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Adaptive Reduced-Rank Constrained Constant
Modulus Algorithms Based on Joint Iterative

Optimization of Filters for Beamforming
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Abstract—This paper proposes a robust reduced-rank scheme
for adaptive beamforming based on joint iterative optimiza-
tion (JIO) of adaptive filters. The novel scheme is designed
according to the constant modulus (CM) criterion subject to
different constraints. The proposed scheme consists of a bank of
full-rank adaptive filters that forms the transformation matrix,
and an adaptive reduced-rank filter that operates at the output
of the bank of filters to estimate the desired signal. We describe
the proposed scheme for both the direct-form processor (DFP)
and the generalized sidelobe canceller (GSC) structures. For
each structure, we derive stochastic gradient (SG) and recursive
least squares (RLS) algorithms for its adaptive implementation.
The Gram–Schmidt (GS) technique is applied to the adaptive
algorithms for reformulating the transformation matrix and im-
proving the performance. An automatic rank selection technique
is developed and employed to determine the most adequate rank
for the derived algorithms. A detailed complexity study and a
convexity analysis are carried out. Simulation results show that
the proposed algorithms outperform the existing full-rank and
reduced-rank methods in convergence and tracking performance.

Index Terms—Antenna array, beamforming, constrained con-
stant modulus, reduced-rank.

I. INTRODUCTION

A DAPTIVE beamforming techniques have been developed
to improve the reception of a desired signal while sup-

pressing interference at the output of a sensor array. It is an ubiq-
uitous task in array signal processing with applications in radar,
sonar, astronomy, and more recently, in wireless communica-
tions [1]–[5]. A number of adaptive algorithms for the beam-
former design are available and have been extensively studied
[3], [4]. The most common are the linearly constrained adap-
tive algorithms [6]–[11]. In general, the linear constraints cor-
respond to prior knowledge of certain parameters such as the
direction of arrival (DOA) of the desired signal.

An important issue that is considered in adaptive beam-
forming is the design criterion. Among many adaptive al-
gorithms found in the literature, the most promising criteria
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employed are the constrained minimum variance (CMV) [3]
and the constrained constant modulus (CCM) [4] due to their
simplicity and effectiveness. The CMV criterion aims to mini-
mize the beamformer output power while maintaining the array
response on the DOA of the desired signal. The CCM criterion
is a positive measure [4] of the deviation of the beamformer
output from a constant modulus condition subject to a constraint
on the array response of the desired signal. By measuring the
deviation, the CCM criterion provides more information than
the CMV for the parameter estimation of constant modulus
constellations in the beamformer design.

Numerous constrained adaptive algorithms have been
proposed with different constraints in order to design the beam-
formers [3], [6]–[12]. The major drawback of the full-rank
methods, such as stochastic gradient (SG) [13], [14] and re-
cursive least-squares (RLS) [15]–[19], is that these methods
require a large amount of samples to reach the steady-state
when the number of elements in the filter is large. Fur-
thermore, in dynamic scenarios, filters with many elements
usually fail or provide poor performance in tracking signals
embedded in interference and noise. Reduced-rank signal
processing was originally motivated to provide a way out of
this dilemma [20]–[30]. For the application of beamforming,
reduced-rank schemes project the received vector onto a lower
dimensional subspace and perform the filter optimization
within this subspace. One of the popular reduced-rank schemes
is the multistage Wiener filter (MSWF), which employs the
minimum mean squared error (MMSE) [31] and its extended
versions that utilize the CMV and CCM criteria were reported
in [32] and [33]. Another technique that resembles the MSWF
[34], [35] is the auxiliary-vector filtering (AVF) [36], [37]. A
joint iterative optimization (JIO) scheme, which was presented
recently in [38] and [40], employs the CMV criterion with a
relatively low-complexity adaptive implementation to achieve
better performance than the existing methods.

In this paper, we introduce a robust reduced-rank scheme
based on joint iterative optimization of filters with the CCM cri-
terion and compare it with that of the CMV to show its improved
performance in the studied scenarios. The developed CCM re-
duced-rank scheme consists of a bank of full-rank adaptive fil-
ters, which constitutes the transformation matrix, and an adap-
tive reduced-rank filter that operates at the output of the bank of
full-rank filters. The transformation matrix maps the received
signal into a lower dimension, which is then processed by the
reduced-rank filter to estimate the transmitted signal. The pro-
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posed scheme provides an iterative exchange of information be-
tween the transformation matrix and the reduced-rank filter and
thus leads to improved convergence and tracking performance.

This paper makes the following contributions.
• A reduced-rank scheme according to the constant modulus

(CM) criterion subject to different constraints is proposed
based on the JIO of adaptive filters. This robust reduced-
rank scheme is investigated for both direct-form processor
(DFP) and the generalized sidelobe canceller (GSC) [16]
structures.

• For each structure (DFP or GSC), a family of computation-
ally efficient reduced-rank SG and RLS type algorithms are
derived for the proposed scheme. The Gram–Schmidt (GS)
technique is employed in the proposed algorithms to refor-
mulate the transformation matrix for further improving the
performance.

• An automatic rank selection technique is developed to de-
termine the most adequate rank for the proposed SG and
RLS algorithms.

• A detailed comparison is presented to show the computa-
tional complexity in terms of additions and multiplications
of the proposed and existing reduced-rank algorithms, and
existing full-rank techniques.

• An analysis of the convergence properties of the proposed
reduced-rank scheme and optimization problems is carried
out.

