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Abstract—This work proposes a blind adaptive reduced-rank
scheme and constrained constant-modulus (CCM) adaptive algo-
rithms for interference suppression in wireless communications
systems. The proposed scheme and algorithms are based on a
two-stage processing framework that consists of a transformation
matrix that performs dimensionality reduction followed by a
reduced-rank estimator. The complex structure of the transfor-
mation matrix of existing methods motivates the development
of a blind adaptive reduced-rank constrained (BARC) scheme
along with a low-complexity reduced-rank decomposition. The
proposed BARC scheme and a reduced-rank decomposition
based on the concept of joint interpolation, switched decima-
tion and reduced-rank estimation subject to a set of constraints
are then detailed. The proposed set of constraints ensures that
the multipath components of the channel are combined prior
to dimensionality reduction. We develop low-complexity joint
interpolation and decimation techniques, stochastic gradient, and
recursive least squares reduced-rank estimation algorithms. A
model-order selection algorithm for adjusting the length of the
estimators is devised along with techniques for determining the
required number of switching branches to attain a predefined
performance. An analysis of the convergence properties and issues
of the proposed optimization and algorithms is carried out, and
the key features of the optimization problem are discussed. We
consider the application of the proposed algorithms to interfer-
ence suppression in DS-CDMA systems. The results show that the
proposed algorithms outperform the best known reduced-rank
schemes, while requiring lower complexity.

Index Terms—Blind adaptive estimation, interference suppres-
sion, iterative methods, reduced-rank techniques, spread spectrum
systems.

I. INTRODUCTION

I NTERFERENCE suppression in wireless communications
has attracted a great deal of attention in the last decades [1],

[2]. Motivated by the need to counteract the effects of wireless
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channels, to increase the capacity of multiple access schemes,
and to enhance the quality of wireless links, a plethora of
schemes and algorithms have been proposed for equalization,
multiuser detection and beamforming. These techniques have
been applied to a variety of standards that include spread spec-
trum [3], orthogonal frequency-division multiplexing (OFDM)
[4] and multiple-input multiple-output (MIMO) systems [5]
and continue to play a key role in the design of wireless com-
munications systems.

A. Prior Work

In order to design interference mitigation techniques, de-
signers are required to employ estimation algorithms for
computing the parameters of the filters used at the receiver or
at the transmitter. In the literature of estimation algorithms, one
can broadly divide them into supervised and blind techniques.
Blind methods are appealing because they can alleviate the
need for training sequences or pilots, thereby increasing the
throughput and efficiency of wireless networks. In particular,
blind estimation algorithms based on constrained optimization
techniques are important in several areas of signal processing
and communications such as beamforming and interference
suppression [6]. The constrained optimizations in these appli-
cations usually deal with linear constraints that correspond to
prior knowledge of certain parameters such as direction-of-
arrival (DoA) of users’ signals in antenna-array processing
[7] and the signature sequence of the desired signal in CDMA
interference suppression [8]. Numerous blind estimation al-
gorithms with different trade-offs between performance and
complexity have been reported in the last decades [8]–[16].
The designs based on the constrained constant modulus (CCM)
criterion [11]–[14], [16] have shown increased robustness
against signature mismatch and improved performance over
constrained minimum variance (CMV) approaches [8]–[10]. In
general, the convergence and tracking performances of these
algorithms depend on the eigenvalue spread of the
full-rank covariance matrix of the input data vector that
contains samples of the signal to be processed, and the
number of elements in the estimator [6]. When is large,
blind algorithms require a large number of samples to reach
their steady-state behavior and may encounter problems in
tracking the desired signal.

Reduced-rank signal processing is a key technique in low-
sample support situations and large optimization problems that
has gained considerable attention in the last few years [17]–[31].
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The fundamental idea is to devise a transformation in such a way
that the data vector can be represented by a reduced number
of effective features and yet retain most of its intrinsic informa-
tion content [17]. The goal is to find the best tradeoff between
model bias and variance in a cost-effective way. Prior work on
reduced-rank parameter estimation has considered eigendecom-
position techniques [18], the multistage Wiener filter (MSWF)
[14], [19] that is a Krylov subspace method, the auxiliary vector
filtering (AVF) algorithm [20]–[23], the joint and iterative op-
timization (JIO) strategy [28], [29], [31] and adaptive interpo-
lated filters [24]–[26]. A major problem with the MSWF, the
AVF-based and the JIO schemes is their high complexity. Prior
work on adaptive interpolated filters [24]–[26] has considered
MMSE- and CMV-based designs and shown a significant per-
formance degradation for rank reduction with large compression
ratios. This problem has been recently addressed by the joint in-
terpolation, decimation and filtering (JIDF) scheme [27], [30]
for supervised training. With the exception of the CCM-based
MSWF of [14] and the JIO of [31], there is no blind reduced-
rank that has low complexity, good performance and robustness
against signature mismatches.

