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Abstract—In this paper, we propose a reduced-rank space-time
adaptive processing (STAP) technique for airborne phased array
radar applications. The proposed STAP method performs di-
mensionality reduction by using a reduced-rank switched joint
interpolation, decimation and filtering algorithm (RR-SJIDF).
In this scheme, a multiple-processing-branch (MPB) framework,
which contains a set of jointly optimized interpolation, decimation
and filtering units, is proposed to adaptively process the observa-
tions and suppress jammers and clutter. The output is switched to
the branch with the best performance according to the minimum
variance criterion. In order to design the decimation unit, we
present an optimal decimation scheme and a low-complexity
decimation scheme. We also develop two adaptive implementa-
tions for the proposed scheme, one based on a recursive least
squares (RLS) algorithm and the other on a constrained conjugate
gradient (CCG) algorithm. The proposed adaptive algorithms are
tested with simulated radar data. The simulation results show
that the proposed RR-SJIDF STAP schemes with both the RLS
and the CCG algorithms converge at a very fast speed and pro-
vide a considerable SINR improvement over the state-of-the-art
reduced-rank schemes.

Index Terms—Airborne phased array radar, reduced-rank tech-
niques, space-time adaptive processing (STAP).

I. INTRODUCTION

S PACE-TIME adaptive processing (STAP) techniques have
been motivated as a key enabling technology for advanced

airborne radar applications following the landmark publication
by Brennan and Reed [1]. A great deal of attention has been
given to STAP algorithms and much of the work has been done
in the past three decades [2]–[15]. It is fully understood that
STAP techniques can improve slow-moving target detection
through better mainlobe clutter suppression, provide better
detection in combined clutter and jamming environments,
and offer a significant increase in output signal-to-inter-
ference-plus-noise-ratio (SINR). However, due to its large
computational complexity cost by the matrix inversion opera-
tion, the optimum STAP processor is prohibitive for practical
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implementation. Furthermore, an even more challenging issue
is raised by full-rank STAP techniques when the number of
elements in the filter is large. It is well known that
independent and identically distributed (i.i.d.) training samples
are required for the filter to achieve the steady performance
[16]. Thus, in dynamic scenarios the full-rank STAP with large

usually fail or provide poor performance in tracking target
signals contaminated by interference and noise.

Reduced-rank adaptive signal processing has been con-
sidered as a key technique for dealing with large systems
in the last decade. The basic idea of the reduced-rank algo-
rithms is to reduce the number of adaptive coefficients by
projecting the received vectors onto a lower dimensional sub-
space which consists of a set of basis vectors. The adaptation
of the low-order filter within the lower dimensional subspace
results in significant computational savings, faster convergence
speed and better tracking performance. The first statistical
reduced-rank method was based on a principal-components
(PC) decomposition of the target-free covariance matrix [4].
Another class of eigen-decomposition methods was based
on the cross-spectral metric (CSM) [8]. Both the PC and the
CSM algorithms require a high computational cost due to
the eigen-decomposition. A family of the Krylov subspace
methods has been investigated thoroughly in the recent years.
This class of reduced-rank algorithms, including the multistage
Wiener filter (MSWF) [12], [18] and the auxiliary-vector
filters (AVF) [19]–[21], projects the observation data onto a
lower-dimensional Krylov subspace. These methods are very
complex to implement in practice and suffer from numerical
problems despite their improved convergence and tracking per-
formance. The joint domain localized (JDL) approach, which
is a beamspace reduced-dimension algorithm, was proposed
by Wang and Cai [22] and investigated in both homogeneous
and nonhomogeneous environments in [23], [24], respectively.
Recently, reduced-rank adaptive processing algorithms based
on joint iterative optimization of adaptive filters [25], [26]
and based on an adaptive diversity-combined decimation and
interpolation scheme [27]–[31] were proposed, respectively. In
our prior work [26], a joint iterative optimization of adaptive
filters STAP scheme using the linearly constrained minimum
variance (LCMV) was considered and applied to airborne radar
applications, resulting in a significant improvement both in
convergence speed and SINR performance as compared with
the existing reduced-rank STAP algorithms.