• A simulation study is performed to show the improved con-
vergence and tracking performance of the proposed algo-
rithms over existing methods.

The remainder of this paper is organized as follows: we out-
line a system model for beamforming in Section II. Based on
this model, the full-rank and reduced-rank CCM beamformer
designs are reviewed. The proposed reduced-rank scheme based
on the CM criterion subject to different constraints is presented
in Section III, and the proposed adaptive algorithms are detailed
for implementation in Section IV. A detailed complexity study
and a convergence analysis of the proposed algorithms are car-
ried out in Section V. Simulation results are provided and dis-
cussed in Section VI, and conclusions are drawn in Section VII.

II. SYSTEM MODEL AND CCM BEAMFORMER DESIGN

In this section, we first describe a system model to express the
received data vector. Based on this model, the full-rank beam-
former design according to the CM criterion subject to the con-
straint on the array response is introduced for the DFP and the
GSC structures.

A. System Model

Let us suppose that narrowband signals impinge on a
uniform linear array (ULA) of sensor elements.
The sources are assumed to be in the far field with DOAs

. The received vector at the
snapshot can be modeled as

(1)

where is the signal
DOAs, com-

prises the normalized signal steering vectors
,

, where is the wavelength and
( in general) is the inter-element distance of the ULA,
and to avoid mathematical ambiguities, the steering vectors

are assumed to be linearly independent. is
the source data, is temporary white sensor noise,
which is assumed to be a zero-mean spatially and Gaussian
process, is the observation size of snapshots, and stands
for transpose.

B. Full-Rank CCM Beamformer Design

The full-rank CCM linear receiver design for beam-
forming is equivalent to determining a filter

that provides an estimate of
the desired symbol , where denotes
Hermitian transpose. The calculation of the weight vector is
based on the minimization of the following cost function:

subject to

(2)

where is suitably chosen to guarantee that the weight so-
lution is close to the global minimum and is set to ensure
the convexity of (2) [33]. The quantity is the direction of
the desired signal, denotes the corresponding normalized
steering vector, and in general, is selected to consider the
cost function as the expected deviation of the squared modulus
of the beamformer output to a constant, say . The CCM
criterion is a positive measure [4] of the deviation of the beam-
former output from a constant modulus condition subject to a
constraint on the array response of the desired signal. Compared
with the CMV criterion, it exploits a constant modulus property
of the transmitted signals, utilizes the deviation to provide more
information for the parameter estimation of the constant mod-
ulus constellations, and achieves a superior performance [17],
[33]. The CCM beamformer minimizes the contribution of the
interference and noise while maintaining the gain along the look
direction to be constant. The weight expression of the full-rank
CCM design is given in [33].

C. Reduced-Rank CCM Beamformer Design

For large , considering the high computational cost and
poor performance associated with the full-rank filter, a number
of recent works in the literature have been reported based on
reduced-rank schemes [20]–[24], [31]–[43]. Here, we will de-
scribe a reduced-rank framework that reduces the number of co-
efficients by mapping the received vector into a lower dimen-
sional subspace. The diagrams of the reduced-rank processors
are depicted for the DFP and the GSC structures in Fig. 1(a) and
(b), respectively.

1) Beamformer Design for the DFP: In the DFP structure,
denotes the transformation matrix that includes a

set of vectors for a -dimensional subspace with .
The transformation matrix maps the received vector into its
low-dimension version , which is given by

(3)
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Fig. 1. Reduced-rank scheme for (a) the DFP and (b) the GSC structures.

where, in what follows, all -dimensional quantities are denoted
by an over bar. An adaptive reduced-rank CCM filter

follows the transformation matrix to produce the filter
output .

Substituting the expression of into the cost function in (2)
and calculating for the reduced-rank weight vector, we have [33]

(4)

where ,
, and

. Note that the expression in (4) is a function of previous
values of (since ) and thus must be
initialized to start the computation for the solution. We keep
the time index in and for the same reason.

2) Beamformer Design for the GSC: The GSC structure
converts the constrained optimization problem into an un-
constrained one and adopts an alternative way to design the
beamformer. The full-rank CCM beamformer design with
respect to the GSC structure has been reported in [39]. Here, we
employ an alternative way proposed in [44] and [45] to describe
a reduced-rank GSC structure. As can be seen in Fig. 1(b), the
reduced-rank GSC structure composes a constrained compo-
nent and an unconstrained component. The
quantity is a new received vector defined as

(5)

where . The definition of is valid for
in (2) and . This expression is

only to favor its use in the GSC structure for the case of the CM
cost function. Note that and (full-rank or reduced-
rank with ) correspond to the same values but are
written in a different way to indicate the structures (DFP and
GSC).

For the constrained component, the output is
. With respect to the unconstrained compo-

nent, the new received vector passes through a signal
blocking matrix to get a transformed vector

, which is

(6)

where is obtained by the singular value decomposition or the
QR decomposition algorithms [41]. Thus,
means that the term effectively blocks any signal coming
from the look direction . The transformation matrix

maps the transformed vector into a low-dimen-
sion version, as described by

(7)

The reduced-rank received vector is processed by a
reduced-rank filter to get the unconstrained
output . The reduced-rank weight vector
is [16]

(8)

where and
. Note that this

expression is a function of previous values of the weight vector
and therefore must be initialized to start the computation for the
solution.