B. Contributions of This Work

In this work, we present a low-complexity blind adaptive re-
duced-rank constrained scheme (BARC) based on the CCM cri-
terion and a reduced-rank decomposition using joint interpo-
lation, switched decimation and reduced-rank estimation. The
proposed scheme is simple, flexible, and provides a substantial
performance advantage over prior art. Unlike the JIDF scheme
[30], the BARC uses an iterative procedure in which the in-
terpolation, decimation and estimation tasks are jointly opti-
mized using the CCM design criterion. In the BARC system,
the number of elements for estimation is substantially reduced in
comparison with existing full-rank and reduced-rank schemes,
resulting in considerable computational savings and improved
convergence and tracking performances. A unique feature of
the BARC and the proposed algorithms is that, unlike existing
blind schemes, they do not rely on the full-rank covariance ma-
trix for performing dimensionality reduction. The BARC and
proposed algorithms skip the processing stage with and di-
rectly obtain the subspace of interest and constraints via a set
of simple interpolation, decimation and reduced-rank estima-
tion operations, which leads to much faster convergence and
improved performance. We develop low-complexity joint inter-
polation and decimation techniques, stochastic gradient (SG),
and recursive least squares (RLS) reduced-rank estimation al-
gorithms. Differently from [30], these algorithms are designed
with a set of constraints that are alternated in the optimiza-
tion procedure. A model-order selection algorithm for adjusting
the length of the filters is devised along with techniques for
determining the required number of switching branches to at-
tain a predefined performance. The proposed model-order selec-
tion differs from [30] as it employs an extended filter approach,
which is significantly simpler than the scheme in [30] that uses
multiple schemes in parallel. The algorithms for adjusting the
number of branches are based on the constant modulus criterion

as opposed to the mean-square error (MSE) criterion employed
in [30]. An analysis of the convergence properties and aspects
of the proposed optimization and algorithms is also presented.
We apply the proposed BARC and algorithms to interference
suppression in DS-CDMA systems.

This paper is organized as follows. The system model of a
DS-CDMA system and the problem statement are presented
in Section II. Section III is dedicated to the description of
the BARC scheme and the CCM reduced-rank estimators.
Section IV is devoted to the presentation of the blind adaptive
SG and RLS estimation algorithms, adjustment of model-order
selection and the number of switching branches, and their
complexity. Section V provides an analysis and a discussion
of the proposed optimization problem. Section VI presents and
discusses the simulation results, and Section VII draws the
conclusions.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider the uplink of a symbol synchronous
DS-CDMA system with users, chips per symbol and

is the maximum number of propagation paths in chips. A
synchronous model is assumed for simplicity since it captures
most of the features of asynchronous models with small to
moderate delay spreads. The modulation is assumed to have
constant modulus. Let us assume that the signal has been
demodulated at the base station, the channel is constant during
each symbol and the receiver is perfectly synchronized with
the main channel path. The received signal after filtering by
a chip-pulse matched filter and sampled at chip rate yields an

-dimensional received vector at time

(1)

where ,
is the complex Gaussian noise vector with zero mean and

whose components are independent and
identically distributed, where and denote transpose
and Hermitian transpose, respectively, and stands for
expected value. The user symbols are denoted by , the
amplitude of user is , the first term in (1) represents
the user signals transmitted over multipath channels including
the inter-chip interference (ICI), and is the intersymbol
interference (ISI) for user from the adjacent symbols. The
signature of user is represented by ,
the constraint matrix that contains one-chip shifted
versions of the signature sequence for user and the
vector with the multipath components are described by

...
. . .

...
. . .

...

(2)
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Fig. 1. Proposed blind adaptive reduced-rank estimation structure.

The multiple access interference (MAI) comes from the non-or-
thogonality between the received signature sequences, whereas
the ISI span depends on the length of the channel response
and how it is related to the length of the chip sequence. For

, (no ISI), for , , for
, , and so on. This means that at time

instant we will have ISI coming not only from the previous
time instants but also from the next symbols. The

linear model in (1) can be used to represent other wireless com-
munications systems including MIMO and OFDM systems. For
example, the user signatures of a DS-CDMA system are equiv-
alent to the spatial signatures of MIMO system.

A reduced-rank interference suppression scheme processes
the received vector in two stages. The first stage performs
a dimensionality reduction via a decomposition of into a
lower dimensional subspace. The second stage is carried out by
a reduced-rank estimator. The output of a reduced-rank scheme
corresponding to the th time instant is

(3)

where is an decomposition matrix which performs

dimensionality reduction and is the
parameter vector of the reduced-rank estimator. The basic

problem is how to cost-effectively and blindly design the
matrix that transforms the vector into a
reduced-rank vector using the CM criterion.

III. PROPOSED BARC SCHEME

In this section, we introduce the proposed BARC scheme and
detail its key features. The motivation is to improve the con-
vergence and tracking performance and reduce the complexity.
This is performed via the reduction of the number of coeffi-
cients for computation from (full-rank schemes) or

(existing blind reduced-rank schemes) to less than a dozen.
The structure of the BARC scheme is shown in Fig. 1, where
an interpolator, a decimator with several switching decimation
branches and a reduced-rank estimator which are time-varying
are employed.

The received vector is filtered by the interpolator

with being the length of the interpolator

and yields the interpolated vector , where the
convolution matrix which has shifted copies of

as described by

...
. . .

...
...

. . .
...

...
...

...

(4)

Let us now express the vector in a way that is suitable
for algebraic manipulation as a function of the interpolator :

(5)

where the Hankel matrix [32] with the received samples
of performs the convolution and is described by

...
...

