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Robust Reduced-Rank Adaptive Algorithm Based on
Parallel Subgradient Projection and Krylov Subspace
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Abstract—In this paper, we propose a novel reduced-rank
adaptive filtering algorithm exploiting the Krylov subspace as-
sociated with estimates of certain statistics of input and output
signals. We point out that, when the estimated statistics are erro-
neous (e.g., due to sudden changes of environments), the existing
Krylov-subspace-based reduced-rank methods compute the point
that minimizes a “wrong” mean-square error (MSE) in the sub-
space. The proposed algorithm exploits the set-theoretic adaptive
filtering framework for tracking efficiently the optimal point in the
sense of minimizing the “true” MSE in the subspace. Therefore,
compared with the existing methods, the proposed algorithm
is more suited to adaptive filtering applications. A convergence
analysis of the algorithm is performed by extending the adaptive
projected subgradient method (APSM). Numerical examples
demonstrate that the proposed algorithm enjoys better tracking
performance than the existing methods for system identification
problems.

Index Terms—Krylov subspace, reduced-rank adaptive filtering,
set theory, subgradient methods.

I. INTRODUCTION

R EDUCED-RANK adaptive filtering has attracted sig-
nificant attention over several research communities

including signal processing; e.g., [1]–[12]. Whereas early works
were motivated by the so-called overmodeling problem, many of
the recent works were motivated mainly by computational-con-
straints and slow-convergence problems due to a large number
of parameters. Specifically, a Krylov subspace associated
with the input autocorrelation matrix and the crosscorrela-
tion vector between input and output has been used in several
methods: Cayley–Hamilton receiver [13], multistage Wiener
filter (MSWF) [14]–[16], auxiliary-vector filtering (AVF) [17],
[18], Powers of R (POR) receiver [19], and the conjugate gra-
dient reduced-rank filter (CGRRF) [20]–[22] (see [23]–[25]
for their connections). All of those previous studies focus on
minimizing a mean-square error (MSE) within the Krylov sub-
space (see [26] for linear estimation and detection in Krylov

Manuscript received August 18, 2008; accepted June 09, 2009. First pub-
lished July 14, 2009; current version published November 18, 2009. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Dennis R. Morgan. This work was done in part while M.
Yukawa was with the Department of Electronics, University of York, U.K.

M. Yukawa is with the Laboratory for Mathematical Neuroscience, BSI,
RIKEN, Saitama, 351-0198, Japan (e-mail: myukawa@riken.jp).

R. C. de Lamare is with the Department of Electronics, University of York,
York, YO10 5DD, U.K. (e-mail: rcdl500@ohm.york.ac.uk).

I. Yamada is with the Department of Communications and Integrated Sys-
tems, S3-60, Tokyo Institute of Technology, Tokyo 152-8552, Japan (e-mail:
isao@comm.ss.titech.ac.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2027397

subspaces). However, in the erroneous case (i.e., in cases where
there is a mismatch in estimates of the autocorrelation matrix
and the cross-correlation vector), the methods minimize an “er-
roneous” MSE function in the Krylov subspace. Therefore, the
solution obtained at each iteration is no longer “optimal” in the
sense of minimizing the “true” MSE within the Krylov subspace.

In this paper, we propose an adaptive technique, named
Krylov reduced-rank adaptive parallel subgradient projec-
tion (KRR-APSP) algorithm, tracking directly the “optimal”
solution in the Krylov subspace. The KRR-APSP algorithm
firstly performs dimensionality reduction with an orthonormal
basis of the Krylov subspace, followed by adjustments of
the coefficients of a lower-dimensional filter based on the
set-theoretic adaptive filtering framework1 [29]. As a result,
in cases where the environment changes dynamically (which
makes the estimates of the statistics erroneous), the KRR-APSP
algorithm realizes better tracking capability than the existing
Krylov-subspace-based methods. (The computational com-
plexity is comparable to the existing methods.)

The rest of the paper is organized as follows. In Section II, the
motivation and the problem statement are presented, in which
it is shown that, in a low-dimensional Krylov subspace, i) the
achievable MSE is close to the minimum MSE (MMSE) and
ii) system identification of high accuracy is possible, provided
that the condition number of the autocorrelation matrix is close
to unity. In Section III, we present the proposed reduced-rank
algorithm, and discuss its tracking property and computational
complexity. The KRR-APSP algorithm i) designs multiple
closed convex sets consistent with the recently arriving data,
and ii) moves the filter toward the intersection of the convex sets
(to find a feasible solution) by means of parallel subgradient
projection at each iteration. Because the noise is taken into
account in the set design, KRR-APSP is intrinsically robust.
In Section IV, to prove important properties (monotonicity
and asymptotic optimality) of the proposed algorithm, we
firstly present an alternative derivation of the algorithm from
an extended version of the adaptive projected subgradient
method (APSM)2 [38], [39], and then present an analysis of
the extended APSM. It is revealed that, in the (original) high
dimensional vector space, the proposed algorithm performs
parallel subgradient projection in a series of Krylov subspaces.
In Section V, numerical examples are presented to verify the
advantages of the proposed algorithm over CGRRF, followed
by the conclusion in Section VI.

