Blind Joint Interference Suppression and Power Allocation with Alternating Optimization for Cooperative DS-CDMA Networks

Rodrigo de Lamare

Communications Research Group

Department of Electronics

University of York

rcdl500@ohm.york.ac.uk

* This work is funded by the UK Royal Society

Outline

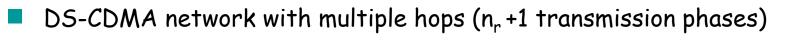
- Motivation, Problems and Contributions
- System and Data Models
- Proposed Blind Linear Receiver Design, Power Allocation and Channel Estimation
 - Constrained Constant Modulus (CCM) Linear Receiver Design
 - Power Allocation
 - Channel Estimation
- Blind Adaptive Algorithms
- Simulations
- Conclusions

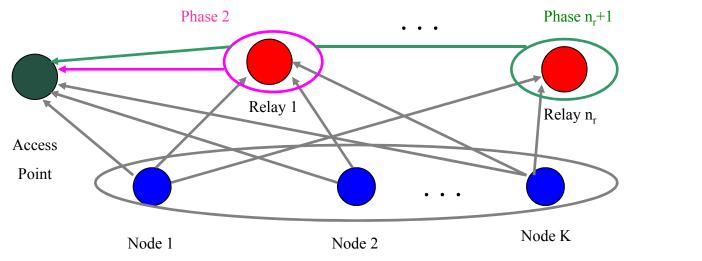
Motivation

- Cooperative communications and relaying exploit the spatial diversity in wireless channels, combat fading and enhance the performance. (Laneman04)
- Multi-hop relaying can improve the coverage of ad hoc and sensor networks at the cost of extra delays, signalling and training overheads. Example: IEEE 802.15.4
- Ad hoc and sensor networks often employ spread spectrum techniques due to their robustness against interference and low power operation. (Long08, Vardhe08)
- Cross-layer design: can obtain significant gains in performance.
 (Jakllari07)

Problems

- The allocation of power levels is often done using an equal power allocation strategy -> this is suboptimal and in multi-hop systems leads to more losses.
- Multi-hop networks require a significant amount of signalling and training.
- Certain nodes in a network have poor links: improvement in coverage and performance is very important.
- Battery consumption: an optimised system can operate with lower power consumption.




Contributions

- An optimization framework:
 - Blind joint allocation of power levels among the relays subject to groupbased power constraints and the design of linear receivers -> BJPAIS-GBC.
 - Alternating adaptive algorithms with cycles between tasks.
- CCM design (de Lamare 2010b):
 - Blind CCM expressions for the power allocation and the design of linear receive filters.
 - Cooperative blind channel estimation algorithm.
- Proposed blind adaptive algorithms:
 - Selection of most important nodes in the optimisation > a heuristic
 - Recursive alternating algorithms for blindly estimating the channels, the power allocation and the receive filters.
- A simulation study of the above techniques

System and Data Models

- Cooperation protocols: amplify-and-forward (AF) and decode-andforward (DF)
- Packets of P symbols
- Interference channel where synchronisation is assumed perfect and transmission is synchronous at the symbol level (VenturinoO6)

System and Data Models (cont.)

By collecting the data the from the source nodes and the relays to the destination into a $(n_r+1)M \times 1$ received vector r[i] we obtain

$$\begin{bmatrix} \boldsymbol{r}_{sd} \\ \boldsymbol{r}_{r_{1}d} \\ \vdots \\ \boldsymbol{r}_{r_{nr}d} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{K} a_{sd}^{k} \boldsymbol{C}_{k} \boldsymbol{h}_{sd,k} b_{k} \\ \sum_{k=1}^{K} a_{r_{1}d}^{k} \boldsymbol{C}_{k} \boldsymbol{h}_{r_{1}d,k} \tilde{b}_{k}^{r_{1}d} \\ \vdots \\ \sum_{k=1}^{K} a_{r_{nr}d}^{k} \boldsymbol{C}_{k} \boldsymbol{h}_{r_{nr}d,k} \tilde{b}_{k}^{r_{nr}d} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\eta}_{sd} \\ \boldsymbol{\eta}_{r_{1}d} \\ \vdots \\ \boldsymbol{\eta}_{r_{nr}d} \end{bmatrix} + \begin{bmatrix} \boldsymbol{n}_{sd} \\ \boldsymbol{n}_{r_{1}d} \\ \vdots \\ \boldsymbol{n}_{r_{nr}d} \end{bmatrix}$$