The reduced-rank GSC structure can be concluded in a trans-
formation operator and
a reduced-rank weight vector .
The equivalent full-rank weight vector can be expressed as

(9)

The reduced-rank weight expressions in (4) for the DFP
and in (9) for the GSC are general forms to the signal pro-
cessing tasks. Specifically, for (DFP) and
(GSC), the expressions are equivalent to the full-rank filtering
schemes [16]. For (DFP) and
(GSC), the signal processing tasks are changed and the re-
duced-rank filters estimate the desired signals.

The challenge left to us is how to effectively design and cal-
culate the transformation matrices and . The principal
components (PC) method reported in [20] uses the eigenvec-
tors of the interference-only covariance matrix corresponding
to the eigenvalues of significant magnitude to construct the
transformation matrix. The cross-spectral (CS) method [23], a
counterpart of the PC method belonging to the eigen-decom-
position family, forms the transformation matrix by using the
eigenvectors which contribute the most towards maximizing
the SINR and outperforms the PC method. Another family of
adaptive reduced-rank filters such as the MSWF [31], [32] and
the AVF [36] generates a set of basis vectors as the transforma-
tion matrix that spans the same Krylov subspace [34], [35].

III. PROPOSED CCM REDUCED-RANK SCHEME

In this section, we introduce the proposed reduced-rank
scheme based on the JIO approach. Two optimization problems
according to the CM criterion subject to different constraints
are described for the proposed scheme. Based on this scheme,
we derive the expressions of the transformation matrix and the
reduced-rank weight vector. For the sake of completeness, the
proposed scheme is introduced for both the DFP and the GSC
structures.

A. Proposed CCM Reduced-Rank Scheme for the DFP

Here we detail the principles of the proposed CCM reduced-
rank scheme using a transformation based on adaptive filters.
For the DFP structure depicted in Fig. 2(a), the proposed scheme
employs a transformation matrix , which is re-
sponsible for the dimensionality reduction, to generate

. The dimension is reduced and the key features of the
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Fig. 2. Proposed reduced-rank scheme for (a) the DFP and (b) the GSC struc-
tures.

original signal is retained in according to the CCM cri-
terion. The transformation matrix is structured as a bank of
full-rank filters ,

as given by .
An adaptive reduced-rank filter is then used to
produce the output. The transformation matrix and the
reduced-rank filter are jointly optimized in the proposed
scheme. The filter output is a function of the received vector,
the transformation matrix, and the reduced-rank weight vector,
which is

(10)

We describe two optimization problems according to the CM
cost function subject to different constraints for the proposed
reduced-rank scheme, which are given by

Problem 1:

subject to (11)

Problem 2:

subject to and (12)

Compared with (11), the problem in (12) has an orthogonal
constraint on the transformation matrix, which is to reformulate

. The transformation matrix generated from (11) has vec-
tors that may perform a similar operation (e.g., take the same
information twice or more), thereby making poor use of the
data and losing performance. The subspace computed with (12),
which spans the same subspace as , generates basis vec-
tors that are orthogonal to each other and which does not affect
the noise statistically. The reformulated transformation matrix

performs an effective operation to keep all useful information in
the generated reduced-rank received vector, which is important
to estimate the desired signal and improve the performance. In
the following, we will derive the CCM expressions of and

for solving (11) and (12).
The cost function in (11) can be transformed by the method

of Lagrange multipliers into an unconstrained one, which is

(13)

where is a scalar Lagrange multiplier and the operator
selects the real part of the argument.

Assuming is known, computing the gradient of (13)
with respect to , equating it to a zero matrix and solving
for , we have (14) shown at the bottom of the page, where

,
, and . Note that the re-

duced-rank weight vector depends on the received vectors
that are random in practice, thus is -rank and invert-
ible. and are functions of previous values of
and due to the presence of . Therefore, it is necessary
to initialize and to estimate and , and start
the computation.

On the other hand, assuming is known, computing the
gradient of (13) with respect to , equating it to a null vector
and solving for , we obtain

(15)

where ,
, and .

Note that the expressions in (14) for the transformation matrix
and (15) for the reduced-rank weight vector can be applied to
solve the optimization problem (12). The orthogonal constraint
in (12) can be imposed by the GS) technique, which will be
illustrated in the next section.

B. Proposed CCM Reduced-Rank Scheme for the GSC

For the GSC structure, as depicted in Fig. 2(b), the proposed
scheme utilizes a transformation matrix
to map the new transformed vector into a
lower dimension, say . In our
design, the transformation matrix and the reduced-rank
weight vector for the sidelobe of the GSC are jointly
optimized by minimizing the cost function

(16)

(14)
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where the expression in (16) for the GSC is obtained by substi-
tuting (5) and (9) into (2) with . This is an unconstrained
cost function that corresponds to (11). From Fig. 2(b), this struc-
ture essentially decomposes the adaptive weight vector into con-
strained (array response) and unconstrained components (see
also (9)). The unconstrained component can be adjusted to meet
the CM criterion since the constrained component always en-
sures that the constrained condition is satisfied. Thus, the pro-
posed GSC framework converts the constrained optimization
problem into an unconstrained one.

Assuming and are given, respectively, com-
puting the gradient of (16) with respect to and ,
and solving the equations yields

(17)

(18)

where with
,

, and .
is invertible since depends on the random

received vector and is a full-rank matrix.
and have been defined in the previous section. Again,
the orthogonal constraint on the transformation matrix can be
enforced in the optimization problem (16) and the GS technique
is employed to solve it.