1A related approach called set-membership adaptive filtering has indepen-
dently been developed, e.g., in [27] and [28].

2APSM has proven a promising tool to derive efficient algorithms in many
applications [30]–[37].
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II. MOTIVATION AND PROBLEM STATEMENT

Let , and denote the sets of all real numbers, nonneg-
ative integers, and positive integers, respectively. We consider
the following linear model:

(1)

where de-
notes the input vector, the unknown system, the
additive noise, and the output ( : sample index, : trans-
position). The MMSE filter in is well-known to be charac-
terized by the so-called Wiener–Hopf equation
(see, e.g., [40]), where and
( : expectation). For simplicity, we assume that is invert-
ible and the input and the noise are (statistically) orthogonal; i.e.,

. In this case, ,
and the MSE function is given as

(2)

Here, and is the -norm3 defined for any
vector as . From (2), it is seen that

.
Let us now consider, for , the MMSE filter

within the following Krylov subspace:

(3)

(4)

Referring to (2), the MMSE solution in is character-
ized by

(5)

where we denote by the metric projection of a vector
onto a closed convex set in the -norm sense. In particular,

the metric projection in the sense of Euclidean norm is denoted
simply by . In words, the MMSE filter in the subspace is
the best approximation, in the -norm sense, of in .

Noting that coincides with the vector obtained
through steps of the conjugate gradient (CG) method with
its initial point being the zero vector, the MSE is bounded as
follows [41, Theorem 10.2.6]:

(6)

where is the condition number of
denotes the spectral norm. System identifiability in

is discussed below.
Remark 1: How accurately can the system be identi-

fied in the subspace ? In the system identification

3The ���-norm is also called the energy norm induced by ���. The same norm
is used in [23] to derive the CG method.

Fig. 1. � ��� ��� ���� � and � ���
��� ���

���� � with the equal error contours of

the MSE surface.

problem, we wish to minimize the Euclidean norm
rather than the -norm . To clarify the difference
between the MSE minimization and the system identification
over , the projections in the different senses are
illustrated in Fig. 1. By the Rayleigh–Ritz theorem [42], it
is readily verified that
for any , where and denote
the maximum and minimum eigenvalues of , respectively.

It is thus verified that

, where
. Here, the first inequality is due to the basic property

of projection, and the third one is verified by [41, Theorem
10.2.6]. This suggests that system identification of high accu-
racy would be possible for a small when (If ,
preconditioning4 should be performed).

In reality, and are rarely available, thus should be esti-
mated from observed measurements. Let and be estimates
of and , respectively, and be characterized by .
CGRRF [20]–[22] computes, at each iteration, the best ap-
proximation of in in the -norm sense; i.e.,

. This realizes significantly fast convergence and

reasonable steady-state performance as long as good estimates
are available; i.e., and . However, once those
estimates become unreliable (which happens when the environ-

ments change suddenly), makes little sense, and

CGRRF (or the other existing Krylov-subspace-based methods)
should wait until a certain amount of data arrive to recapture
reasonable estimates.

The goal of this paper is to propose an alternative to the ex-
isting Krylov-subspace-based methods to address this restric-
tion. To be specific, the main problem in this work is stated
as follows. Given that the Krylov subspace is employed for di-
mensionality reduction, the problem is to design an efficient al-

gorithm that can always track , which minimizes

4The importance of preconditioning is well-known in numerical linear al-
gebra; see, e.g., [43], [44] and the references therein. Also the importance is
mentioned in [45] for an application of the conjugate gradient method to the
adaptive filtering problem. Different types of CG-based adaptive filtering algo-
rithms have also been proposed, e.g., in [46], [47].
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Fig. 2. Illustration of the goal of this paper. “Conventional” stands for the con-
ventional Krylov-subspace-based methods such as CGRRF.

the true MSE over [see (2)]. Such an algorithm
should have better tracking capability than the existing methods

after dynamic changes of environments, because

does not minimize the true MSE as long as the estimates and
are erroneous. The concept is illustrated in Fig. 2, in which the

estimates are assumed to become erroneous. Note in the figure
that the difference between and is a constant
in terms of , which makes no difference in the equal error con-
tours. In the following section, we present an adaptive algorithm
that achieves this goal.

III. PROPOSED REDUCED-RANK ADAPTIVE FILTER

This section consists of the following subsections.
A. Rank-reduction Matrix and Concepts of Set-Theoretic

Adaptive Filtering
B. Design of Closed Convex Sets
C. Proposed KRR-APSP Algorithm—Realization of Mono-

tone Approaching
D. On the Parameters Used in KRR-APAP
E. Tracking Property: We show that the proposed algorithm

tracks

F. Computational Complexity
G. Robustness Issue Against Impulsive Noise

In the following, we let and denote the standard inner
product and its induced norm (i.e., the Euclidean norm), respec-
tively, in any dimensional Euclidean space.

A. Rank-Reduction Matrix and Concepts of Set-Theoretic
Adaptive Filtering

Let and be estimates of and at time ,
respectively (how to compute and is described in
Section III-F). Also let be an matrix whose column
vectors form an orthonormal basis5 (in the sense of the standard
inner product) of the subspace . The orthonormal-
ization can be accomplished through either the well-known
Gram–Schmidt method or more efficient Lanczos method [41].
For dimensionality reduction, we force the adaptive filter

5The orthonormality is essential in the analysis (see Section IV-B).