Rewriting the above signals in a compact form and using i as the symbol index in the transmitted packet, we have

$$egin{aligned} r[i] &= \sum\limits_{k=1}^{K} \widetilde{B}_k[i] \widetilde{A}_k[i] p_k[i] + \eta[i] + \eta[i] \end{aligned} \ &= \sum\limits_{k=1}^{K} P_k[i] B_k[i] a_k[i] + \eta[i] + \eta[i] \end{aligned}$$

Linear Receiver Design and Power Allocation with a Group-Based Power Constraint: Main Idea

Group strategy:

$$\boldsymbol{r}[i] = \boldsymbol{P}_{\mathcal{S}}[i]\boldsymbol{B}_{\mathcal{S}}[i]\boldsymbol{a}_{\mathcal{S},k}[i] + \sum_{k \neq \mathcal{S}} \boldsymbol{P}_{k}[i]\boldsymbol{B}_{k}[i]\boldsymbol{a}_{k}[i] + \boldsymbol{\eta}[i] + \boldsymbol{\eta}[i].$$

where a group of G nodes is considered in the set S.

Linear CCM reception at the access point:

$$z_k[i] = \boldsymbol{w}_k^H[i]\boldsymbol{r}[i].$$

Linear CCM design for power allocation and receive filter: $[w_k^{\text{opt}}, a_{S,k}^{\text{opt}}] = \arg \min_{w_k[i], a_{S,k}[i]} E[(|w_k^H[i]r[i]|^2 - 1)^2]$ subject to $a_{S,k}^H[i]a_{S,k}[i] = P_G$ and $w_k^H[i]p_k[i] = \nu$,
where v is a parameter used to enforce convexity.

MMSE Design with a Group-Based Power Constraint: Expressions

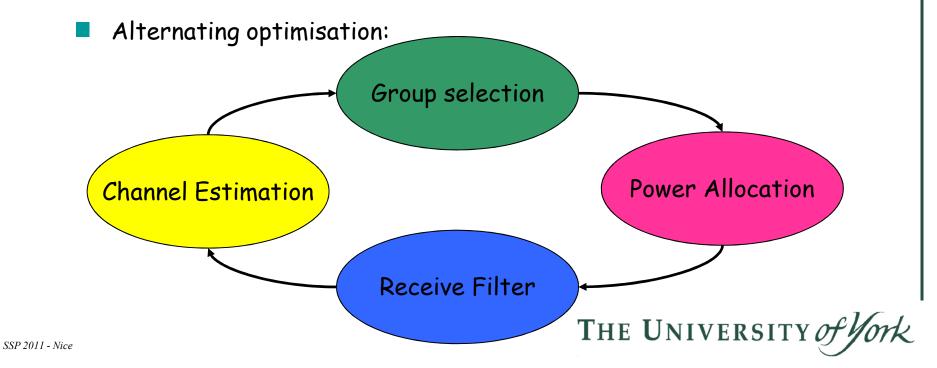
CCM expression for the G(n_r+1) parameter vector of the amplitudes: $a_{\mathcal{S},k}[i] = (R_{\mathcal{S},k}[i] + \lambda_k I)^{-1} d_{\mathcal{S},k}[i],$

where $R_{S,k}[i] = E[|z_k[i]|^2 B_S^H[i] P_S^H[i] w_k[i] w_k^H[i] P_S[i] B_S[i]]$ and $d_{S,k}[i] = E[z_k[i] B_S^H[i] P_S^H[i] w_k[i]]$