The goal of this paper is to devise cost-effective STAP algo-
rithms that have substantially faster convergence performance
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than existing methods. This enables the radar system with a
significantly better probability of detection with limited
training. In [31], the joint interpolation, decimation and filtering
(JIDF) algorithm, which employs one pair of a interpolator and
a reduced-rank filter together with a group of decimation units,
provides a significant improvement in terms of convergence and
SINR performance for code-division multiple-access (CDMA)
applications. However, it is well known that both military and
civilian radar systems are required to work in more hostile envi-
ronments without performance degradation. The JIDF scheme
can not provide a satisfactory performance by using only one
pair of filters in radar applications. This motivates us to exploit
it further. In this paper, we develop a reduced-rank STAP
design based on a switched joint interpolation, decimation and
filtering (RR-SJIDF) algorithm for airborne radar systems. The
number of elements for adaptive processing is substantially
reduced, resulting in considerable computational savings and
very fast convergence performance for radar applications. The
proposed approach obtains the subspace of interest via a mul-
tiple processing branch (MPB) framework which consists of a
set of simple interpolation, decimation and filtering operations.
Unlike the previous work in [31], multiple interpolators and re-
duced-rank filters are employed in the MPB framework and are
designed with the minimum variance distortionless response
(MVDR) criterion. For each branch, the interpolator and the
reduced-rank filter can be jointly optimized by minimizing a
cost function subject to linear constraints, but independently
of their counterparts in the other branches. Compared with the
scheme in [31], the proposed scheme, which employs multiple
pairs of interpolators and reduced-rank filters, can provide
improved performance. We describe an optimal decimation
scheme and a low-complexity decimation scheme for the pro-
posed structure. We also derive two adaptive implementations
using the recursive least squares (RLS) and the constrained
conjugate gradient (CCG) algorithms for the proposed scheme
and evaluate their computational complexity. The numerical
results show that the proposed RR-SJIDF STAP schemes with
both the RLS and the CCG algorithms converge at a very
fast speed and provide a considerable SINR improvement
with significantly low complexity compared with the existing
reduced-dimension and reduced-rank algorithms, namely, the
JDL, the MSWF, and the AVF algorithms.

The main contributions of our paper are listed as follows.
i) A reduced-rank STAP scheme based on the SJIDF algo-

rithm for airborne radar platform is proposed.
ii) In the proposed scheme, a MPB framework is introduced.

For each branch, the interpolator and reduced-rank filters
are jointly optimized by minimizing the modified min-
imum variance (MV) cost function with a set of con-
straints.

iii) Two efficient adaptive implementations using the RLS
and the CCG algorithms are developed for the proposed
STAP scheme and a detailed study of their computational
complexity requirements is provided.

iv) Algorithms for automatically adjusting the rank of the
proposed SJIDF scheme are developed.

v) A study and comparative analysis of reduced-rank STAP
techniques for radar systems is carried out.

This paper is organized as follows. Section II states the signal
model, the optimum full-rank STAP algorithm and the funda-
mentals of reduced-rank signal processing. Section III presents
the proposed reduced-rank STAP scheme, describes the pro-
posed joint iterative optimization of the interpolation, decima-
tion and filtering tasks, and details the proposed decimation
schemes. In Section IV, we develop two adaptive implemen-
tations using the RLS and the CCG algorithms and algorithms
for automatically adjusting the rank of the proposed scheme.
In Section V, we discuss the convergence properties of the op-
timization of the proposed scheme. The performance assess-
ment of the proposed reduced-rank STAP scheme is provided
in Section VI using simulated radar data. Finally, conclusions
are given in Section VII.

II. SIGNAL MODEL, RADAR SIGNAL PROCESSING, AND

PROBLEM STATEMENT

The system under consideration is a pulsed Doppler radar re-
siding on an airborne platform. The radar antenna is a uniformly
spaced linear array antenna consisting of elements. Radar
returns are collected in a coherent processing interval (CPI),
which is referred to as the 3-D radar datacube shown in Fig. 1(a),
where denotes the number of samples collected to cover the
range interval. The data is then processed at one range of in-
terest, which corresponds to a slice of the CPI datacube. This
slice is a matrix which consists of spatial snapshots
for pulses at the range of interest. It is convenient to stack the
matrix column-wise to form the , vector ,
termed the th range gate space-time snapshot, [1].