Fig. 3. Reduced-rank adaptive filtering scheme.

to lie in at each time
instant , where stands for the range space. Thus, for
a lower dimensional vector , the adaptive filter is
characterized as . In the following, a tilde will be
used for expressing a -dimensional vector (or a subset of

). The output of the adaptive filter is given by

(7)

The reduced-rank adaptive filtering scheme is illustrated in
Fig. 3.

We exploit the set-theoretic adaptive filtering framework [29]

for tracking . The basic idea is the following:

1) construct (possibly multiple) closed convex sets containing
the optimal filter, say , with high probability;

2) approach the intersection of those sets monotonically
at each iteration (more details about the monotone ap-
proaching will be discussed in Section IV).

The concepts of set designing and monotone approaching lead
to stable convergence behavior of the adaptive algorithm. How
can we design such closed convex sets? How can we realize the
monotone approaching in a computationally efficient way? The
answer is given in the following.

B. Design of Closed Convex Sets

Given , we define

Recall that our goal is to find the that
minimizes the MSE function (see (2)). This means that the error

should be minimized in an average sense. Apparently,
due to the presence of noise, there is in general no filter
such that . Hence, introducing a constant

, we define the following closed convex sets:

(8)

How can we determine the value of ? In the full-rank
case (i.e., in the case where ), ,
and, by noticing , where

, we have

(9)
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TABLE I
EFFICIENT IMPLEMENTATION OF THE PROPOSED ALGORITHM

This implies that should be determined according to the
stochastic property of noise, thus is referred to as sto-
chastic property set. Under the assumption that is a
zero-mean i.i.d. Gaussian random process with its variance ,
the random variable obeys the distribution of

degrees of freedom. Based on this fact, the following quan-
tities are suggested ([29], Example 1): ,

, or .

In the reduced-rank case, for a given
. In this case,

(10)

From (10), it is seen that, in theory, there are three
terms to be taken into account in the design of : the

quadratic term , the cross term

, and the other quadratic term

. Fortunately, however, the first two terms involve the ap-

proximation inaccuracy , thus nearly diminish
as the adaptation progresses. In practically noisy environments,
those terms at steady state are negligibly small compared with
the third term ; note that is not affected by the
dimensionality reduction. Moreover, the algorithm is fairly
robust in tuning the parameter ; this is verified by simulations
in Section V. Therefore, in practice, it is enough to take into
account only the statistics of noise (which is invariant under the
dimensionality reduction) as in the full-rank case.6

Finally, replacing in (8) by , the stochastic property set
in is obtained as follows:

(11)

where .

C. Proposed KRR-APSP Algorithm—Realization of Monotone
Approaching

Now, we discuss how to realize the monotone approaching, in
, to (a counterpart of in ) in a com-

putationally efficient way; the monotone approaching to in
will be discussed in Section IV. Note that

because . What we can do (in ) is to ap-
proach every element in monotonically, and this is ac-
complished in an efficient way by means of parallel subgradient
projection. Since is guar-
anteed with high probability, it is highly expected that monotone
approaching to is realized.

For the sake of fast convergence, we use multiple closed
convex sets simultaneously at each iteration. Each convex set
employed at th iteration is indicated by each element of the
control sequence 7 . Namely, the
collection of sets is employed at th iteration. A
typical example is for .

Since the projection onto is computationally expen-
sive, we approximate it by the projection onto the simple closed
half-space defined as

(12)

where . An im-
portant property is ([29],

Lemma 2), thus the boundary of is a separating hy-

perplane between and . The projection of onto
is given as

(13)

6Another practical reason is as follows. Generally speaking, a too small value
of � yields fast initial convergence with a possibly large steady-state error. The
� designed based solely on the noise would be too small in the initial phase of
adaptation, but becomes a reasonable value along with the progress of adaptation
of ��� and ��� . Therefore, such � will not cause a large error at steady state.

7One should not confuse control sequence with training sequence.
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which is referred to as the subgradient projection8 relative to
(see Appendix A). We take a convex combination of the

subgradient projections , with coeffi-

cients , , satisfying
. The proposed Krylov Reduced-Rank Adaptive Parallel Sub-

gradient Projection (KRR-APSP) algorithm is presented in what
follows.

Given an arbitrary initial vector , the sequence
is inductively generated as follows. Given

and at each time is defined as

(14)

where , is defined as in (12), and the equa-
tion, shown at the bottom of the page.

The convexity of implies , and the use of
allows to step further than just taking a convex combination.
In the literature, is referred to as extrapolation
coefficient. By [29, Prop. 1], we can immediately show the fol-
lowing monotone approaching property in :

(15)

Efficient implementation of the proposed algorithm is given
in Table I. For computational efficiency, we introduce the pa-
rameter to control the frequency of updating . We men-

tion that, although the condition for updating is similar to
the one used in the set-membership affine projection algorithm
[48], the major differences are that i) the update is based on the
subgradient projection, ii) multiple closed convex sets are em-
ployed at each iteration (each set is indicated by an element of

), and iii) no matrix inversion is required.