Note that the filter expressions in (14) and (15) for the DFP
and (17) and (18) for the GSC are not closed-form solutions.
In the DFP structure, the expression of the transformation ma-
trix in (14) is a function of and the reduced-rank weight
vector obtained from (15) depends on . It is necessary to
set initial values of and for the update procedures.
Thus, initialization about the transformation matrix and the re-
duced-rank weight vector is not only to get a beamformer output

for estimating and , but to start the computation
of the proposed scheme. In the case of the GSC, we initialize

and with the same intention.
Unlike the MSWF [31] and the AVF [36] techniques, the

proposed scheme provides an iterative exchange of informa-
tion between the transformation matrix and the reduced-rank
filter, which leads to improved convergence and tracking per-
formance. The transformation matrix reduces the dimension of
the received vector whereas the reduced-rank filter attempts to
estimate the desired signal. The key strategy lies in the joint it-
erative optimization of the filters. In the next section, we will
derive iterative solutions via simple adaptive algorithms and in-
troduce an automatic rank selection technique for the adaptation
of the rank .

IV. ADAPTIVE ALGORITHMS OF THE PROPOSED CCM
REDUCED-RANK SCHEME

We derive SG and RLS type algorithms for the proposed
CCM reduced-rank scheme. Some related works can be found
in [12]–[15]. In this paper, the adaptive algorithms are described
for the DFP and the GSC structures, respectively, to perform
joint iterative updates of the transformation matrix and the
reduced-rank weight vector. They are used to solve Problem 1.

TABLE I
THE JIO-CCM-SG ALGORITHM FOR DFP

The GS technique is employed in these algorithms and imposes
an orthogonal constraint on the transformation matrix to solve
Problem 2. An automatic rank selection technique is introduced
to determine the most adequate rank for the proposed methods.

A. Stochastic Gradient Algorithms

Here, we derive the SG algorithms with the proposed CCM
reduced-rank scheme for both the DFP and the GSC structures.

1) SG Algorithm for the DFP: Assuming and are
known, respectively, computing the instantaneous gradient of
(13) with respect to and , we obtain

(19)

(20)

where .
Following the gradient rules

and ,
substituting (19) and (20) into them, respectively, and solving
the Lagrange multipliers and by employing the con-
straint in (11), we obtain the iterative SG algorithm for the
DFP, which is denominated JIO-CCM-SG. A summary of this
algorithm is given in Table I, where and are the corre-
sponding step size factors for the DFP, which are small positive
values. The initialization values are set to satisfy the constraint
in (11). The transformation matrix and the reduced-rank
weight vector operate together and exchange information
at each time instant.

2) SG Algorithm for the GSC: For the GSC structure, as-
suming and are given in (16), respectively, we
get

(21)

(22)

where and is obtained from (9).
Substituting (21) and (22) into the gradient rules, we obtain

the iterative SG algorithm for the GSC, which is summarized in
Table II, where and are the corresponding step size
factors for the GSC.

B. Recursive Least Squares Algorithms

In this part, we derive the RLS algorithms with the proposed
CCM reduced-rank scheme for both the DFP and the GSC
structures.



2988 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010

TABLE II
THE JIO-CCM-SG ALGORITHM FOR THE GSC

1) RLS Algorithm for the DFP: Considering the DFP case,
the unconstrained least squares (LS) cost function is given by

(23)

where is a forgetting factor chosen as a positive constant close
to, but less than 1.

Assuming and are known in (23), respectively, we
obtain

(24)

(25)

where ,
, ,

and with expressed in (10).
The derivation of (24) is given in the Appendix. Note that
is not invertible if . It can be implemented by employing
the diagonal loading technique [3], [4]. The same procedure is
also used for the remaining matrices.

To avoid the matrix inversion and reduce the complexity, we
employ the matrix inversion lemma [16] to update and

iteratively. The resulting adaptive algorithm, which we
denominate JIO-CCM-RLS, is summarized in Table III, where

and are defined for concise
presentation, and are the full-rank
and reduced-rank gain vectors, respectively. The recursive pro-
cedures are implemented by initializing and

, where and are positive scalars.
2) RLS Algorithm for the GSC: For the GSC structure, the

LS cost function is given by

(26)

TABLE III
THE JIO-CCM-RLS ALGORITHM FOR THE DFP

Assuming the optimal reduced-rank weight vector and
the transformation matrix are known, respectively, com-
puting the gradients of (26) with respect to and ,
and equating their terms to zero, we have

(27)

(28)

where ,
, ,

and .

Setting , and employing
the matrix inversion lemma yields

(29)

(30)

where and are gain vectors,
,

, and is defined by (9). A summary of the re-
duced-rank RLS algorithm with the CCM design for the GSC is
given in Table IV.

It should be remarked that the full rank RLS based algorithms
suffer from the divergence problem [16], which has to be ad-
dressed by the regularization. However, the effect of the regu-
larization is gradually lost following the time index and the
processing of the received vectors. This is because the forget-
ting factor . For a small number of snapshots, needs to be
set close to 1 for keeping the positive effect of the regulariza-
tion. For a large number of snapshots, it is necessary to perform
the regularization periodically to avoid the divergence problem.
Fortunately, we found that the need for the periodic regulariza-
tion is not so critical in the proposed RLS based algorithms.
Specifically, after is chosen for the regularization in the JIO
scheme, both the transformation matrix and the reduced-rank
weight vector benefit from this procedure. This is because the
transformation matrix provides a better numerical conditioning
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TABLE IV
THE JIO-CCM-RLS ALGORITHM FOR GSC

for the reduced-rank filter, which due to the exchange of in-
formation also contributes to the numerical conditioning of the
transformation matrix.

