ 31, K ¼ 16 users, fdT ¼ 0.0001)
b Against number of users (N ¼ 31, Eb/N0 ¼ 12 dB, fdT ¼ 0.0001)
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computer simulations. Linear space-time receivers with
antenna arrays based on reduced-rank processors were
investigated to mitigate MAI and ISI in an uplink scenario.
The results have shown that the STAR reduced-rank
processor can achieve a much faster convergence performance
than full-rank and other reduced-rank schemes, requires a
very small rank D that does not scale with system size, and
can approach the optimal MMSE performance at very low
complexity. The proposed processor can also be employed for
other applications such as MIMO systems, equalisation, GPS
jammer suppression and channel estimation.
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9 Appendix
9.1 Convergence properties

In this section, we study the convergence properties of
the proposed processor and LS design. Specifically, we
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focus on the existence of the solutions to the proposed
optimisation problem and examine the characteristics of
the critical points. For notation simplicity, we remove the
index i.

To study the convergence properties of the interpolated
LS design, we consider the associated SES expressions in
(21) and (22). We note that points of global minimum of

J LS ¼ ( �wk, vk) ¼
Pi

l¼1 a
i�1
jbk(l )� vH

k <(l )w�k j
2 can be

obtained by vopt ¼ arg minvk
J (vk) and wopt ¼ g(vopt) or

wopt ¼ arg minwk
J LS(b( �wk), �wk) and vopt ¼ b(wopt). At

a minimum point J LS(vk, g(vk)) equals J LS(b �wk, ( �wk))
and the minimum SES for the proposed structure is
achieved. We further note that since J (vk) ¼ J (tvk), for
every t = 0, if vw

k is a point of global minimum of
J (vk) then tvw

k is also a point of global minimum.
Therefore points of global minimum (optimum
interpolator filters) can be obtained by vw

k ¼

arg minkvkk¼1 J (vk). Since the existence of at least one
point of global minimum of J (vk) for kvkk ¼ 1 is
guaranteed by the theorem of Weierstrass [23], the
existence of (infinite) points of global minimum is also
guaranteed for the cost function in (18). This establishes
the existence of the solution of the optimisation
problem. Since at a minimum point (21) equals (22),
the designer can consider only one of the parameter
vectors, either w̄k or vk, for analysis purposes.

In the context of global convergence, a sufficient but not
necessary condition is the convexity of the cost function,
which is verified if its Hessian matrix is positive semi-
definite, that is aHHa 	 0, for any vector a. First, let us
consider the minimisation of (18) with fixed interpolators.
Such an optimisation leads to the following Hessian

H ¼
@

@wH
k

(JLS(:))

@ �wk

¼
Xi

l¼1
ai�1Db(l )V krk(l )rH

k (l )V H
k Db(l )H

¼
Xi

l¼1
ai�1 �rk(l )�r

H
k (l ) ¼ �Rk(i) (51)

which is positive semi-definite and ensures the convexity
of the cost function for the case of fixed interpolators.
Consider now the joint optimisation of the interpolator v
and receiver �wk through an cost function equivalent to (18)

~J LS(zk) ¼
Xi

l¼1
ai�1
jb(l )� zH

k B(l )zkj
2] (52)

where B(l ) ¼
0 0
<b(l ) 0

� �
is an (NI þD)� (NI þD)

matrix and contains the contribution of the decimator
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Db(i). The Hessian (H) with respect to zk ¼ [wT
k vT

k ]T is

H ¼
@

@zH
k

@( ~J LS(:))

@zk

¼
Xi

l¼1

ai�1(zH
k B(l )zk � bk(l ))BH(l )

 !

þ
Xi

l¼1

ai�1(zH
k BH(l )zk � b�k (l ))B(l )

 !

þ
Xi

l¼1

ai�1B(l )zkzH
k BH(l )

 !