CCM expression for the receive filter:

$$\begin{split} w_k[i] &= \mathbf{R}_k^{-1}[i](d_k[i] - \mathbf{p}_k[i]\gamma_k^{-1}[i](\mathbf{p}_k^H[i]\mathbf{R}_k^{-1}[i]d_k[i] - \nu). \\ \text{where } \gamma_k[i] &= \mathbf{p}_k^H[i]\mathbf{R}_k^{-1}[i]\mathbf{p}_k[i], \mathbf{R}_k[i] = E[|z_k[i]|^2\mathbf{r}[i]\mathbf{r}^H[i]] \\ \text{and } d_k[i] &= E[z_k[i]\mathbf{r}[i]]. \end{split}$$

The linear MMSE channel estimator is given by:


$$\begin{split} & \hat{h}_k[i] = \arg\min_{\boldsymbol{h}_k[i]} \boldsymbol{h}_k^H[i] \boldsymbol{\Upsilon}_k \boldsymbol{h}_k[i], \text{ subject to } ||\boldsymbol{h}_k[i]|| = 1, \\ & \text{where } \boldsymbol{\Upsilon}_k = \boldsymbol{C}_k^H \boldsymbol{B}_k^H[i] \boldsymbol{A}_k^H[i] \boldsymbol{\phi}_n \boldsymbol{\phi}_n^H \boldsymbol{A}_k[i] \boldsymbol{B}_k[i] \boldsymbol{C}_k. \end{split}$$

Computational complexity: cubic in the number of parameters.

Blind Adaptive Algorithms

- Blind RALS-based algorithms -> complexity from cubic to quadratic
- Estimate channels
- Build the group of most relevant nodes for joint design: RAKE receiver + selection of strongest nodes.
- Compute power allocation
- Calculate receive filter

Blind Adaptive Algorithms: Channel Estimation and Group Selection

Channel estimation using an RLS-type algorithm:

$$\hat{\boldsymbol{h}}_k[i] = (\boldsymbol{I} - \tau_k[i]\hat{\boldsymbol{\Upsilon}}_k[i])\hat{\boldsymbol{h}}_k[i-1],$$

 $\tau_k[i] = 1/tr[\hat{\Upsilon}_k[i]]$ and $\hat{h}_k[i] \leftarrow \hat{h}_k[i]/||\hat{h}_k[i]||$ to normalize the channel.

The quantity $\hat{\Upsilon}_k[i]$ is estimated by

 $\widehat{\mathbf{\Upsilon}}_{k}[i] = \alpha \widehat{\mathbf{\Upsilon}}[i-1] + \mathbf{C}_{k}^{H} \widehat{\mathbf{B}}_{k}^{H}[i] \widehat{\mathbf{A}}_{k}^{H}[i] \widehat{\mathbf{R}}^{-p}[i] \widehat{\mathbf{A}}_{k}[i] \widehat{\mathbf{B}}_{k}[i] \mathbf{C}_{k},$

where α is a forgetting factor that should be close to 1 and $\hat{R}^{-p}[i]$ is computed with the matrix inversion lemma.

Building the group of G nodes relies on the output of the RAKE receiver:

$$z_k^{\mathsf{RAKE}}[i] = (\widetilde{C}_k \widehat{h}_k[i])^H r[i] = \widehat{p}_k^H[i]r[i]$$