D. On the Parameters Used in KRR-APAP

We summarize below the parameters used in the proposed
algorithm:

• : step size;
• : weight assigned to at th

iteration;
• : Krylov subspace dimension;
• : the frequency of updating ;

8Although the function � is differentiable, the subgradient projection can
be defined also for non-differentiable functions. Note that ��� � �� ���� �

� � ����� � �� �� �.

• : the number of projections computed at each iteration;
• : the dimension of the orthogonal complement of the un-

derlying subspace of [see the definition of , and
before (8)];

• : the error bound (controlling the “volume” of ).
The algorithm is very robust against the choice of these param-
eters, although the optimal choice depends on problems. Nev-
ertheless, a general remark is given below on the parameter
choice.

Remark 2 (On the Choice of Parameters): Similarly to the
normalized least mean square (NLMS) algorithm, has a func-
tion to balance the speed of convergence and the steady-state
performance. However, any choice of never causes
filter-divergence and no delicate tuning is necessary.

A simple and acceptable design of is the uniform
ones, and more strategic design has been presented in [32],
[36]. The choice of affects the convergence speed and the
approximation accuracy (thus the achievable MSE and system
mismatch); too small results in fast convergence but large
MSE and system mismatch, and vice versa. Fortunately, how-
ever, yields fairly small MSE and system mismatch
(and fast convergence) in a variety of situations. As for ,
the performance is insensitive to its choice; though, in highly
dynamic environments, should not be too large in order for
the filter to be able to track the unknown system on a reasonably
updated subspace.

The values of and determine the degree of data reusing,
which has a function to increase the rate of convergence. In our
experiments, fixing and increasing up to lead to
significant acceleration of convergence speed with little degra-
dation of steady-state performance (see Section V).

Regarding the choice of , a discussion was given already
in Section III-B. For , in particular, we have

and an arbitrary choice of never
causes instability (although makes the set too
large and results in slow convergence).

The tracking property and the computational complexity of
the proposed algorithm are discussed in the following subsec-
tion.

E. Tracking Property

As explained in Section II, an algorithm that tracks

is expected to enjoy better tracking capa-

bility than the existing Krylov-subspace-based reduced-rank
methods. In this subsection, we first show that the proposed
algorithm (or the vector , generated by
the proposed algorithm) has such a property for its simplest
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case: (i.e., ). In this case, the
proposed algorithm is reduced to

(16)

where . The update equation in (16) is
nothing but the NLMS algorithm. (It should be mentioned that
the step-size range of is a half of that of NLMS.) Thus, (16)
is a stochastic gradient algorithm for the following problem:

(17)

This implies that generated by (16) tracks the minimizer of
(17); for details about the tracking performance of NLMS, see
[49] and the references therein. Hence, noting that ,
it is seen that tracks the solution to the following
problem [which is equivalent to (17)]:

(18)

Referring to (2) and (5), the minimizer of (18) is

. This verifies that generated by

(16) tracks .

F. Computational Complexity

Now, let us move to the discussion about the computational
complexity (i.e., the number of multiplications per iteration) of
the proposed algorithm. For simplicity, we let

, which is used in Section V. We assume that,
given and , the complexity to construct the matrix
is the same as that of CGRRF9. As is computed every
iterations (see Table I), the average complexity for computing

is .
What about the complexity to update and ? In general,

and can be computed recursively as
and , where is

the forgetting factor. Fortunately, because of the symmetry of
, only the upper (or lower) triangular portion of needs to

be computed, resulting in the complexity . More-
over, further computational reduction is possible when has a
Toeplitz structure; for the system model considered in this study,
it is known that is Toeplitz, provided that the input process is
stationary (Note: It does not matter whether changes dynami-
cally). In this case, it is sufficient to estimate in-
stead of , which can be done by ,
leading to the complexity reduced to . For instance,
speech signals are generally nonstationary, but it is well-known
that the signals can be assumed to be stationary during a short
period. Therefore, within a short period, we can assume that
is a Toeplitz matrix so that and can be updated with the
complexity . Regarding the choice of , its value should be

9The Lanczos method, which is essentially equivalent to the CG method [41],
can also be used for constructing ��� .

close to one (a reasonable choice is ) for two rea-
sons. One is that a small (such as ) yields inaccu-
rate estimates of and at steady state, resulting in deteriora-
tion of steady-state performance. The other is that a smaller
makes adaptation of and faster, meaning that the estima-
tion becomes more sensitive to disturbance such as impulsive
noise (see Section V).

The rest is the complexity for the filter update. One of the dis-
tinguished advantages of the APSP algorithm is its inherently
parallel structure [29], [32], [50]–[53]. We start by considering
the case where only a single processor is available. Because the
matrices , used at time , have only distinct
column vectors ( ), the complexity to
compute for all is . Fortunately,
however, this is only required when is updated (every it-
erations), and, when is not updated, only the first column of

(i.e., ) should be computed. This is because, when
is not updated, it holds that for

and , where designates the
submatrix of consisting of the th to th column vectors.
Thus, the average complexity for is

. For the same reason as , the matrices
also have only distinct column vectors,

hence the complexity to compute and is no more than
. Overall, the total complexity for the filter up-

date is , where
. If we set, for instance,

, and (which are used in Section V-C), the
complexity for the filter update is .