þ
Xi

l¼1

ai�1BH(l )zkzH
k B(l )

 !
(53)

By examining the Hessian matrix H, we note that the
third and fourth terms yield positive semi-definite matrices

aH
ð
Pi

l¼1 a
i�1B(l )zkzH

k BH(l )Þa 	 0 and aH
ð
Pi

l¼1 a
i�1BH(l )

zkzH
k B(l )a]Þ 	 0, zk = 0, whereas the first and second

terms are indefinite matrices. Thus, the cost function cannot
be classified as convex. However, for a gradient search or
Newton-type algorithm, a desirable property of the cost
function is that it shows no points of local minimum, that is,
every point of minimum is a point of global minimum
(convexity is a sufficient, but not necessary, condition for
this property to hold) and here, we illustrate with examples
that the problem in (18) has this property. A proof of this
claim is unfortunately very difficult and not available. To
support this claim, we carried out the following studies:

† By taking into account a small interpolator filter length
NI (N I � 3), vk can be expressed in spherical coordinates
and a surface can be constructed. Specifically, we expressed
the parameter vector vk as

vk ¼ r[ cos(u) cos(f) cos(u) sin(f) sin(u)]T

where r is the radius, u and f were varied from 2p/2 to p/
2 and 2p to p, respectively, and (18) was plotted for
various scenarios. The plot of the error-performance
surface of J (vk), depicted in Fig. 8, reveals that J (vk)
has a global minimum value (as it should) but does not
exhibit local minima, which implies that (20) has no
local minima either. If the cost function in (18) had a
point of local minimum, then J (vk) in (18) should also
exhibit a point of local minimum even though the
reciprocal is not necessarily true; a point of local
minimum of J (vk) may correspond to a saddle point
J LS(vk, �wk), if it exists.

† We consider the scalar case of the function in (18), defined
as f (w, v) ¼ (b� wSDr)2

¼ (b� wrv)2
¼ b2

� 2bwrvþ
(w<v)2, where r is a constant. By choosing v (the ‘scalar’
interpolator) fixed, it is evident that the function
f (w, v) ¼ (b� wc)2, where c is a constant and is convex,
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whereas for a time-varying interpolator, the curves that can
be verified through simple plots of the function f (w, v)
indicate that the function is no longer convex, but it does
not exhibit local minima. The proposed processor and
estimation algorithms generalise this simple function to the
vector case.

† An important feature that advocates the non-existence of
local minima is that the algorithm always converge to the
same minimum value, for a given experiment,
independently of any interpolator initialisation (except for
vk(0) ¼ [0 � � � 0]T that eliminates the signal) for all the
scenarios considered.

9.2 Convergence of the estimation
algorithms

In this part, we establish the convergence of the estimation
algorithms for the proposed STAR processor, that is, the
algorithms that adjust the interpolator vk(i), the decimator
D(i) and the reduced-rank estimator �wk(i). Let us define
MSE(f (vk(i), D(i), �wk(i))) as the MSE of the proposed
joint iterative estimation estimation algorithm, which is a
function f (vk(i), D(i), �wk(i)) of the main components of
the proposed algorithm, namely, the adaptive interpolator
vk(i), the decimator D(i) and the reduced-rank processor
weights �wk(i). For each iteration i, the variables in each of
the estimators are chosen to minimise the MSE for a given
set of variables. Thus, for the estimation of the adaptive
interpolator weights vk(i), we have

MSE(vk(i)) �MSE(vk(i � 1)) (54)

provided the forgetting factor/step size of the algorithm is
appropriately chosen. Similarly, for the weights of the
reduced-rank estimator �wk(i), we have

MSE( �wk(i)) �MSE( �wk(i � 1)) (55)

It should be noted that for the decimator D(i), the algorithm
selects by definition the branch which minimises the squared
norm of the error. Thus, the issue of convergence does not
apply to D(i) as for the other parameters although D(i)
should be taken into account for convergence. Combining
the results in (54) and (55), we can see that the
MSE(f (vk(i), D(i) �wk[i])) is monotonically decreases during
the iterations

MSE(f (vk(i), D(i), �wk(i))) �MSE(f (vk(i � 1),

D(i � 1), �wk(i � 1))) (56)

Since the MSE(f (vk(i), D(i), �wk(i))) is lower bounded, that is,
it is non-negative, our proposed algorithm converges to a point
of minimum. From this development, the issue that arises is
whether the optimisation problem has multiple minima. The
previous analysis illustrates that the problem has multiple
minima and that they correspond to global minima.
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