. . .
... (6)

The vector is transformed by a decimation
unit that contains switching decimation patterns in parallel,
leading to different vectors , ,
where is the decimation factor and is the rank
of the BARC system. This is inspired by diversity techniques
found in wireless communications [35], whose principle is to
collect different copies of signals and combine them to increase
the signal-to-noise ratio, and switched control systems [36]
that exploit switching rules to stabilize and design a system.
The decimation procedure corresponds to discarding
samples of with different patterns, resulting in different

decimated vectors . The decimated vector for
branch is given by

(7)
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where each row of contains a single 1 and zeros.
The decimation matrix is equivalent to removing

samples of . The matrices are designed
off-line, stored at the receiver and the best is selected to
minimize a desired objective function. The output of the
BARC scheme corresponds to filtering with and then
selecting the branch that minimizes the desired criterion. The
output is a function of , and expressed by

(8)

where is an vector, the coefficients
of and the elements of are assumed complex and the

matrix is . In what follows,
we will develop CCM-based estimators and describe how the
switching rule is incorporated into the proposed blind design.

A. Joint Iterative CCM Design of Estimators and
Discrete Optimization

The design of the BARC scheme is equivalent to solving
a joint optimization problem with , and using
a strategy based on fixing two parameters and optimizing
one, and alternating the procedure among the parameters until
convergence. A key feature of this problem is that it involves
a combination of continuous and discrete optimization proce-
dures. Specifically, the design corresponds to the constrained
continuous minimization of the estimators and and
the discrete minimization of according to the CCM design
criterion.

Let us describe the CCM estimators design of the BARC
structure. The CCM design for , and can be com-
puted through the optimization problem

subject to (9)

where the parameter is a constant employed to enforce con-
vexity and

(10)

The decimation matrix is selected to minimize the
square of the instantaneous constant modulus error obtained
for all the branches according to

when (11)

where the constant modulus error signal of the BARC scheme
is . With the selected decima-
tion matrix , we can form the reduced-rank vector

that will be used in the following procedure for
the design of and .

By using the method of Lagrange multipliers, fixing and
minimizing the Lagrangian with respect to , the expression
for the interpolator becomes

(12)

where , ,
and . The matrix
arises from the constraint and the equiva-

lence ,
where is a Hankel matrix with elements of
the effective signature shifted in a similar way to (6). By
fixing the interpolator and minimizing the Lagrangian with
respect to , we obtain

(13)

where ,
, ,

and . We remark that (11),
(12), and (13) depend on each other and their previous values.
Therefore, it is necessary to iterate (11), (12), and (13) in an
alternated form (one followed by the other) with an initial value
to obtain a solution. The expectations can be estimated either via
time averages or by instantaneous estimates as will be described
by the adaptive algorithms.

B. Design of Decimation Schemes

We are interested in developing decimation schemes that are
cost-effective and easy to employ with the proposed BARC
scheme. This can be done by imposing constraints on the struc-
ture of . Since the operator performs decimation,
the structure of is constrained to contain only zeros and

ones. Thus, the decimation operation of the BARC scheme
amounts to discarding samples in conjunction with filtering
by and . The decimation matrix is selected so
to minimize the square of the instantaneous constant modulus
error obtained for the branches employed as follows:

when (14)

where . The design of the deci-
mation matrix considers a general framework that can be
used for any decimation scheme and is illustrated by

...

...

(15)
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where each row of the matrix is structured as

(16)

and the index denotes the th row of the
matrix, the rank of the matrix is , the deci-
mation factor is and corresponds to the number of parallel
branches. The quantity is the number of zeros chosen ac-
cording to a given design criterion.

Given the constrained structure of , it is possible to de-
vise an optimal procedure for designing via an exhaus-
tive search of all possible design patterns with the adjustment
of the variable , where an exhaustive procedure that selects
samples out of possible candidates is performed. The total
number of patterns is equal to

We can view this exhaustive procedure as a combinatorial
problem that has samples as possible candidates for the first
row of and considers positions as candidates
for the following rows of the matrix , where
is the index used to denote th row of the matrix . The
exhaustive scheme described above is, however, too complex
for practical use because it requires permutations of
samples for each symbol interval and candidates for the
positions, and carries out an extensive search over all possible
patterns.

It is highly desirable to employ decimation schemes that are
cost-effective and gather important properties such as low-re-
quirements of storage and computational complexity and can
work with a small number of branches . By adjusting the vari-
able in the framework depicted in (15), we can obtain the
following suboptimal schemes:

A. Uniform (U) Decimation with . We make
and this corresponds to the use of a single branch
on the decimation unit (no switching and opti-

mization of branches), and is equivalent to the scheme in
[26].

B. Pre-Stored (PS) Decimation. We select
which corresponds to the utilization of uniform

decimation for each branch out of branches and the
different patterns are obtained by picking out adjacent
samples with respect to the previous and succeeding dec-
imation patterns.

C. Random (R) Decimation. We choose as a discrete uni-
form random variable, which is independent for each row

out of branches and whose values range between 0
and . A constraint is included to avoid rows with
repetitive patterns.