A. Signal Model

The objective of a radar is to ascertain whether targets are
present in the data. Thus, given a space-time snapshot, radar
detection is a binary hypothesis problem, where hypothesis
corresponds to target absence and hypothesis corresponds to
target presence. The radar space-time snapshot is then expressed
for each of the two hypotheses in the following form:

(1)

where is a zero-mean complex Gaussian random variable
with variance , denotes the input interference-plus-noise
vector which consists of clutter , jamming and the
white noise . These three components are assumed to be
mutually uncorrelated. Thus, the covariance matrix

of the undesired clutter-plus-jammer-plus-noise component
can be modeled as

(2)

where represents Hermitian transpose and denotes
expectation. According to [6], the noise covariance noise matrix

can be written as a scaled identity matrix
, where is the noise power. The clutter signal can be

modeled as the superposition of a large number of independent
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Fig. 1. (a) The Radar CPI datacube. (b) The STAP schematic.

clutter patches with evenly distributed in azimuth about the re-
ceiver. Thus, the clutter covariance matrix can be expressed as

(3)

where denotes the number of range ambiguities and de-
notes the number of the clutter patches. is the power of
reflected signal by the th clutter patch. The notation de-
notes Kronecker product. and , respectively, de-
note the spatial steering vector with the spatial frequency
and the temporal steering vector with the normalized Doppler
frequency for the th clutter patch, which can be expressed
as follows:

...
...

(4)

where and , where is
wavelength; is interelement spacing which is normally set to
half wavelength; and are elevation and azimuth, respec-
tively; and are Doppler frequency and pulse repetition
frequency (PRF), respectively. The jamming covariance matrix

can be written as

where is the power of the th jammer. is the spatial
steering vector with the spatial frequency of the th jammer
and is the number of jammers. The vector , which is the

normalized space-time steering vector in the space-time
look-direction, can be defined as:

(5)

where is the normalized temporal steering vector
at the target Doppler frequency and is the nor-
malized spatial steering vector in the direction provided by the
target spatial frequency and denotes the power of the target.

B. Optimum Radar Signal Processing

To detect the presence of targets, each range bin is processed
by an adaptive 2D beamformer (to achieve maximum output
SINR) followed by a hypothesis test to determine the target
presence or absence. Here, we assume that the secondary data

are i.i.d training samples. The optimum full-rank
STAP [1] obtained by an unconstrained optimization of the
SINR is given as follows:

(6)

where is an arbitrary nonzero complex number. By solving
the MVDR problem as [40]

(7)

the optimal constrained weight vector for maximizing the output
SINR, while maintaining a normalized response in the target
spatial-Doppler look-direction was originally given in [32] by

(8)

C. Reduced-Rank Signal Processing

The basic idea of reduced-rank algorithms is to reduce the
number of adaptive coefficients by projecting the received vec-
tors onto a lower dimensional subspace as illuminated in the
figure. Let denote the projection matrix with column
vectors which are an basis for a -dimensional subspace,
where . Thus, the received signal is transformed
into its reduced-rank version given by

(9)

The reduced-rank signal is processed by an adaptive reduced-
rank filter . Subsequently, the decision is made
based on the filter output . By solving the
optimization problem as

(10)
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Fig. 2. Proposed RR-SJIDF.

the optimum MVDR solution for the reduced-rank weight
vector is obtained [26]

(11)

where denotes the reduced-rank covariance ma-
trix and denotes the reduced-rank steering vector.