C. Gram-Schmidt Technique for Problem 2

As mentioned before, the transformation matrix
for the DFP is constituted by a bank of full-rank filters

, which cannot be guaranteed to be orthogonal.
According to the optimization problem 2 in (12), the transforma-
tion matrix can be reformulated to compose orthogonal
vectors, which span the same subspace generated by the original
vectors. The reformulation ensures that the projection of the re-
ceived vector onto each dimension is one time and avoids the
overlap (e.g., takes the same information twice or more). Com-
pared with the original transformation matrix, the reformulated
transformation matrix is more effective to keep the useful in-
formation in the generated reduced-rank received vector for the
parameter estimation. The orthogonal procedure is performed
by the GS technique [46]. Specifically, after the iterative proce-
dures for the computation of the transformation matrix, the GS
technique is employed to modify the columns of the transfor-
mation matrix as follows:

(31)

where is the normalized orthogonal vector after the
GS process. The projection operator is

.
The reformulated transformation matrix is con-

structed after we obtain a set of orthogonal . By
employing to compute the reduced-rank weight
vectors, the adaptive algorithms could achieve an improved per-
formance. Following the same procedures, we can also apply
the GS technique to the adaptive algorithms for the GSC struc-
ture. Simulations will be given to show this result. We call the
GS version of the SG and RLS algorithms JIO-CCM-GS and
JIO-CCM-RGS, respectively.

D. Automatic Rank Selection

The selection of the rank impacts the performance of the
proposed reduced-rank algorithms. Here, we introduce an adap-
tive method for selecting the rank. Related works on the rank
selection for the MSWF and the AVF techniques have been re-
ported in [32] and [47], respectively. Unlike these methods, we
describe a rank selection method based on the CM criterion
computed by the filters and , where the super-
script denotes the rank used for the adaptation at each time
instant. We consider the rank adaptation technique for both the
DFP and the GSC structures. Specifically, in the DFP structure,
the rank is automatically selected for the proposed algorithms
based on the exponentially-weighted a posteriori least-squares
cost function according to the CM criterion, which is

(32)

where is the exponential weight factor that is required as the
optimal rank can change as a function of the time instant .
From the expressions in Tables I and III, the key quantities to be
updated for the rank adaptation are the transformation matrix

, the reduced-rank weight vector , the associated re-
duced-rank steering vector and the matrix (for RLS
only). To this end, we express and for the rank
adaptation as follows:

...
...

...
...

...
...

(33)

where and are the minimum and maximum ranks
allowed, respectively.

For each time instant , and are updated along
with the associated quantities and for a selected
according to the minimization of the cost function in (32). The
developed automatic rank selection method is given by

(34)

where is an integer ranging between and . Note that
a smaller rank may provide faster adaptation during the initial
stages of the estimation procedure and a slightly larger rank
tends to yield a better steady-state performance. Our studies re-
veal that the range for which the rank of the proposed algo-
rithms have a positive impact on the performance is very limited,
being from to . These values are rather in-
sensitive to the number of users in the system, to the number of
sensor elements, and work effectively for the studied scenarios.
The additional complexity of this automatic rank selection tech-
nique is for the update of involved quantities with the maximum
allowed rank and the computation of the cost function in
(32). With the case of large , the rank is significantly smaller
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TABLE V
COMPUTATIONAL COMPLEXITY OF ALGORITHMS FOR DFP

than and the additional computations do not increase the com-
putational cost significantly.

The proposed algorithms with the rank adaptation technique
can increase the convergence rate and improve the output per-
formance, and can be made fixed once the algorithms reach
the steady-state. Simulation results will show how the devel-
oped rank adaptation technique works. Note that the same idea
can be employed in the algorithms for the GSC structure. We
omit this part for simplicity and readability.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, we provide a complexity analysis of the pro-
posed reduced-rank algorithms and compare them with existing
algorithms. An analysis of the optimization problem for the pro-
posed reduced-rank scheme is also carried out.

A. Complexity Analysis

We evaluate the computational complexity of the proposed
reduced-rank algorithms and compare them with the existing
full-rank and reduced-rank algorithms based on the MSWF and
the AVF techniques for the DFP and the GSC structures. With
respect to each algorithm, we consider the CMV and the CCM
design criteria. The computational requirements are described in
terms of the number of complex arithmetic operations, namely,
additions and multiplications. The complexity of the proposed
and existing algorithms for the DFP is depicted in Table V and
for the GSC in Table VI. Since we did not consider the AVF
technique for the GSC structure, we put its complexity for the
DFP in both tables for comparison.

For the DFP structure, we can say that the complexity of the
proposed reduced-rank SG type and extended GS version al-
gorithms increases linearly with . The parameter is more
influential since is selected around a small range that is much
less than for large arrays. The complexity of the proposed re-
duced-rank RLS type and GS version algorithms is higher than

TABLE VI
COMPUTATIONAL COMPLEXITY OF ALGORITHMS FOR GSC

that of the SG type and quadratic with and . For the GSC
structure, the complexity of the SG type algorithms has extra
terms as compared to the DFP structure in terms of additions and
multiplications due to the blocking matrix in the sidelobe can-
celler. There is no significant difference in complexity of the
RLS type algorithms due to the presence of the blocking matrix
since (29) and (30) are recursive expressions and, as compared
to nonrecursive versions, reduce the complexity.