IV. BLIND ADAPTIVE ESTIMATION ALGORITHMS

In this section, we develop SG and RLS estimation algo-
rithms [6] for estimating the parameters of the BARC scheme
( , and ). The SG algorithms require the setting of

step sizes and are indicated for situations where the eigenvalue
spread of is small. The RLS algorithms need the set-
ting of forgetting factors and are suitable for scenarios in which

has a large eigenvalue spread. We also present blind
model-order selection algorithms for adjusting the lengths
and of the estimators and algorithms for determining the min-
imum number of branches required to achieve a predetermined
performance. The model-order and number of branches selec-
tion algorithms are decoupled in order to reduce the search space
and the computational cost. We have tested a joint search over

, , and , and this has not resulted in performance gains over
the separate search over and over and . Unlike prior work
[30] with the MSE criterion, the proposed algorithms employ
the CM approach and rely on a set of linear constraints. The
complexity of the proposed SG, RLS and model-order selection
algorithms is compared with existing methods in terms of addi-
tions and multiplications.

A. SG Algorithms for the BARC Scheme

To design the estimators and and the decimation ma-
trix , we consider the Lagrangian

(17)

where is a Lagrange multiplier and denotes the real part
of the argument. The input vector is processed by the inter-
polator , yielding . We then compute the
decimated interpolated vectors for the branches with the
decimation matrix , where . Once the candi-
date vectors are computed, we select the vector which
minimizes the square of

(18)

where . Based on the selection of ,
we choose the corresponding reduced-rank vector and select
the error of the proposed SG algorithm as the error with
the smallest squared magnitude of the branches according to

and

when

(19)

In order to derive an SG algorithm for , we need to transform
the proposed constraint in (9) and obtain a suitable and equiv-
alent form for use with . We can write

, where
and the matrix is a function of and and
is given by , where is a Hankel
matrix with elements of the effective signature shifted in a
similar way to (6). We need to construct for each symbol
from and . Minimizing (17) and using the proposed
equivalent constraint , we obtain

(20)
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where is the step size. Minimizing (17) and using the con-
straint , we obtain

(21)

where is the step size. The SG algorithm for the BARC has a
computational complexity and employs (19)–(21).
In fact, the BARC scheme trades off one SG algorithm with
complexity against two SG algorithms with complexity

and , operating simultaneously and exchanging in-
formation.

B. RLS Algorithms for the BARC Scheme

In order to design the estimators , and the matrix
with RLS algorithms, we consider the Lagrangian

(22)

where is a Lagrange multiplier and is a forgetting factor. We
perform the signal processing according to the block diagram of
Fig. 1. Based on the choice of , we select the corresponding
reduced-rank vector and the error as the error

with the smallest squared magnitude of
the branches as follows:

and

when

(23)

Minimizing (22) with respect to , using the constraint
and the matrix inversion lemma [6], we get

(24)

where

(25)

(26)

(27)

and the initial values of the recursions are
and , where and are small positive scalars.
Minimizing (22) with respect to , using the constraint

and the matrix inversion lemma [6], we
obtain

(28)

where

(29)

(30)

(31)

and the initial values of the recursions are and
, where and are small positive scalars. The

RLS algorithm for the BARC has a computational cost of
and consists of (23)–(31).

C. Model-Order Selection Algorithms

This part develops model-order selection algorithms for
automatically adjusting the lengths of the estimators used in
the BARC scheme. Prior work in this area has focused on
methods for model-order selection which utilize MSWF-based
algorithms [19] or AVF-based recursions [20]–[22]. In the
proposed approach, we constrain the search within a range of
appropriate values and rely on a CCM-based LS criterion to
determine the lengths of and that can be adjusted in a
flexible structure. The proposed scheme with extended filters
is significantly less complex than the multiple filters approach
reported in [30]. The model-order selection algorithm for the
BARC is called Auto-Rank and minimizes

(32)
The order of , , , and the associated matrices ,
and defined in (27) and (31), respectively, that are neces-
sary for the computation of and require adjustment. To
this end, we predefine and as follows:

(33)

For each data symbol, we select the best order for the
model. The proposed Auto-Rank algorithm that chooses the
best lengths and for the filters and ,
respectively, is given by

(34)

where and are integers, and , and and
are the minimum and maximum ranks allowed for the re-
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TABLE I
COMPUTATIONAL COMPLEXITY OF SG ALGORITHMS

duced-rank filter and the interpolator, respectively. The addi-
tional complexity of the Auto-Rank algorithm is that it requires
the update of all involved quantities with the maximum allowed
rank and and the computation of the cost function in
(32). This procedure can significantly improve the convergence
performance and can be relaxed (the rank can be made fixed)
once the algorithm reaches steady state. An inadequate rank for
adaptation may lead to a performance degradation, which grad-
ually increases as the adaptation rank deviates from the optimal
rank.