The challenge left to us is how to efficiently design and op-
timize the projection matrix . The PC method which is also
known as the eigencanceller method [4] suggested to form the
projection matrix using the eigenvectors of the covariance ma-
trix corresponding to the eigenvalues with significant mag-
nitude. The CSM method, a counterpart of the PC method be-
longing to the eigen-decomposition algorithm family, outper-
forms the PC method because it employs the projection matrix
which contains the eigenvectors which contribute the most to-
wards maximizing the SINR [17]. A family of closely related
reduced-rank adaptive filters, such as the MSWF [18] and the
AVF [19], employs a set of basis vectors as the projection ma-
trix which spans the same subspace, known as the Krylov sub-
space. The Krylov subspace is generated by taking the powers of
the covariance matrix of observations on a cross-correlation (or
steering) vector. Despite the improved convergence and tracking
performance achieved with these methods, the remaining prob-
lems are their high complexity and the existence of numerical
problems for implementation. The joint domain localized (JDL)
approach, which is a beamspace reduced-dimension algorithm,
was proposed by Wang and Cai [22] and investigated in both
homogeneous and nonhomogeneous environments in [23], [24],
respectively. Recently, reduced-rank filtering algorithms based
on joint iterative optimization of adaptive filters [25], [26] and
based on an adaptive diversity-combined decimation and inter-
polation scheme [30], [31] were proposed, respectively.

III. PROPOSED REDUCED-RANK FILTERING SCHEME BASED

ON THE SWITCHED JOINT INTERPOLATION, DECIMATION, AND

FILTERING (RR-SJIDF) SCHEME

In this section, we detail the proposed adaptive RR-SJIDF.
The reduced-rank adaptive filtering scheme based on combined
decimation and interpolation filtering was presented in [30]
and [31]. In this paper, we develop a reduced-rank STAP
algorithm based on the SJIDF scheme for airborne radar appli-
cations, whose schematic is shown in Fig. 2. The motivation

for designing a projection matrix based on interpolation and
decimation comes from two observations. The first is that rank
reduction can be performed by constructing new samples with
interpolators and eliminating (decimating) samples that are
not useful in the STAP design. The second comes from the
structure of the projection matrix, whose columns are a set of
vectors formed by the interpolators and the decimators.

A. Overview of the RR-SJIDF Scheme

Here, we explain how the proposed RR-SJIDF scheme works
and its main building blocks. In this scheme, the number of
elements for adaptive processing is substantially reduced, re-
sulting in considerable computational savings and very fast con-
vergence performance for the radar applications. The proposed
approach obtains the subspace of interest via a multiple pro-
cessing branch (MPB) framework. The received vector

is processed by a MPB
framework with branches, where each spatio-temporal pro-
cessing branch contains an interpolator filter, a decimation unit
and a reduced-rank filter. represents transpose operation. In
the th branch , the received vector is filtered by
the interpolator filter
with filter length , yielding the interpolated received vector

with samples, which is expressed by

(12)

where the Toeplitz convolution matrix is given
by

...
...

. . .
...

...
. . .

...

(13)

In order to facilitate the description of the scheme, let us express
the vector in an alternative way which will be useful in the
following through the equivalence:

(14)
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where denotes the conjugate operation, the matrix
with the samples of has a Hankel structure [33] and

is described by

...
...

...

. . .
...

...
. . .

...

(15)

The dimensionality reduction is performed by a decimation unit
with decimation matrices that projects onto

vectors with , where is the
rank and is the decimation factor. The vector for
branch is expressed by

(16)

where is the equivalent projection matrix and the vector
for branch is used in the minimization of the output

power for branch , which is given by

Note that with different in each branch, and are
different from their counterparts in the other branches. Thus
there will be independent outputs from

branches. The output at the end of the MPB framework
is selected according to

(17)

where is a parameter to be set by the designer. Essential to
the derivation of the joint iterative optimization that follows is to
express the output of the RR-SJIDF STAP
as a function of , the decimation matrix and as
follows:

(18)

where denotes the reduced-rank signal
with respect to and denotes the
reduced-rank signal with respect to . The expression (18)
indicates that the dimensionality reduction carried out by the
proposed scheme depends on finding appropriate ,
and . In the following subsections, we will derive the joint
optimizations of and and design the decimation
unit .

B. Optimization of the Filters

In this part, we describe the proposed joint and iterative op-
timization algorithm that adjusts the parameters of the interpo-
lator filter and the reduced-rank filter with the given
decimation pattern . According to the MVDR criterion, the
optimization problem is given by

(19)

where is steering matrix with a Hankel structure,
which has the same form as

...
...

...

. . .
...

...
. . .

...