In order to illustrate the main trends in what concerns the
complexity of the proposed algorithms, we show in Figs. 3 and 4
the complexity of both the DFP and the GSC structures in terms
of additions and multiplications versus the length of the filter

. Since the complexity of the current algorithms according to
the CMV criterion is a little less than that of the CCM criterion,
we only plot the curves for the CCM criterion for simplification.
Note that the values of are different with respect to different
algorithms, which are set to make the corresponding algorithms
reach the best performance according to the experiments. The
specific values are given in the figures. It is clear that the pro-
posed SG type and extended GS version algorithms have a com-
plexity slightly higher than the full-rank SG algorithm but much
less than the existing algorithms based on the MSWF and the
AVF techniques for both the DFP and the GSC structures. The
curves of the proposed RLS type and GS version algorithms are
situated between the full-rank RLS and the MSWF RLS algo-
rithms in both figures.

B. Analysis of the Optimization Problem

Here, we present the analysis of the proposed reduced-rank
scheme according to the CCM criterion, which depends on the
transformation matrix and the reduced-rank weight vector. Our
approach starts from the analysis of the constant modulus cri-
terion and then utilizes the transformation matrix and the re-
duced-rank weight vector with the received vector to express the
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Fig. 3. Complexity in terms of arithmetic operations versus the length of the
filter � for the DFP structure.

Fig. 4. Complexity in terms of arithmetic operations versus the length of the
filter � for the GSC structure.

output. The constraint is enforced during the analysis. We will
consider the analysis for both the DFP and the GSC structures.

The constant modulus cost function in (2) with and
can be written as

(35)

where
from (1) with being the signal amplitude and is the

transmitted bit of the user. Note that we have replaced
in (1) by .

For the sake of analysis, we will follow the assumption in
[48] and consider a noise free case. For small noise variance

, this assumption can be considered as a small perturba-
tion and the analysis will still be applicable. For large ,
we remark that the term can be adjusted for the anal-
ysis. Under this assumption, we write the received vector
as , where , as before, denotes the

signature matrix, , and
.

For simplicity, we drop the time instant in the quantities. Let-
ting and , we have

(36)

Since are independent random variables, the evaluation of
the first two terms in the brackets in (36) reads

(37)

For the reduced-rank scheme with the DFP structure, we have
. Thus,

(38)

where and is the column
vector of the transformation matrix .

Given and , we get

(39)

From (38) and the constraint condition in (11), it is interesting
to find . Substituting this expression and (38) into (37),
we have

(40)

where and
.

Substituting (40) into (36), we get the CCM cost function
expressed as a function of the parameters of the reduced-rank
scheme:

(41)

where is a function of the transformation matrix and the re-
duced-rank weight vector, as shown in (38). This expression is
important for the reduced-rank CCM analysis. The fact that
and depend on each other and exchange information claims
that we need to take both of them into consideration for the anal-
ysis. The expression in (38) combines these two quantities to-
gether and thus circumvents the complicated procedures of per-
forming the analysis separately. Note that (41) is a constrained
expression since the constraint condition has been enclosed in
the first term of each bracket.
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We can examine the convexity of (11) by computing
the Hessian matrix with respect to and , that is

yields

(42)

where should be positive semi-definite to ensure the con-
vexity of the optimization problem. The second and third terms
in (42) yield positive semi-definite matrices, while the first term
provides the condition to ensure the con-
vexity. Thus, is a convex function of and when

(43)

For the reduced-rank scheme with the GSC structure, the ex-
pression of the weight vector has been given in (9). Substituting
this expression into the definition of and considering the fact
that , we obtain

for

for
(44)

where and
is the column vector of for the GSC structure.

Given , where
is the th element of the steering vector with the direction

and is the column vector of the signal
blocking matrix , we have .
Thus, for ,

(45)

Substituting (44) and (45) into (37), we get the expression for
the GSC structure, which is

(46)

which is in the same form as in (40) for the DFP structure but
with the different expression of the quantity . Using the similar
interpretation for the DFP, the quantity in (44) combines the
transformation matrix and the reduced-rank weight vector to-
gether and thus simplifies the analysis. By computing the Hes-
sian matrix , we can obtain the same conclusion as shown in
(43). This result establishes the equivalence between the results
of the convexity analysis for the DFP and the GSC structures.

VI. SIMULATIONS

In this section, we evaluate the output signal-to-interference-
plus-noise ratio (SINR) performance of the proposed adaptive
reduced-rank algorithms and compare them with the existing
methods. Specifically, we compare the proposed SG and RLS

Fig. 5. Output SINR versus input SNR with� � ��, � � �, ��� � 10 dB,
(a) � � �����, � � ����	, � � � for SG, � � �����, � � �����
,
� � � for GS; (b) � � �����, � � � � ����, � � � for RLS, � � �����,
� � � � �����, � � � for RGS of the proposed CCM reduced-rank scheme.

type algorithms with the full-rank (FR) SG and RLS and re-
duced-rank methods based on the MSWF and the AVF tech-
niques for both the DFP and the GSC structures. With respect
to each algorithm, we consider the CMV and the CCM criteria
for the beamformer design. We assume that the DOA of the de-
sired user is known by the receiver. In each experiment, a total
of runs are carried out to obtain the curves. For all
simulations, the source power (including the desired user and in-
terferers) is , the input signal-to-noise (SNR) ratio
is 10 dB with spatially and temporally white Gaussian
noise, and . Simulations are performed by an ULA con-
taining sensor elements with half-wavelength interele-
ment spacing.