Finally, we consider the case where parallel processors are
available. In this case, the computation of the variables corre-
sponding to each is naturally assigned to each processor.
We consider the complexity imposed on each processor at each
iteration. The complexity to compute is , when is
updated, and , when is not updated. The average com-
plexity is thus , where .
Overall, the per-processor complexity for the filter update is

. For , and
an arbitrary , the complexity for the filter update is .

In Table II, the overall complexity of the proposed algorithm
is summarized with those of the NLMS algorithm, the recursive
least squares (RLS) algorithm [40, Table 9.1], and CGRRF [20];
we assume for fairness that CGRRF updates the filter every
iterations. Fig. 4 plots the number of multiplications against the
filter length for , and (which
are used in Section V-C). We can see that the complexity of the
proposed algorithm is much lower than that of RLS (due to the
factor ), and marginally higher than that of CGRRF; in par-
ticular, for a large value of , the difference between the pro-
posed and CGRRF methods is negligible. Moreover, compared
with NLMS, the proposed algorithm requires higher complexity
for realizing better performance. However, the difference can be
significantly reduced by increasing ; in our experiments, the
use of gives almost the same performance as the use
of . It should be mentioned that the difference (in com-
putational complexity) between CGRRF and KRR-APSP can
be further reduced by taking into account the update rate of the
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Fig. 4. Complexities of the conventional methods and the proposed algorithm
with (a) single processor and (b) � processors.

TABLE II
COMPUTATIONAL COMPLEXITIES OF ALGORITHMS. ���� ���� ��
�� � � � � � ����� ������ �� �� � � � ����, AND

� �� 	 � �	 (IN GENERAL) OR � �� 		 (WHEN THE

TOEPLITZ STRUCTURE OF 


 IS EXPLOITED)

vector (i.e., the rate in which it happens that ).
For a chosen appropriately, the update rate is typically less
than 10%.

In conclusion, the proposed algorithm is highly expected to
realize, with comparable computational complexity, superior
tracking performance to the existing Krylov-subspace-based
reduced-rank methods, as will be verified by simulations in
Section V. Moreover, the algorithm has a fault tolerance nature
thanks to its inherently parallel structure; i.e., even if some
of the engaged concurrent processors are crashed, the lack
of information from the crashed processors would not cause
any serious degradation in performance. This is because the
direction of update is determined by taking into account all the
directions suggested by each input data vector little by little.
We finally mention that the Krylov-proportionate adaptive
filtering, an alternative approach based on the Krylov subspace,
has been proposed in [54]; it utilizes the Krylov subspace
for sparsifying the optimal filter and enjoys fast convergence,
optimal (full-rank) steady-state performance, and com-
plexity per iteration, whereas its initial convergence-speed is
not as fast as the reduced-rank approaches. Which is preferred
between the proposed approach and the one in [54] would be
application-dependent.

G. Robustness Issue Against Impulsive Noise

Impulsive noise generally causes performance deterioration
of adaptive algorithms. Several techniques have already been
proposed in the literature; e.g., an approach based on robust sta-
tistics [55] (see [56] for the robust statistics itself), an approach
to constrain the energy of the filter update [57], etc. Our ap-
proach to the robustness issue is based on the idea in [57].

Given a , we impose the following constraint on the
filter:

(19)

This constraint simply changes the filter update equation into
the following:

(20)

where . One can
see that this is a sort of variable step size method. Although
it is possible to adapt in the same way as in [57], we use
a constant for simplicity. We finally mention that the extra
computational cost for is negligibly low because the cost for

is already counted in the computation of (see Table I).
In the following section, we present an analysis of the pro-

posed algorithm; the analysis is valid for any (thus
no matter if we use the above approach).

IV. ANALYSIS OF THE PROPOSED ALGORITHM

In adaptive filtering or learning, the observed measurements
are mostly corrupted by noise and the environments are non-
stationary in many scenarios. Under such uncertain situations,
it is difficult (or nearly impossible) to guarantee that the adap-
tive filter approaches the optimal one monotonically at every
iteration. Thus, a meaningful and realistic property desired for
an adaptive algorithm would be to approach every point in an
appropriately designed set of filtering vectors monotonically at
each iteration. How can such a set, say , be designed?

In our analysis, we let be a (continuous
and convex) objective function, and is defined as a set of
all the vectors that achieve the infimum of over a certain
constraint set. (The constraint is associated with the require-
ments that the filter should lie in the Krylov subspace.) Then,
the desired monotone approximation property is expressed as
follows10:

(21)

We stress that (21) insists that the monotonicity holds for all the
elements of .