(20)

The constrained cost function in (19) can be transformed into
unconstrained one by introducing a Lagrange multiplier, which
is given as

(21)

where is the Lagrange multiplier. By fixing and ,
respectively, (21) can be rewritten into two equations as

where and de-
note the reduced-rank steering vectors with respect to and

, respectively. and are the Lagrange multipliers
for and , respectively. By minimizing and
solving for , we get

(22)

where . By minimizing and
solving for , we get

(23)

where . Note that the joint iterative op-
timization of the interpolation filters and
the reduced-rank filters are performed
separately in all the processing branches.
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C. Design of the Decimation Unit

Here, we consider two strategies for the design of the dec-
imation unit . We constrain the design of so that
the elements of the matrix only take the value 0 or 1. This cor-
responds to the decimation unit simply keeping or discarding
the samples. The first strategy exhaustively explores all possible
decimation patterns which select samples out of samples,
this is therefore the optimal approach. In this case, the scheme
can be viewed as a combinatorial problem and the total number
of patterns , equal to

(24)

However, the optimal decimation scheme described above is too
complex for practical use since it needs permutations of M
samples for each snapshot and carries out an exhaustive search
over all possible patterns. Therefore, an alternative decimation
scheme with low-complexity that renders itself to practical use
is of great interest. To this end, we consider the second decima-
tion scheme which we call prestored decimation unit (PSDU).
The PSDU scheme employs a structure formed in the following
way:

(25)

where the vector denotes the th basis vector of the
th decimation unit, , , and is com-

posed of a single and 0 s, according to the following:

(26)

where is the number of zeros before the only element equal
to one. We set the value of in a deterministic way which can
be expressed as

(27)

It should be remarked that other designs have been investigated
and this structure has been adopted due to an excellent tradeoff
between performance and complexity.

IV. ADAPTIVE ALGORITHMS

Adaptive implementations of the LCMV beamformer were
subsequently reported with the RLS and the CG algorithms [16],
[34]–[36]. Here, we develop the RLS and the CCG algorithms
that adjust the parameters of the interpolation filters and the re-
duced-rank filters for the MPB structure based on the minimiza-
tion of the MV cost function subject to constraints. Furthermore,
we compare the complexity of the proposed RR-SJIDF algo-
rithms with other existing algorithms, namely, the full-rank RLS
filter, the JDL, the MSWF, and the AVF algorithms, in terms of
multiplications and additions per snapshot.

A. RLS Algorithm

Here, we describe an RLS algorithm that adaptively adjusts
the coefficients of the interpolation filters
and the reduced-rank filters based on the
least squares (LS) cost functions, which are shown as

(28)

where is the forgetting factor. By computing the gradients
of and , and equating them to zero and
solving for and , respectively, we obtain

(29)

where and
denote the time averaged correla-

tion matrices with respect to and , respectively. By
employing the matrix inversion lemma, and defining

and , respectively, and the gain vec-
tors and are expressed, respectively, as follows:

(30)

and thus we can rewrite and recursively as

(31)

where and are initialized to , where is a
small positive constant and is the identity matrix. It is worth
remarking that , , , and have to be
updated as soon as and are updated since they are
dependent on and , respectively. The output at the
end of the MPB framework is selected according to

(32)

where

(33)

The algorithm is summarized in Table I.
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TABLE I
THE SJIDF SCHEME USING THE RLS ALGORITHM

B. CCG Algorithm

In this subsection, we develop a CCG algorithm to im-
plement the proposed RR-SJIDF STAP. According to (22)
and (23) which were derived in the previous section based
on the MV criterion subject to constraints, let us define two
intermediate vectors, CG-based weight vectors,

and , respectively, to
solve the equations and save the computations. Thus, we
may obtain and

. The solutions to and
, and , respectively, are given

by solving two optimization problems as follows [36]–[38]:

(34)

and

(35)

where and are cost functions with respect to
and , respectively. The correlation matrices and

, respectively, are estimated by

(36)

where is the forgetting factor. Let us define and
as residual vectors which are expressed, respectively,

as follows:

(37)

and

(38)

Thus, the CG-based weight vectors and can be recur-
sively written as [39]

(39)

where and denote the step sizes. and
denote the direction vectors. According to [39], ,
, and can, respectively, be given by

(40)

where , , , and can be computed
as

(41)

Thus, the interpolation filters and the reduced-rank fil-
ters can be written as and

based on the CG-based weight
vectors, respectively. The adaptive implementation of the pro-
posed RR-SJIDF STAP using the CCG algorithm is summarized
in Table II.