Select the nodes according to:

compute the G largest $|z_k^{\mathsf{RAKE}}[i]|, k = 1, 2, \dots, K$

Blind Adaptive Algorithms: Computation of the Power Allocation

The group-based power allocation algorithm is computed by:

$$\hat{a}_{\mathcal{S},k}[i] = \hat{P}_{\mathcal{S},k}[i-1]\hat{d}_{\mathcal{S},k}[i],$$

$$\hat{d}_{\mathcal{S},k}[i] = \alpha \hat{d}_{\mathcal{S},k}[i] + z_k[i] v_k[i],$$

$$\boldsymbol{k}_{\mathcal{S},k} = \frac{\alpha^{-1} \hat{\boldsymbol{P}}_{\mathcal{S},k}[i-1] \boldsymbol{z}_{k}[i] \boldsymbol{v}_{k}[i]}{1 + \alpha^{-1} \boldsymbol{v}_{k}^{H}[i] \hat{\boldsymbol{P}}_{\mathcal{S},k}[i-1] \boldsymbol{v}_{k}[i] |\boldsymbol{z}_{k}[i]|^{2}},$$

$$\widehat{\boldsymbol{P}}_{\mathcal{S},k}[i] = \alpha^{-1} \widehat{\boldsymbol{P}}_{\mathcal{S},k}[i-1] - \alpha^{-1} z_k^*[i] \boldsymbol{k}_{\mathcal{S},k}[i] \boldsymbol{v}_k^H[i] \widehat{\boldsymbol{P}}_{\mathcal{S},k}[i-1].$$

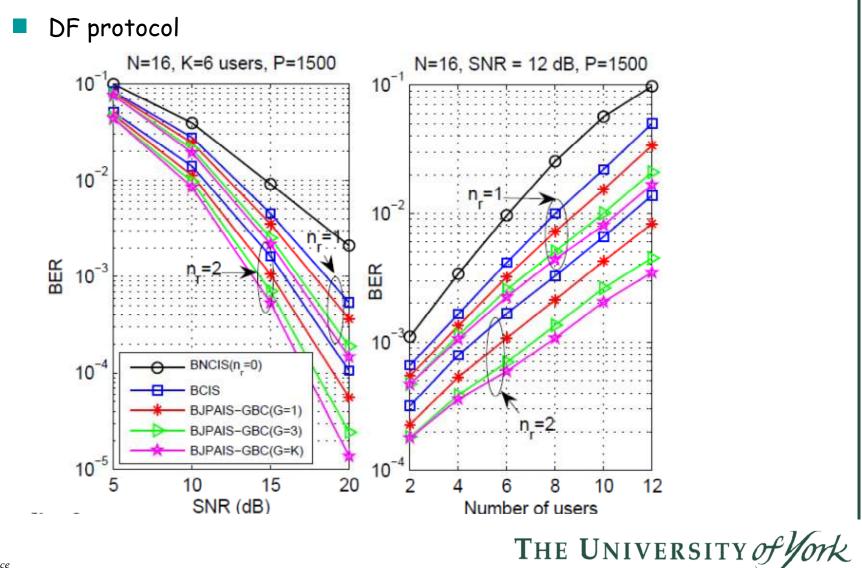
The normalization $\hat{a}_{S,k}[i] \leftarrow P_G \hat{a}_{S,k}[i]/||\hat{a}_{S,k}[i]||$ is then made to ensure the power constraint.

Blind Adaptive Algorithms: Computation of the Receive Filter

The receive filter is computed by


$$\begin{split} \hat{w}_{k}[i] &= P_{k}[i](\hat{d}_{k}[i] - \hat{p}_{k}[i]\hat{\gamma}_{k}^{-1}[i](\hat{p}_{k}^{H}[i]\hat{P}_{k}[i]\hat{d}_{k}[i] - \nu), \\ \text{where } \gamma_{k}^{-1}[i] &= \hat{p}_{k}^{H}[i]\hat{P}_{k}[i]\hat{p}_{k}[i] \text{ and} \\ \hat{d}_{k}[i] &= \alpha \hat{d}_{k}[i] + z_{k}[i]r[i], \\ k &= \frac{\alpha^{-1}\hat{P}_{k}[i-1]z_{k}[i]r[i]}{1 + \alpha^{-1}r^{H}[i]\hat{P}_{k}[i-1]r[i]|z_{k}[i]|^{2}}, \\ \hat{P}_{k}[i] &= \alpha^{-1}\hat{P}_{k}[i-1] - \alpha^{-1}z_{k}^{*}[i]k[i]r^{H}[i]\hat{P}_{k}[i-1]. \end{split}$$