What about “optimality” in terms of the objective function
? Is it possible to prove “optimality” in any sense? As you

might notice, the objective function depends on . Namely,
what we should “minimize” is not a fixed objective function
but is a sequence of objective functions . This is the
major difference from the normal optimization problems, and
this formulation naturally fits the adaptive signal processing be-
cause the objective function should be changing in conjunction
with changing environments. Thus, a meaningful “optimality”

10To ensure (21), closedness and convexity of 
 are essential.
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to show would be that minimizes asymp-
totically; i.e.,

(22)

which is called asymptotic optimality [38], [39].
The goal of this section is to prove that the proposed algo-

rithm enjoys the two desired properties (21) and (22). To this
end, we firstly build, with the objective function , a uni-
fied framework named reduced-rank adaptive projected sub-
gradient method (R-APSM), and derive the proposed algorithm
from R-APSM with a specific design of . We then prove that
R-APSM, including the proposed algorithm as its special case,
has the desired properties under some mild conditions.

A. Alternative Derivation of the Proposed Algorithm

Recall here that is forced to lie in at each iteration
. For an analysis of the proposed algorithm, we define

(23)

Given an arbitrary and a sequence of continuous
convex objective functions ,
R-APSM11 generates a sequence by

(24)
where , and is a sub-
gradient of at (see Appendix A).

Suppose that
. Then, removing , (24) for

is the subgradient projection relative to [cf. (13)], which
is denoted by (see Fig. 5). The update equation in
(24) can be expressed as

(25)

Noticing that the thick arrow in Fig. 5 expresses
, the figure with (25) provides a geometric interpretation of

R-APSM (except for ).
Let us now derive the proposed algorithm from R-APSM.

Let be the control sequence, and
, the weight, both of which are defined in the same way

as in Section III-C. An outer approximating closed half-space
is defined as [see (8)]

11The original APSM [38], [39] is obtained by replacing � in (24) by a
projection operator onto a closed convex set of an absolute constraint.

Fig. 5. Geometric interpretation of the subgradient projection � ���� �
when ��� � ��� ���� � � � ����� � 	�� �� �.

where . Because
1) , contains favorable vectors because of the

definition of , and
2) should lie in ,

the distance to is a natural candidate of objec-
tive function. Moreover, for assigning a larger weight to a farther
set, the weight is given to the distance
function . With a normalization factor

, the resulting ob-
jective function is given as follows:

(26)

An application of R-APSM to in (26) yields (cf. [39])

(27)

where , and the equation, shown at the
bottom of the page. Noticing and defining

, the projection of onto is given as
follows:

(28)
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Letting , we obtain ,
, and , from which and

we can verify

(29)

Substituting (29) and into (27), and left-multi-
plying both sides of (27) by , we obtain the proposed algo-
rithm. Taking a look at the update equation in (27), it is seen
that it has the same form as the linearly constrained adaptive
filtering algorithm [31] except for the mapping from
to . Hence, viewing the behavior of the proposed al-
gorithm in , it performs parallel subgradient projection in a
series of (constraint) Krylov subspaces .

B. Analysis of R-APSM

We prove that the sequence generated by R-APSM
satisfies the desired properties (21) and (22). In the analysis,
the fixed point set of the ‘mapping’

, , plays an important role. What is the fixed
point set? Given a mapping , a point
satisfying is called a fixed point of . Moreover,
the set of all such points, i.e., the set

, is called the fixed point set of . The set
is characterized as below.

Proposition 1 (Characterizations of ):
a) .
b) .
c)

(30)

(31)

d) If , then and
.

Proof: See Appendix B.
Define

(32)

(33)

(As mentioned before (21), the constraint set is associ-
ated with the requirements for any .) Then,
the following theorem holds.

Theorem 1: The sequence generated by R-APSM
satisfies the following.

a) (Monotone Approximation)
I) Assume . Then, for any

, (21) holds.
II) Assume in addition .

Then, for any ,

(34)

b) (Boundedness, Asymptotic Optimality) Assume

(35)

Then is bounded. In particular, if there exist
such that , then

(22) holds, provided that is bounded.
Proof: See Appendix C.

Finally, for the specified by (26), we discuss the
assumptions made in Theorem 1. First, it is worth men-
tioning that tends to stop moving when the estimates
of and become reliable, and, in such a case, Propo-
sition 1 implies . Hence, we assume

for simplicity here. Moreover, it mostly
holds that at each ,
unless the observed data are highly inconsistent. In this case,
( and) , thus
(21) holds. We remark that, under , the
condition is sufficient but not
necessary for (21) to hold. (In fact, can be nonempty even
if ).

Under , the conditions in (35) are satisfied
when , which mostly
holds if the observed data are consistent for . We
mention that for the in (26) is automatically
bounded [58].

In dynamic environments, it is hardly possible to ensure
for all , since will move

when the environment changes. In this case, the asymptotic
optimality is difficult to be guaranteed. However, it is possible
that the monotone approximation is guaranteed, because the
environment would be nearly static in some (short) periods and,
within such periods, may stop moving.

V. NUMERICAL EXAMPLES

This section provides numerical examples to verify the
advantages of the proposed algorithm over the CGRRF method
[20] for simple system identification problems. We omit a
comparison with the RLS algorithm, because it is known that
CGRRF provides convergence comparable to RLS with lower
computational complexity and it does not suffer from any
numerical instability problems [46], [47]. For the sake of con-
ciseness, weakly correlated input signals are employed in order
to avoid preconditioning. First, we examine the performance of
the proposed algorithm for different values of , and , and
also the performance of CGRRF for different values of the for-
getting factor . Then, we compare the proposed and CGRRF
methods in terms of i) robustness against impulsive noise and
ii) tracking capability after a drastic change of . In all the
simulations, we set ,
and the matrix is updated every ten iterations with

and .