A. Comparison of CMV and CCM Based Algorithms

In this part, we compare the proposed and existing algorithms
according to the CMV and the CCM criteria for the DFP struc-
ture of the beamformer design. The simulation, which includes
two experiments, shows the input SNR versus the output SINR.
The input SNR is varied between 10 dB and 10 dB. The
number of users is with one desired user. Fig. 5(a) plots
the curves of the SG type algorithms based on the full-rank, the
MSWF, the AVF and the proposed reduced-rank scheme, and
Fig. 5(b) shows the corresponding RLS type algorithms. The
parameters used to obtain these curves are given and the rank
is selected to optimize the performance of the algorithms. Note
that the forgetting factor and the positive scalars and are
set to avoid the divergence problem of the RLS based methods.
From Fig. 5(a), the output SINR of all SG type methods in-
creases following the increase of the input SNR. The algorithms
based on the CCM beamformer design outperform those based
on the CMV criterion since the CCM criterion is a positive
measure of the beamformer output deviating from a constant
modulus, which provides more information than the CMV for
the parameter estimation of constant modulus constellations.
The proposed CCM algorithms achieve better performance than
the existing full-rank, MSWF and AVF ones. By employing the
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Fig. 6. Output SINR versus the number of snapshots with � � ��, � � �,
��� � �	 dB, � � 	�		�, � � 	�		�, � � 
 for SG, � � 	�		��,
� � 	�		�, � � 
 for GS, � � 	����, � � � � 	�	�
, � � 
 for RLS,
� � 	����, � � � � 	�	�, � � 
 for RGS of the DFP structure.

GS technique to reformulate the transformation matrix, the GS
version algorithms achieve improved performance. Fig. 5(b)
verifies the same fact but for the RLS type algorithms. It is
clear that the RLS type algorithms superior to the SG type ones
for all input SNR values.

This simulation verifies that the performance of the adaptive
algorithms based on the CCM beamformer design has a sim-
ilar trend but is better than that based on the CMV for constant
modulus constellations. Considering this fact, we will only com-
pare the CCM based adaptive algorithms in the following part
for simplification. Note that all the methods in this simulation
are for the DFP structure. The algorithms for the GSC structure
show a similar performance, which is given in the next part.

B. Output SINR for the DFP and the GSC

We evaluate the output SINR performance of the proposed
and existing algorithms against the number of snapshots for both
the DFP and the GSC structures in Figs. 6 and 7, respectively.
The number of snapshots is . In Fig. 6, the convergence
of the proposed SG type and extended GS version algorithms
is close to the RLS type algorithm based on the MSWF, and
the output SINR values are higher than other SG type methods
based on the full-rank, the MSWF and the AVF. The conver-
gence of the proposed RLS type and GS version algorithms is
slightly slower than the AVF, but much faster than other existing
and proposed methods. Its tracking performance outperforms
the MSWF and the AVF based algorithms.

Fig. 7 is carried out for the GSC structure under the same sce-
nario as in Fig. 6. The curves of the considered algorithms for
the GSC show nearly the same convergence and tracking per-
formance as those for the DFP. It implies that the GSC struc-
ture is an alternative way for the CCM beamformer design. The
difference is that the GSC processor incorporates the constraint
in the structure and thus converts the constrained optimization
problem into an unconstrained one. The adaptive implementa-
tion of the GSC beamformer design is different from that of the

Fig. 7. Output SINR versus input SNR with � � ��, � � �, ��� � 10 dB,
� � 	�		�
, � � 	�		�, � � 
 for SG, � � 	�		�, � �

	�		�, � � 
 for GS, � � 	����, � � � � 	�	�, � � 
 for RLS, � � 	����,
� � � � 	�		��, � � 
 for RGS of the GSC structure.

Fig. 8. Square estimation error between the weight solution and the MVDR
weight solution.

DFP but the performance is similar. The following simulations
are carried out for the DFP structure to simplify the presentation.

C. Mean Square Estimation Error of the Weight Solution

In Fig. 8, we measure the mean square estimation error
between the weight solutions (full-rank)

of the proposed methods and that of the
minimum-variance-distortionless-response (MVDR) method
[3] , where is ob-
tained by its sample-average estimation. The experiment is
carried out with the same scenario as in Fig. 6. It exhibits that
the mean square estimation error decreases following the snap-
shots. The values of the proposed SG and RLS type algorithms
decrease rapidly and reach a relative lower level compared
with those of the existing methods. Note that is not an
optimum solution for the proposed algorithms but viewed as a
referenced weight solution since, for the CCM based algorithm,
the weight expression is not a pure function of the received data
but also depends on the previous weighting values.
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Fig. 9. Output SINR versus rank � with � � ��, � � �, ��� � 10 dB.

D. Output SINR Versus Rank and Automatic Rank Selection

In the next two experiments, we assess the output SINR per-
formance of the proposed and analyzed algorithms versus their
associated rank and check the effectiveness of the automatic
rank selection technique. The experiment in Fig. 9 is intended
for setting the adequate rank of the reduced-rank schemes for
a given input SNR and number of snapshots. The scenario is
the same as that in Fig. 6 except that the number of snapshots
is fixed to be and the rank is varied between 1 and
16. The result indicates that the best performance of the pro-
posed SG and RLS type algorithms is obtained with rank
for the proposed reduced-rank scheme. The performance of the
full-rank methods is invariant with the change of the rank . For
the MSWF technique, its SG and RLS type algorithms achieve
their best performance with ranks and , respectively.
For the AVF-based algorithm, the best rank is found to be .
It is interesting to note that the best is usually much smaller
than the number of elements , which leads to significant com-
putational savings. For the proposed and analyzed algorithms,
the range of that has the best performance is concentrated be-
tween and . This range is used in the next ex-
periment to check the performance of the proposed algorithms
with the automatic rank selection technique.