D. Automatic Selection of the Number of Branches

In this subsection, we propose algorithms for automatically
selecting the number of branches necessary to achieve a pre-
determined performance. This performance measure is deter-
mined off-line as a quantity related to the constant modulus cost
function. The first algorithm, termed selection of the number
of branches (SNB), relies on a simple search over the parallel
branches of the BARC scheme and tests whether the predeter-
mined performance has been attained via a comparison with a
threshold . The second algorithm builds on the SNB algorithm
and incorporates prior statistical knowledge about the use of the
branches via sorting and is denoted SNB-S. Let us first define
for each time interval the branch cost as

(35)

where

is the error signal for each branch. The proposed algorithms
for automatically selecting the number of branches perform the
following optimization:

subject to (36)

where is an integer and is the maximum number of
branches allowed for the BARC scheme, respectively, is the

number of branches required to attain the desired performance
and is the prespecified performance. The SNB algorithm de-
termines the minimum number of branches necessary to achieve
a predetermined performance according to the cost function
defined in (35). It iteratively increases the number of branches
by one until the predetermined performance is attained. The
parameter can be chosen as a function of the MMSE with a
penalty allowed by the designer. An alternative to the SNB al-
gorithm is to exploit prior statistical knowledge about the most
frequently used branches and sort the decimation matrices
in descending order of probability of occurrence. The SNB al-
gorithm with sorting will be termed SNB-S and consists of or-
dering the matrices which are most likely to be used. This
can be done at the beginning of the transmission and updated
whenever required. An important measure that arises from the
SNB and SNB-S algorithms is the average number of branches

with being the data record, which
illustrates the savings in computations of the branches.

E. Computational Complexity

In this section, we detail the computational complexity of the
proposed and existing SG, RLS and model-order selection algo-
rithms, as shown in Tables I, II and III. This complexity refers
to an adaptive linear receiver that only requires the timing and
the spreading code of the user of interest. The computational
requirements are described in terms of additions and multipli-
cations and have been derived by counting the necessary oper-
ations to compute each of the recursions required by the ana-
lyzed algorithms. The key parameters of the complexity are the
length of or the number of auxiliary vectors (AVs) for
the AVF algorithm [20]–[22], the number of samples of ,
the number of branches , the length of and the number

of assumed multipath components.
In Fig. 2, we illustrate the main complexity trends by showing

the computational complexity in terms of the arithmetic opera-
tions as a function of the number of samples . We use the same
colors for the corresponding SG techniques in Fig. 2(a) and the
RLS counterparts in Fig. 2(b). For these curves, we consider

, , and for the BARC, assume
for the MSWF-SG based approaches, while we use
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TABLE II
COMPUTATIONAL COMPLEXITY OF RLS AND AVF-BASED ALGORITHMS

TABLE III
COMPUTATIONAL COMPLEXITY OF MODEL-ORDER SELECTION ALGORITHMS

for the MSWF-RLS techniques and for the AVF tech-
nique with non-orthogonal auxiliary vectors (AVs) [20], [21].
The reason why we use different values for is because we
must find the most appropriate trade-off between the model bias
and variance [17] by adjusting (AVs for the AVF) and this de-
pends on the scheme. We always use the best values for each
scheme. The curves in Fig. 2(a) show that the reduced-rank
BARC SG algorithms have a complexity slightly higher than
the full-rank trained SG algorithms and substantially lower than
the other analyzed reduced-rank algorithms. For the RLS al-
gorithms, depicted in Fig. 2(b), we verify that the BARC re-
duced-rank scheme is much simpler than any full-rank or re-
duced-rank RLS algorithm. This is because there is a quadratic
cost on rather than for the full-rank schemes operating
with the RLS algorithm and a high computational cost asso-
ciated with the design of the transformation matrix for
all reduced-rank methods except for the BARC scheme. The
AVF scheme [20]–[22] usually requires extra complexity as it

Fig. 2. Complexity in terms of arithmetic operations of (a) SG and (b) RLS
algorithms and AVF-based recursions.

has more operations per auxiliary vector (AV) and also requires
a higher number of AVs to ensure a good performance. The
trained AVF employs a cross-correlation vector estimated by

.
The computational complexity of the proposed model-order

selection algorithm (Auto-Rank) and the existing rank selection
algorithms is shown in Table III. We can notice that the proposed
model-order selection algorithm with extended filters is signifi-
cantly less complex than the existing methods based on projec-
tion with stopping rule [19] and the CV approach [20]. Specif-
ically, the proposed rank selection algorithm with extended fil-
ters only requires additions,
as depicted in the first row of Table III, in addition to the oper-
ations required by the proposed algorithms, whose complexity
is shown in the last rows of Tables I and II. For the operation of
the MSWF and the AVF algorithms with model-order selection
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algorithms, a designer must add the complexities in Tables I and
II to the complexity of the model-order selection algorithm of
interest, as shown in Table III. The model-order selection algo-
rithm with multiple filters has a number of arithmetic operations
that is substantially higher than the other compared methods and
requires the computation of

pairs of filters with costs and for additions
and multiplications, respectively, for each pair of filters with
and . Specifically, these costs are shown as a function of
and at the bottom of Table III, and we have for the SG ver-
sion additions and

multiplications (see
the last rows of Table I), whereas for the RLS version we have

additions
and mul-
tiplications (see the last rows of Table II). It. Despite the cost,
its performance is comparable with the proposed model-order
selection algorithm with extended filters.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, we develop a stability analysis of the pro-
posed method and SG algorithms and study the convergence
issues of the optimization problem. Specifically, we study the
existence of multiple solutions and discuss strategies for dealing
with it. We consider particular instances of the proposed algo-
rithms for which a global minimum may be encountered by the
proposed SG and RLS algorithms. We also examine cases for
which there is no guarantee that the algorithms will converge to
the global minimum and may end up in local minima. It should
be mentioned, however, that the proposed SG and RLS algo-
rithms were extensively tested for a number of applications and
numerous scenarios. It was verified in these experiments that
the algorithms always converge to approximately the same filter
values irrespective of the initialization. This suggests that the
problem may have multiple global minima or that every point
of minimum is a point of global minimum or that the switching
of branches allows the algorithms to find the global minimum.
Specifically, we are interested in examining three cases of adap-
tation and parameter estimation, namely:

• Case i)— is fixed, i.e., the interpolator and the
decimation matrix are fixed;

• Case ii)— is time-variant with being fixed and
being time-variant;

• Case iii)— is time-variant, where and are
both time-variant;

• Case iv)— is time-variant, where is time-variant
and is time-invariant.