A. Performance of the Proposed and CGRRF Algorithms

To compute arithmetic averages of MSE and system
mismatch, i.e., , 300 independent ex-
periments are performed. In each experiment,
is generated randomly for , and weakly corre-
lated input signals are generated by passing white
Gaussian signals through a length-30 finite-im-
pulse-response (FIR) filter whose coefficients
are chosen randomly; i.e., , , where
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Fig. 6. Performance of the proposed algorithm for � � �� �� �� � � �, and
� � � under SNR � 15 dB in (a) system mismatch and (b) MSE.

. The signal-to-noise ratio
(SNR) is set to SNR 15 dB, where

with .
The parameters are set to12 ,

, and . The results are depicted
in Fig. 6. It is seen that, from to , an increase
of leads to better steady-state performance both in system
mismatch and MSE. However, from to , the
gain in MSE is slight, although a significant gain is obtained in
system mismatch. This is because the value of at the
steady state is still not small enough in the case of , but the
value of is already small enough (see Section II).

Next we fix the value of , and change the value of as
. The rest of the parameters are the same as in

Fig. 6. The results are depicted in Fig. 7. As a benchmark, the
performance curves of NLMS for step size are also
drawn. It is seen that an increase of (the number of parallel
projections computed at each iteration) raises the speed of con-
vergence significantly.

We now show the robustness of the proposed algorithm
against the choice of . We set , and change as

. The rest of the parameters are the same as
in Fig. 6. The results are depicted in Fig. 8, which shows that

12In the current study, we only focus on the case of � � � to make the param-
eter settings simple. In fact, it has been reported in [31]–[33], [35], and [36] that
fast convergence and good steady-state performance are attained when we use
� � � and a large value of � (e.g., � � �� ��� ��) for the � within the range of
64 to 2000 in the (full-rank) APSP algorithm [29].

Fig. 7. Performance of the proposed algorithm for � � �� � � 	���, and
� � � under 
�� � 15 dB in (a) system mismatch and (b) MSE.

the performance is nearly constant for a wide range of , while
the update rate decreases as increases. We stress that the
purpose of this simulation is to show how robust the proposed
algorithm is against the choice of , but not to show its perfor-
mance for appropriately chosen parameters. Indeed, although
the use of results in relatively slow convergence in the
figure, a slight increase of the step size makes its performance
comparable to the other choices of with low update rate.
Typically, the update rate for an appropriately chosen is less
than 10%, as mentioned in Section III-F.

Finally, we examine how the value of affects the perfor-
mance of CGRRF with fixed. Fig. 9 plots versus
(a) the iteration number required to converge in MSE and (b)
steady-state performance in system mismatch and MSE; as ex-
pected naturally, there is a tradeoff between (a) and (b). Never-
theless, it is seen that would be a good compromise
(see also Section V-B).

B. Robustness Against Impulsive Noise—Proposed Versus
CGRRF

We consider the situation where we have impulsive
noise at the one thousandth iteration. Impulsive noise is
assumed to decay exponentially and generated as follows:

, , where
. The and the input signals are generated in the

same way as in Section V-A, and the SNR is set to 20
dB. For the proposed and NLMS algorithms, the step size is set
to . For the proposed algorithm, moreover, we set



4670 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 12, DECEMBER 2009

Fig. 8. Robustness of the proposed algorithm against the choice of � for � �

� � �, and � � � under ��� � 15 dB in (a) system mismatch and (b) MSE.

, and . For robust-
ness against the impulsive noise, we use the method described
in Section III-G for . For CGRRF,

, and the initial vector at each time instant is set to the
zero vector.

The results are plotted in Fig. 10. It is seen that the methods
for are robust against the impulsive noise, while
CGRRF for exhibits instability (Although it might
be possible to devise a more robust scheme against impulsive
noise with respect to the choice of , it is beyond the scope of
our current study.) This and Fig. 9 suggest that, for the sake
of good performance and robustness, would be a
reasonable choice.

C. Tracking Capability After Drastic Change of —Proposed
Versus CGRRF

We consider the situation where changes dynamically
at one thousandth iteration; the input statistics are unchanged,
which means that all that is changed is the cross-correlation
vector . The other conditions are the same as in Section V-B.

Fig. 11 plots the results. As expected from the discussion in
Section II, the tracking speed of CGRRF (for ) after
the sudden change of is slow, although its convergence speed
at the initial phase is fast. On the other hand, the proposed al-
gorithm for achieves fast initial convergence and good
tracking performance simultaneously. As expected from the re-
sults in Fig. 9, the use of in CGRRF causes significant

Fig. 9. Performance of CGRRF for different values of � under ��� � 15
dB and � � �. Performance measures are (a) the number of iterations to con-
verge in MSE and (b) steady-state performance in system mismatch and MSE,
respectively.

degradation of the steady-state performance (as well as better
tracking capability).