Since the performance of the proposed reduced-rank algo-
rithms was found in our studies to be a function of the rank
and other parameters such as the step size and the forgetting
factor, we need to consider their impacts on the performance of
the system. Specifically, we assume that the step size of the SG
type algorithms and the forgetting vector of the RLS type al-
gorithms are adequately chosen and we focus on the developed
automatic rank selection technique introduced in the previous
section.

In Fig. 10, the proposed reduced-rank algorithms utilize fixed
values for their rank and also the automatic rank selection tech-
nique. We consider the presence of users (one de-
sired) in the system. The results show that with a lower rank

the reduced-rank algorithms usually converge faster but
achieve lower output SINR values. Conversely, with a higher
rank the proposed algorithms converge relatively slower

Fig. 10. Output SINR versus the number of snapshots with � � ��, � � �	,
��� � 10 dB, (a) � � 	�		�, � � 	�		
 for SG, � � 	�		�,
� � 	�		� for GS; (b) � � 	����, � � � � 	�	� for RLS, � � 	����,
� � � � 	�	��, � � � for RGS with the automatic rank selection technique.

Fig. 11. Output SINR versus input SNR with � � ��, � � �, � � ��,
��� � 10 dB, � � 	�		�, � � 	�		��, � � � for SG, � � 	�		�,
� � 	�		�, � � � for GS, � � 	����, � � � � 	�	��, � � � for
RLS, � � 	����, � � � � 	�	��, � � � for RGS of the proposed CCM
reduced-rank scheme.

than with a lower rank but reach higher output SINR values.
The developed automatic rank selection technique allows the
proposed algorithms to circumvent the tradeoff between conver-
gence and steady-state performance for a given rank, by adap-
tively choosing the best rank for a given number of snapshots,
which provides both fast convergence and improved tracking
performance.

E. Performance in Nonstationary Scenarios

In the last experiment, we evaluate the performance of the
proposed and analyzed algorithms in a nonstationary scenario,
namely, when the number of users changes. The automatic rank
selection technique is employed, and the step size and the forget-
ting factor are set to ensure that the considered algorithms con-
verge quickly to the steady state. In this experiment, the scenario
starts with users including one desired user. From the
first stage (first 500 snapshots) of Fig. 11, the convergence and
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steady-state performance of the proposed SG type algorithms is
superior to other SG type methods with the full-rank, MSWF
and AVF. The proposed RLS type algorithm has a convergence
rate a little slower than the AVF but faster than the other ana-
lyzed methods, and the steady-state performance better than the
existing ones. Three more interferers enter the system at time
instant . This change makes the output SINR reduce
suddenly and degrades the performance of all methods. The
proposed SG and RLS type algorithms keep faster convergence
and better steady-state performance in comparison with the cor-
responding SG and RLS type methods based on the full-rank
and MSWF techniques. The convergence of the AVF method is
fast but the steady-state performance is inferior to the proposed
methods.

VII. CONCLUDING REMARKS

We proposed a CCM reduced-rank scheme based on the joint
iterative optimization of adaptive filters for the design of beam-
formers. In the proposed scheme, the dimension of the received
vector is reduced by the adaptive transformation matrix that is
formed by a bank of full-rank adaptive filters, and the trans-
formed received vector is processed by the reduced-rank adap-
tive filter for estimating the desired signal. The proposed scheme
was developed for both DFP and GSC structures. We derived
the CCM expressions for the transformation matrix and the re-
duced-rank weight vector, and developed SG and RLS type al-
gorithms for their effective implementation. The GS technique
was employed in the proposed algorithms to reformulate the
transformation matrix and thus improve the performance. The
automatic rank selection technique was developed to determine
the most adequate rank and achieve a good tradeoff between the
convergence rate and the steady-state performance for the pro-
posed methods. A detailed complexity analysis and a convexity
analysis of the proposed algorithms were carried out. Simula-
tion results for a beamforming application showed that the pro-
posed reduced-rank algorithms significantly outperform the ex-
isting full-rank and reduced-rank methods in convergence and
steady-state performance at comparable complexity.

APPENDIX

DERIVATION OF (24)

In this appendix, we show the details of the derivation of
the expression for the transformation matrix in (24). Assuming

is known, taking the gradient terms of (23) with re-
spect to , we get

(47)

Making the above gradient terms equal to the zero matrix,
right-multiplying the both sides by , and rearranging the
expression, it becomes

(48)

If we define , the solution of
in (48) can be regarded to find the solution to the linear

equation

(49)

Given a , there exists multiple satisfying (49)
in general. Therefore, we derive the minimum Frobenius-norm
solution for stability. Let us express the quantities involved in
(49) by

...
...

(50)

The search for the minimum Frobenius-norm solution of (49)
is reduced to the following subproblems :

subject to (51)

The solution to (51) is the projection of onto the hyper-
plane , which is
given by

(52)

Hence, the minimum Frobenius-norm solution of the trans-
formation matrix is given by

(53)

Substituting the definition of into (53), we have

(54)

The multiplier can be obtained by incorporating (48) with
the constraint , which is

(55)

Therefore, the expression of the transformation matrix in (24)
can be obtained by substituting (55) into (54).
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