For the sake of analysis and the convexity issues of the
problem, we have opted for studying the method for the four
cases previously outlined. This allows us to gain further in-
sight and draw conclusions on the properties of the different
configurations of the method. A key feature of the proposed
method which makes its convergence study extremely difficult
is the combined use of discrete and continuous optimization
techniques. Even though the necessary conditions for the opti-
mization algorithms are met [33], [34] and the cost functions
used for deriving the SG and RLS algorithms are continuously
differentiable, the discrete nature of the decimation and the

patterns used make its theoretical analysis highly challenging.
This proof is beyond the scope of this paper and remains a very
interesting open problem.

A. Stability Analysis

In this part, we examine the stability of the proposed SG al-
gorithms. In order to establish these conditions, we define the
error matrices at time as

and

(37)

where and are the optimal parameter estimators.
Since we are dealing with a joint optimization procedure, both
filters have to be considered jointly. At this point, we need to in-
troduce a mathematical manipulation that allows the expression
of as a function of the recursion
in (20). We can rewrite as

(38)

where the matrix
, and the matrix has an

-dimensional identity matrix starting at the th row, is shifted
down by one position for each and the other elements are
zeros.

By substituting the expressions of and in (38)
and (21), respectively, and rearranging the terms, we obtain

(39)

(40)

where . Taking expectations
and considering the two error matrices together, we obtain

(41)
where [see the equation at the bottom of the next page]. The
previous equations imply that the stability of the algorithms de-
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pends on the spectral radius of . The parameters of and
will remain bounded and will converge asymptotically to

the optimal values if the step sizes are chosen such the eigen-
values of are less than one. Unlike the stability analysis
of most adaptive algorithms [6], in the proposed approach the
terms are more involved and depend on each other as evidenced
by the equations for and . Let us now examine the three
cases outlined at the beginning of this section.

For case i), the transformation is fixed, and we can con-
sider only the recursion for the error vector , which yields

(42)

Taking expectations on both sides, using the fact that
and computing , we get

(43)

where is the covariance matrix of the
input . Using well-known results from the theory in [6], we
have the following stability condition:

(44)

For case ii), we assume that is fixed and and
are time-variant, which means the trajectories of and

must be considered jointly. Therefore, the equation in
(41) should be used in the analysis. For stability, the step sizes
should be adjusted such that the eigenvalues of are less
than one. Despite this condition of stability, the algorithms may
converge to local minima. In what follows, we will study this.

For cases iii) and iv), we consider that , and are
time-variant and and are time-variant, respectively.
The condition of stability is different from the previous cases
since is a discretely optimized parameter and and

are parameter vectors that are continuously optimized.
The equation in (41) still holds but the discrete nature of
makes a precise stability analysis impractical since is
switched every time instant. In addition, the problem becomes
very difficult to treat since local minima may arise due to the
joint adaptation of , and (case iii)) and the joint
adaptation of and (case iv)).

B. Analysis of the Optimization Problem

Let us now consider an analysis of the joint optimization
method from the point of view of the cost function and the con-
straints. Our strategy is to examine the four cases previously
outlined and draw conclusions on what happens to the nature
of the optimization problem. Let us drop the time index for
simplicity and define the cost function

(45)

where the parameter vector considers
together the reduced-rank estimator and the interpolator and the

matrix contains the

samples of the received vector and the decimation matrix.
The received vector in (1) can be rewritten as ,

where and . Since the symbols
, are i.i.d. complex random variables with mean

zero and unit variance, and are statistically independent,
and we have , where and

.
Let us consider a desired user and its corresponding transfor-

mation matrix and reduced-rank estimator . We can ex-
press the interference free desired signal as

(46)

and the composite signal as

(47)

where is a diagonal matrix with
the amplitudes, is a matrix with the
effective signatures.

Now let us make use of the constraint
and the relation between , , the

channel and the signature [9], [12], [14]. We
then have for the desired user the equivalent expressions

(48)
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where the matrix

and the Hankel matrix contains shifted versions of
the effective signature of the desired user.

At this point, we can exploit the previous expressions and
substitute them into the cost function in (45). Assuming for sim-
plicity the absence of noise and ISI, the cost function of the de-
sired signal can be expressed as

(49)

where and
is a vector with the transmitted symbols.

In order to study the properties of the optimization of (49),
we proceed as follows. We take advantage of the constraint

and rewrite (49) as

(50)

where , ,
and .

The previous development allows us to examine the
four cases outlined at the beginning of the section via
the computation of the Hessian matrix using

. Specifically, is positive definite
if for all nonzero [32]. The
computation of is given by

(51)
where the first term depends on and the selection of some key
parameters, the second term is positive definite, and the third and
fourth terms of (51) are positive semi-definite matrices. We will
now consider the four cases of interest for our analysis.