C. Branch and Rank Selection

The performance of the algorithms described in the previous
subsections depends on the parameters including the ranks ,

and the number of branches . In this subsection, we discuss
the parameter settings to meet the best tradeoff between the per-
formance and the complexity. We have mentioned in the pre-
vious section that the optimal number of branches is described
in (24), which is quite large for a large . Within such range, we
can claim that more branches will result in better performance
for the proposed algorithm. However, considering the afford-
able complexity, we have to configure the algorithm with the
number of branches as small as possible and yet achieve a satis-
factory performance. As will be shown in the simulation results,
the proposed algorithms with the number of branches equal
to 4 or 5 have good tradeoffs between the performance and the
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TABLE II
THE SJIDF SCHEME USING THE CCG ALGORITHM

complexity. Since the performance of the proposed RR-SJIDF
algorithm is also sensitive to the ranks and , we present adap-
tation methods for automatically selecting the ranks of the algo-
rithms based on the exponentially weighted a posteriori LS type
cost function described by

(42)
where is the forgetting factor, is the reduced-rank

filter with rank and is the interpolator filter with rank

and is the selected optimal branch according to (17). For
each time instant and a given decimation pattern , we select
the ranks and to minimize . The proposed
rank adaptation algorithm that chooses the best ranks and

for the filters and , respectively, is given by

(43)

where and , and are the minimum, max-
imum ranks allowed for the reduced-rank filters and interpola-
tors, respectively. Note that a smaller rank may produce faster
adaptation during the initial stages of the estimation procedure
and a slightly greater rank usually yields a better steady-state
performance. Although the rank adaptation increases the com-
putational complexity, two benefits can be achieved: one is that
the ranks, which are crucial to the proposed algorithm, can be
selected automatically, and the other is that the performance is
much enhanced, which will be shown in the simulation results.
The automatic rank selection procedure is given in Table. III.

D. Complexity Analysis

We detail the computational complexity in terms of additions
and multiplications of the proposed schemes with the RLS and
the CCG algorithms, and other existing algorithms, namely the
full-rank RLS filter, the JDL, the MSWF-RLS, and the AVF al-
gorithms as shown in Table IV. Note that the complexity of our
proposed SJIDF scheme is dependent on the size of the interpo-
lator and the reduced-rank filter ( and ) and the number of
branches , rather than the system size . There is a tradeoff
between complexity and performance when we set the param-
eters , , and . We found that the proposed scheme with

, and works well, as will be verified in
the simulation results. The computational complexity of all al-
gorithms is shown in Fig. 3, where we can find that the proposed
schemes using both the RLS and the CCG algorithms have sig-
nificantly lower complexity than other algorithms, expect the
JDL algorithm. As will be seen in the simulation results, the
JDL algorithm performs poorly in steady state and our proposed
algorithms outperform the JDL algorithm in both convergence
speed and steady-state performance.

V. ANALYSIS OF THE OPTIMIZATION PROBLEM

Let us now study the convergence properties of the proposed
scheme. With respect to global convergence, a sufficient but
not necessary condition is the convexity of the cost function,
which is verified if its Hessian matrix is positive semidefinite.
The method leads to an optimization problem with multiple so-
lutions due to the discrete nature of and the switching be-
tween branches. Therefore, the convergence of the algorithms
is not guaranteed to the global minimum since local minima
may be encountered by the proposed RLS and CCG algorithms.
It should be mentioned, however, that the proposed scheme is
composed of several independent branches, and independent
optimization problems, which are considered to minimize the
output energy with constraints for each single branch. First, we
consider an analysis of the optimization problem of a single
branch of joint interpolation, decimation and filtering method
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TABLE III
THE AUTOMATIC RANK SELECTION

TABLE IV
COMPARISON OF THE COMPUTATIONAL COMPLEXITY

Fig. 3. The computational complexity analysis.

from the point of view of the cost function and constraints. We
examine three cases of adaptation and discuss the nature of the
optimization problem. Let us drop the time index and the
branch index for simplicity, thus, the cost function in (21) can
be rewritten as

(44)

We will consider three cases of interest for our analysis as
follows:

For case 1), we assume is fixed and is time-variant. The
cost function in (44) can be rewritten as

(45)

where and . The Hessian matrix
respect to is given by

(46)

where is a positive semi-definite matrix, which means that
is a convex function of conditioned on the fixed .