Simulations: Scenario and Parameters


- We assess the BER of the following algorithms:
 - Proposed BJPAIS algorithms with group-based contraints (JPAIS-GBC)
 - Cooperative blind scheme with equal power allocation (CIS) (Venturino06, Yang09)
 - Blind CCM scheme without cooperation (NCIS)
- We consider a DS-CDMA network with random spreading codes with a processing gain N=16, AF or DF protocols.
- The channels with L=5 paths have a random power delay profile with gains taken from complex Gaussian rvs with unit variance and zero mean.
- The power constraint parameter P_{A,k} is set for each user so one can control the SNR and P_T= P_G + (K-G) P_{A,k}
- All nodes are equipped with blind linear CCM receivers which estimate the channel.
- Packets have 1500 QPSK symbols and curves are averaged over 1000 runs.
- A feedback channel, which is error free and delayless, is employed to feedback the power levels to the nodes.

Simulations: BER X Symbols

Simulations: BER X SNR and Users

Conclusions

- A group-based strategy (BJPAIS-GBC) that is flexible and effective for joint blind resource allocation and interference suppression has been devised.
- Blind adaptive RALS algorithms have been devised to allocate the power, estimate the channel and the receive filter.
- The application of BJPAIS-GBC with RALS to multi-hop DS-CDMA networks obtained a performance significantly better than existing techniques.
- The proposed blind techniques do not require training symbols and employ a feedback channel to provide the power allocation to the nodes.
- The proposed blind algorithms allow one to use about 20-25% more nodes for the same BER performance or to reduce the transmitted power by 3 dB.
- The complexity of the proposed algorithms is about 20% higher than cooperative blind schemes (CIS) with equal power allocation.

References

- LanemanO4 J. N. Laneman and G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behaviour," IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
- Long08 L. Long and E. Hossain, ``Cross-layer optimization frameworks for multihop wireless networks using cooperative diversity``, IEEE Transactions on Wireless Communications, vol. 7, no. 7, pp. 2592-2602, July 2008.
- Venturino06 L. Venturino, X. Wang and M. Lops, ``Multiuser detection for cooperative networks and performance analysis," IEEE Trans. Sig. Proc., vol. 54, no. 9, September 2006.
- Vardhe08 K. Vardhe, D. Reynolds and M. C. Valenti, ``The performance of multi-user cooperative diversity in an asynchronous CDMA uplink", IEEE Transactions on Wireless Communications}, vol. 7, no. 5, Part 2, May 2008, pp. 1930 - 1940.
- YangO9 L. L. Yang, W. Fang, ``Performance of Distributed-Antenna DS-CDMA Systems Over Composite Lognormal Shadowing and Nakagami-m-Fading Channels", IEEE Transactions on Vehicular Technology vol. 58, no. 6, pp. 2872-2883, 2009.
- Jakllari07- G. Jakllari, S. V. Krishnamurthy , M. Faloutsos, and P. V. Krishnamurthy, ``On Broadcasting with Cooperative Diversity in Multi-hop Wireless Networks", IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, February 2007.
- DeLamare10- R. C. de Lamare, "Joint Iterative Power Allocation and Interference Suppression Algorithms for Cooperative Spread Spectrum Networks", Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, March 2010.
- DeLamare10b- R. C. de Lamare and R. Sampaio-Neto, ``Blind adaptive MIMO receivers for space-time block-coded DS-CDMA systems in multipath channels using the constant modulus criterion," IEEE Trans. on Communications, , vol.58, no.1, pp.21-27, January 2010.