VI. CONCLUSION

This paper has presented a robust reduced-rank adaptive
filtering algorithm based on the Krylov subspace and the
set-theoretic adaptive filtering method. The proposed algorithm
provides an excellent tradeoff between performance (in partic-
ular, tracking capability) and computational complexity. The
valuable properties (monotone approximation and asymptotic
optimality) of the proposed algorithm have been proven within
the framework of the R-APSM. The presented design and
analysis of the proposed algorithm reveal better understanding
of Krylov-subspace-based filtering methods. It would be worth
repeating that the algorithm has a fault tolerance nature due
to its inherently parallel structure. The numerical examples
have demonstrated that the proposed algorithm exhibits much
better tracking performance than CGRRF (with comparable
computational complexity) as well as robustness against impul-
sive noise. This suggests that the proposed algorithm performs
better than the existing Krylov-subspace-based reduced-rank
methods in nonstationary environments. We finally mention
that the proposed algorithm has no numerical problems, since
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Fig. 10. Performance against impulsive noise under SNR� 20 dB in (a) system
mismatch and (b) MSE. For the proposed algorithm, � � ����� � � �
� � �� � � ���� � � �, and � � �����. For CGRRF, � � �. For NLMS,
� � ����� � � .

it requires no matrix inversion, implying that the algorithm is
easy to implement.

APPENDIX A
MATHEMATICAL DEFINITIONS

Let denote a real Hilbert space equipped with an inner
product and its induced norm . We introduce some
mathematical definitions used in this paper.

a) A set is said to be convex if
. A function is said to

be convex if
; the inequality is sometimes

called Jensen’s inequality [59].
b) A mapping is said to be i) nonexpansive if

; ii) at-
tracting nonexpansive if is nonexpansive with

and ,
; and iii) strongly

or -attracting nonexpansive if is nonexpan-
sive with and there exists s.t.

.
c) Given a continuous convex function , the sub-

differential of at any , defined as

Fig. 11. Performance against a drastic change of 			 under the same conditions
as in Fig. 10.

, is nonempty.
An element of the subdifferential is called a sub-
gradient of at .

d) Suppose that a continuous convex function
satisfies . Then, for
a subgradient , a mapping

defined by

is called a subgradient projection relative to (see, e.g.,
[39]).

APPENDIX B
PROPERTIES OF AND PROOF OF PROPOSITION 1

This Appendix presents basic properties of , the Proof of
Proposition 1, and some results regarding the attracting nonex-
pansivity of (see Appendix A).

Lemma B.1: (Basic properties of )
a) for all and .
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b) For any ; the equality holds if
and only if . Moreover, the mapping is
nonexpansive (cf. Appendix A).

Proof of Lemma B.1.a: For all , we have
.

Proof of Lemma B.1.b: , we have,
for any ,

(B.1)

The inequality is verified by the nonexpansivity of the projection
operator; the equality holds if and only if . (B.1) and
the linearity of suggest the nonexpansivity of .

Proof of Proposition 1:
Proof of Proposition 1.a: implies .
Proof of Proposition 1.b: Suppose . Then,

. Moreover, by Lemma B.1.b,
. Hence, , implying

that .
Proof of Proposition 1.c: To prove (31), it is sufficient to

show

(B.2)

Assume . Then, we have

(B.3)

(B.4)

(B.5)

(B.6)

Here, the equivalence between (B.4) and (B.5) is verified by
the well-known Pythagorean theorem. From (B.3) and (B.6), we
obtain . The converse is obvious, which verifies
(B.2).

By Proposition 1.b, any element can be ex-
pressed as . Then, we have

(B.7)

which with (31) verifies (30).
Proof of Proposition 1.d: The orthonormality of

and imply that [60]. More-
over, due to the basic property of projection, we obtain

.
Finally, thanks to Proposition 1, we can show that is at-

tracting nonexpansive if and only if , as described
below.

Lemma B.2 (On Attracting Nonexpansivity of ):
a) If , then is the projection matrix thus

1-attracting nonexpansive.
b) If , then is nonexpansive but not attracting

nonexpansive.

Proof of Lemma B.2.a: By Proposition 1.d,
, . Hence, by the Pythagorean

theorem, we have

(B.8)

This means that the mapping is 1-attracting nonexpansive.
Proof of Lemma B.2.b: By , there exists

s.t. . For such a , it holds that
, implying .

Hence, we obtain

(B.9)

where and . This
verifies that is not attracting nonexpansive.

APPENDIX C
PROOF OF THEOREM 1

Proof of (a)-(I): If , then, ,

(C.1)

Assume now . In this case, we have

(C.2)

which verifies (21). Here, the first and second inequalities are
verified by the nonexpansivity of and the definition of sub-
gradient (see Lemma B.1 and Appendix A), respectively.

Proof of (a)-(II): Noting that
implies , we can readily verify (34) by (C.2).

Proof of (b): From Theorem 1.a.I, we see that the nonneg-
ative sequence for any is convergent,
hence is bounded. Moreover, since im-
plies , it is sufficient to check the case .
In this case, by (C.2), we have

(C.3)

Therefore, the convergence of implies

(C.4)
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hence the boundedness of ensures
.
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