For case i), we assume fixed and yields the condition

(52)

that ensures the convexity of the optimization problem in the
noiseless case. Since is a linear mapping of
and , then is a convex function of and implies that

is a convex function of .
For case ii), we suppose that is time-variant due to the

interpolator and we shall consider and jointly via the pa-
rameter vector . In this case, yields the condition

(53)

Although the optimization problem depends on the parameters
and which suggests a nonconvex problem, there is the pos-

sibility of modifying the problem with the condition above. As

the extrema of the cost function can be considered for small a
slight perturbation of the noise-free case [11], the cost function
is also convex for small provided the above conditions hold.

For case iii), we assume that , and are time-variant. The
discrete nature of and the switching between branches are
clearly associated with a nonconvex problem for which there is
no easy or known strategy to enforce convexity. Interestingly,
the switching does not affect the final values of the parameter
vectors and which converge to the same steady state values
regardless of the initialization, provided and are not all-
zero quantities.

For case iv), we consider that is time-invariant, and and
are time-variant. The discrete nature of and the switching be-
tween branches are again associated with a nonconvex problem
for which there is no simple strategy to enforce convexity. An
analysis of this problem for cases iii) and iv) remains an inter-
esting open problem.

VI. SIMULATIONS

In this section, we evaluate the bit error rate (BER) per-
formance of the proposed BARC scheme and algorithms in a
DS-CDMA interference suppression application. We consider
the system model detailed in Section II and model the channel
as a finite impulse response (FIR) filter represented as the

channel vector [35]
The system employs random sequences of length
and . All the multipath channels are time-varying
and are generated according to Clarke’s model [35], which
is parameterized by the normalized Doppler frequency ,
where is the Doppler frequency and is the inverse of the
symbol rate. We assume as an upper bound, which
means has when and

taps when , respectively. In this case, the ISI
corresponds to 3 symbols namely, the current, previous and
successive symbols. In all simulations, we assume as
an upper bound, 3-path channels with relative powers given
by 0, 3 and 6 dB, where in each run the spacing between
paths is obtained from a discrete uniform random variable
between 1 and 2 chips and we average the curves over 200
runs. The system has a power distribution among the users for
each run that follows a log-normal distribution with standard
deviation equal to 1.5 dB. The blind algorithms employ the
CCM criterion, adaptive linear receivers that assume perfect
synchronization and know the spreading code of the user of
interest. The number of users does not affect the complexity
of a receiver designed for a particular user. We measure the
BER of the desired user and compare the BARC scheme
with the full-rank [12], [13], reduced-rank schemes with the
MSWF method [14], the AVF scheme with training [20], the
JIO technique [31] and the SVD-based approach that selects
the largest eigenvectors [18] to compute the transformation
matrix and the MMSE, which assumes the knowledge
of the channels and the noise variance. All algorithms have
their parameters optimized with respect to the BER for each
scenario and the blind algorithms employ the blind channel
estimator of [37] to compute the effective signature . The
phase ambiguity derived from the blind channel estimation
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Fig. 3. BER performance against rank (D) for the analyzed schemes using RLS
algorithms.

Fig. 4. BER performance against interpolator rank ��� for the analyzed
schemes using SG and RLS algorithms � � � ������.

method in [37] is eliminated in our simulations by using the
phase of as a reference to remove the ambiguity.

A. Model-Order Adjustment

In most estimation algorithms, it is necessary to adjust pa-
rameters such as order, step size and forgetting factor. In the
proposed BARC scheme, a key issue is the setting of the number
of elements or the rank of the estimators and used. We
have conducted experiments in order to obtain the most ade-
quate rank for the interpolator , with values ranging from
3 to 8 and for the reduced-rank filter with values ranging
from 1 to 16. Notice that values beyond that range are unneces-
sary since it does not lead to performance improvements.

The results in Figs. 3 and 4 for a wide range of scenarios
indicate that the performance is good for a small range of the
number of taps in and . While the BARC scheme is not
able to construct an appropriate subspace projection with only

Fig. 5. BER performance versus number of received symbols.

a few coefficients in and , there is no improvement in
the tradeoff between model bias and noise variance and the es-
timation task becomes slower when the length of the estimator
is greater than 6. Thus, for this reason and to keep a low com-
plexity we adopt and for the next few experiments
since these values yield the best performance.

B. Impact of Number of Branches and Decimation Schemes

In this part, we evaluate the performance of the pro-
posed BARC scheme and algorithms for different decimation
schemes, and the impact of the number of branches on the
performance.

In order to assess the proposed decimation methods, we
compute the BER performance of the algorithms for the uni-
form (U-DEC), the random (R-DEC), the prestored (PS-DEC)
and the optimal (OPT-DEC) schemes. The results, shown in
Fig. 5, indicate that the BARC scheme with the optimal dec-
imation (OPT-DEC) achieves the best performance, followed
by the proposed method with prestored decimation (PS-DEC),
the random decimation system (R-DEC), the uniform decima-
tion (U-DEC), the MSWF, the SVD and the full-rank approach.
Due to its exponential complexity, the optimal decimation
algorithm is not practical and the PS-DEC is the one with the
best trade-off between performance and complexity.