For case 2), we suppose is time-variant and is fixed. Using
the same procedure of case 1), we may obtain the Hessian matrix
respect to as

(47)

where and is a positive semi-definite matrix.
In this case, is a convex function of conditioned on
the fixed .

For case 3): we consider that both and are time-variant
and the problem is to jointly optimize the two adaptive filters.
The cost function in (44) is rewritten as

(48)



FA et al.: REDUCED-RANK STAP SCHEMES FOR AIRBORNE RADAR 4191

where is vector, and
are matrices written by

respectively. Thus, the Hessian matrix is given by

(49)

In this case, the optimization problem depends on the param-
eters , and , which suggests a nonconvex problem. How-
ever, convexity is a sufficient, but not necessary condition for the
property that the cost function has no points of local minima.
In our case, we conjecture that every point is possibly a point
of global minima. To verify that, we carried out a number of
studies and found that for a given decimation unit, the algo-
rithms always converge to the same minima regardless of the
initialization, provided , are not all-zero quantities. An anal-
ysis of this problem remains an interesting open problem.

Based on the discussion above, a single branch global minima
can be provided by each branch. Thus, we can obtain a set

of such minimas, which actually are local minimas relative to
the overall optimization problem. Therefore the overall global
minima can be obtained by

(50)

Note that the overall global minima can be found when and
the decimation units are properly selected.

VI. PERFORMANCE ASSESSMENT

In this section, we assess the proposed RR-SJIDF STAP
algorithm using simulated radar data. The parameters of the
simulated radar platform are shown in Table V. The thermal
noise is modelled as a Gaussian white noise with unity power.
The jamming, clutter and tagert powers can be referred to
the white noise power. For all simulations, we assume the
presence of a mixture of two broadband jammers at 45 and
60 with jammer-to-noise-ratio (JNR) equal to 40 dB. The
clutter-to-noise-ratio (CNR) is fixed at 40 dB. All presented
results are averages over 1000 independent Monte Carlo runs.

A. Setting of Parameters

In the first several experiments, we evaluate the SINR per-
formance of our proposed RR-SJIDF scheme with different se-
lections of , and . We investigate RR-SJIDF scheme with
the RLS algorithm in two antenna settings with for
both. The first setting is to configure the number of elements

and the number of pulses , and the second is to
configure and . The evaluation of the SINR per-
formance against the number of branches is shown in Fig. 4.
We consider the RR-SJIDF-RLS algorithm with different values
of and in both antenna settings. The results indicate that
the RR-SJIDF-RLS algorithm using can achieve ap-
proximately the same performance of that using more than 4
branches. Thus, in our case, to meet the best tradeoff between
the performance and the complexity, we normally choose

TABLE V
RADAR SYSTEM PARAMETERS

Fig. 4. SINR performance versus the number of branches � with different
values of � and �, � � ��, � � ������,� � ��� snapshots. (1) � � ��

and 	 � � antenna setting, (2) � � � and 	 � �� antenna setting.

in our simulations. Once is set, are selected ac-
cording to the rank selection algorithm in Table III. In Fig. 5,
the SINR performance against the rank is shown. We can find
that for the first antenna setting, the proposed scheme achieves
the best performance with when and ,
while for the second antenna setting, the scheme achieves the
best performance with when and . The
results indicate an interesting fact that the selection of ranks
and is highly related to the antenna setting, in other words, it
is related to the structure of the received signal. That means the
performance of the reduced-rank STAP algorithms can be im-
proved if the structure of the received signal are well explored.

In the next experiment, we evaluate the SINR performance
against the interpolator rank for the proposed RR-SJIDF-RLS
algorithm with different and , which are shown in Fig. 6.
The proposed scheme can improve the performance and con-
verge fast if it is able to construct an appropriate subspace pro-
jection with proper coefficients in and . Thus, for
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Fig. 5. SINR performance versus the rank � with � � ��, � � ������,
� � ��� snapshots. (1) � � �� and � � � antenna setting, (2) � � � and
� � �� antenna setting.

Fig. 6. SINR performance versus the interpolator rank � with � � ��, � �

������, � � ��� snapshots. (1) � � �� and � � � antenna setting, (2)
� � � and � � �� antenna setting.

this reason and to keep a low complexity we adopt and
for the first antenna setting and and for the

second antenna setting since these values yield the best perfor-
mance. In the following subsection, we will focus on the perfor-
mance assessment of the proposed STAP scheme with ,

, and for the antenna setting I.

B. Comparison With Existing Algorithms

In this subsection, we compare both the SINR performance
against the number of snapshots and the performance
against the signal-to-noise-ratio (SNR) for the different designs
of linear receiver using the full-rank filter with the RLS algo-
rithm, the MSWF with the RLS algorithm, the AVF and our
proposed technique, where the reduced-rank filter with

coefficients provides an estimate to determine whether the
target is present or not.

Fig. 7. SINR performance against snapshot with � � ��, ��� � � 	
,
� � ������. All algorithms are initialized to a scaled identity matrix 	 �,
where 	 is a small constant.

Fig. 8. Probability of detection performance versus SNR with � � ��, � �

������,� � �� snapshots, 
 � �� .

First, as shown in Fig. 7, we evaluate the SINR against the
number of snapshots performance of our proposed algorithm
with different setting parameters and compare with the other
schemes. The schemes are simulated over snapshots
and the SNR is set at 0 dB. The curves show an excellent perfor-
mance by the proposed algorithm, which also converges much
faster than other schemes. With the number of branches

, the proposed scheme approaches the optimal MVDR per-
formance after 50 snapshots. As one may expect, with an in-
crease in the number of branches, the steady SINR performance
improves.

In the second experiment, in Fig. 8, we present versus SNR
performance for all schemes using 50 snapshots as the training
data. The false alarm rate is set to and we suppose the
target is injected in the boresight (0 ) with Doppler frequency
100 Hz. The figure illustrates that the proposed algorithm pro-
vides suboptimal detection performance using very short support
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Fig. 9. SINR performance against Doppler frequency (� ) with � � ��,
� � ������,� � ��� snapshots.

data, but remarkably, obtains a 90% detection rate, beating 50%
for the AVF, 40% for the MSWF with the RLS and 30% for the
full rank filter with the RLS at an SNR level of 15 dB.

We evaluate the SINR performance against the target Doppler
frequency at the main bean look angle for our proposed algo-
rithms and other existing algorithms, which are illustrated in
Fig. 9. The potential Doppler frequency space form 150 to
150 Hz is examined and 100 snapshots are used to train the
filter. The plots show that our proposed algorithms converge
and approach the optimum in a short time, and form a deep
null to cancel the mainbeam clutter. Note that the proposed
RR-SJIDF-RLS algorithm outperforms other algorithms in the
most of Doppler bins, but performs slightly worse than the AVF
algorithm in the Doppler range of 50 to 50 Hz.

VII. CONCLUSION

In this paper, we proposed an RR-SJIDF STAP scheme for
airborne radar systems. The proposed scheme performed di-
mensionality reduction by employing a MPB framework, which
jointly optimizes interpolation, decimation and filtering units.
The output was switched to the branch with the best perfor-
mance according to the minimum variance criterion. In order
to design the decimation unit, we considered the optimal deci-
mation scheme and also a low-complexity prestored decimation
units scheme. Furthermore, we developed an adaptive RLS al-
gorithm for efficient implementation of the proposed scheme.
Simulations results showed that the proposed RR-SJIDF STAP
scheme converged at a very fast speed and provided a con-
siderable SINR improvement, outperforming existing state-of-
the-art reduced-rank schemes.
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