In the next experiment, we evaluate the effect of the number
of decimation branches on the performance for various ranks

with a data support of 1500 symbols and the PS-DEC decima-
tion approach. The results, depicted in Fig. 6, indicate that the
performance of the BARC scheme improves as is increased
and approaches the optimal MMSE estimator, which assumes
that the channels and the noise variance are known.

C. Performance With Model-Order Selection

In the next experiments, shown in Figs. 7 and 8, we assess
the performance of the BARC scheme with the proposed model-
order selection algorithm and mechanisms to determine the min-
imum number of branches necessary to attain a predefined per-
formance as described in Section VI.
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Fig. 6. BER performance versus number of decimation branches.

Fig. 7. BER performance against number of symbols for different model-order
selection algorithms with (a) SG and (b) RLS recursions. (a) � � ��,� � ��,
� �� � 15 dB, � 	 � 
�


�; (b) � � ��, � � ��, � �� � 15 dB,
� 	 � 
�


�.

The evaluation of the model-order selection algorithms is
shown in Fig. 7, where we consider the BARC scheme with
SG and RLS algorithms, , , , and

and . We compare a configuration of the
BARC scheme with and , a second configuration of
the BARC with and , the BARC with the proposed
model-order selection algorithm (Auto-Rank) with extended
filters, the BARC with the method based on the stopping rule
of [19] and the BARC with the CV-based algorithm of [20].
Notice that the BARC with the model-order selection algorithm
based on multiple filters obtains a comparable performance
to the Auto-Rank approach (the curves overlap and for this
reason we do not shot it), however, the former is significantly
more complex. The results indicate that the Auto-Rank allows
the BARC scheme to achieve fast convergence and excellent
steady state performance, which is close to the optimal MMSE.
The performance of the Auto-Rank is slightly better than the
stopping rule approach of [19] and the CV-based technique of

Fig. 8. SINR performance against number of symbols with (a) SG and (b) RLS
recursions. (a) � � ��, � � ��, � �� � 15 dB, � 	 � 
�


�; (b) � �

��, � � ��, � �� � 15 dB, � 	 � 
�


�.

[20]. The proposed Auto-Rank algorithm is less complex than
the algorithms of [19] and [20] as it reduces the number of pos-
sible ranks to be used by the estimators by constraining them
in a preselected range and does not require the computation of
orthogonal projections as in [19].

In the next experiment, we assess the proposed SNB and
SNB-S algorithms for automatically selecting the necessary
number of branches to attain a predefined performance. The
results are shown in Fig. 8 for an identical scenario to Fig. 7.
We consider the BARC scheme with SG and RLS algorithms
and the Auto-Rank algorithm for different values of , and the
proposed SNR and SNR-S algorithms. The parameter was
set equal to 4% greater than the MMSE and for
the experiment. The results indicate that the proposed branch
adaptation techniques allow the BARC scheme to achieve a
performance comparable to the BARC scheme with .
In particular, the proposed SNB algorithm achieves this per-
formance with , whereas the proposed SNB-S
technique attains this performance with due to the
use of a priori knowledge of the frequency of branch usage. In
the following example, we consider the model-order selection
and SNB-S algorithms for the BARC with the same parameters
used in the previous experiment and the rank adaptation mech-
anisms proposed in [19] for the MSWF and in [20] for the AVF.

D. Performance With Different Loads and SNR Values

In the last experiment, we assess the schemes and algorithms
by computing the BER performance against and the
number of users, as depicted in Fig. 9. The BER is evaluated
for data records of 1500 QPSK symbols and a scenario where
the trained receivers employ pilot signals for estimating their
parameters with SG and RLS algorithms, whereas the blind al-
gorithms operate without any assistance. The maximum number
of branches for the BARC scheme is , and we em-
ployed the proposed SNR-S algorithm.

The results show that the BARC scheme with both SG and
RLS algorithms achieves a BER performance very close to the
optimal MMSE, that assumes known channels, is followed by
the AVF, the MSWF-RLS and the full-rank. Specifically, the
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Fig. 9. BER performance versus (a)� �� and (b) number of users for a data
record of 500 symbols.

BARC scheme with the SG algorithm can save up to 4 dB in
as compared to the AVF and the MSWF-RLS for the

same BER and can accommodate up to six more users as com-
pared to the AVF and the MWF-RLS for the same BER.

VII. CONCLUSION

This work proposes the BARC scheme and blind adaptive
algorithms for interference suppression in wireless commu-
nications systems. The proposed BARC scheme employs a
reduced-rank decomposition based on the concept of joint in-
terpolation, switched decimation and reduced-rank estimation
subject to a set of constraints. The proposed set of constraints
ensures that the multipath components of the channel are
combined prior to dimensionality reduction. We have devel-
oped low-complexity SG and RLS reduced-rank estimation
and model-order selection algorithms along with techniques
for determining the required number of switching branches to
attain a predefined performance. We have applied the proposed
algorithms to interference suppression in DS-CDMA systems.
The results of simulations indicate that the proposed BARC
scheme allows a substantially better convergence and tracking
performance than existing reduced-rank and full-rank schemes.
This is due to the dimensionality reduction carried out by the
proposed scheme that allows the use of adaptive algorithms with
very small estimators. The proposed algorithms can be applied
to other applications including MIMO systems, beamforming,
broadband channel equalization and navigation systems.
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