
2302 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE 2006

Low-Complexity Variable Step-Size Mechanisms
for Stochastic Gradient Algorithms in
Minimum Variance CDMA Receivers

Rodrigo Caiado de Lamare and Raimundo Sampaio-Neto

Abstract—In this paper, the performance of blind adap-
tive receivers for direct sequence code division multiple access
(DS-CDMA) systems that employ stochastic gradient (SG) algo-
rithms with variable step size mechanisms is investigated. Two
low complexity variable step size mechanisms are proposed for
estimating the parameters of linear CDMA receivers that operate
with SG algorithms. For multipath channels the novel adaptation
mechanisms are also incorporated in the channel estimation
algorithms, whereas for the single-path case the novel techniques
are restricted to the linear receiver parameter vector estimation.
Analytical expressions for the excess mean squared error (MSE)
are derived and a convergence analysis of the proposed adapta-
tion techniques is carried out for both frequency selective and
flat scenarios. Finally, numerical experiments are presented for
nonstationary environments, showing that the new mechanisms
achieve superior performance to previously reported methods at
a reduced complexity.

Index Terms—Adaptive receivers, blind multiuser detection,
blind variable step-size(BVSS) mechanisms, direct sequence code
division multiple access (DS-CDMA), interference suppression.

I. INTRODUCTION

CODE division multiple access (CDMA) implemented
with direct sequence (DS) spread-spectrum signalling

is amongst the most promising multiplexing technologies for
current and future communication systems. Such services
include third-generation cellular telephony, indoor wireless
networks, terrestrial and satellite communication systems. The
advantages of CDMA include good performance in multipath
channels, flexibility in the allocation of channels, increased
capacity in bursty and fading environments, and the ability
to share bandwidth with narrowband communication systems
without deterioration of either’s systems performance [1], [9].

Demodulating a desired user in a DS-CDMA network
requires processing the received signal in order to mitigate
different types of interference, namely, narrowband inter-
ference (NBI), multiaccess interference (MAI), intersymbol
interference (ISI), and the noise at the receiver. The major

Manuscript received April 1, 2005; revised June 21, 2005. This work was sup-
ported by the Brazilian Council for Scientific and Technological Development
(CNPq). This paper was presented in part at VTC-Spring, Milan, Italy, 2004.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Mats Viberg.

R. C. de Lamare was with CETUC/PUC-RIO. He is now with the Commu-
nications Research Group, Department of Electronics, University of York, York
Y010 5DD, United Kingdom (e-mail: rcdl500@ohm.york.ac.uk).

R. Sampaio-Neto is with CETUC/PUC-RIO, 22453-900, Rio de Janeiro,
Brazil (e-mail: raimundo@cetuc.puc-rio.br).

Digital Object Identifier 10.1109/TSP.2006.873651

source of interference in most CDMA systems is MAI, which
arises due to the fact that users communicate through the same
physical channel with nonorthogonal signals. The conventional
(single-user) receiver that employs a filter matched to the
signature sequence does not suppress MAI and is very sensitive
to differences in power between the received signals (near-far
problem). Multiuser detection has been proposed as a means
to suppress MAI, increasing the capacity and the performance
of CDMA systems [1], [9]. The optimal multiuser detector of
Verdu [3] suffers from exponential complexity and requires
the knowledge of timing, amplitude and signature sequences.
This fact has motivated the development of various suboptimal
strategies: the linear [4] and decision feedback [5] receivers,
the successive interference canceller [6] and the multistage
detector [7]. In this context, adaptive signal processing methods
are suitable to CDMA systems because they can track the
highly dynamic conditions often encountered in such systems
due to the mobility of mobile terminals, the random nature of
the channel access and can also alleviate the computational
complexity required for parameter estimation.

The linear minimum mean squared error (MMSE) receiver
[8] implemented with an adaptive filter is one of the most promi-
nent schemes for use in the downlink because it only requires
the timing of the desired user and a training sequence. A blind
adaptive linear receiver has been developed in [9] and trades
off the need for a training sequence in favor of the knowledge
of the desired user’s spreading code. In [9], Honig et al. have
shown that the minimum variance (MV) criterion leads to a so-
lution identical to that obtained from the minimization of the
mean squared error (MSE). A disadvantage of the original MV
detector of [9] is that it suffers from the problem of signature
mismatch and thus has to be modified for multipath environ-
ments. A class of detectors with good performance and based
on subspace tracking with channel estimation were reported
in [10], [11], but they require singular value decompositions
(SVD) of large matrices, which leads to a heavy computational
load. A solution to the problem of signature mismatch of [9]
was attempted in [12], [13] by forcing the receiver response to
delayed copies of the desired signal to zero. More successful
constrained optimization solutions that combine multipath com-
ponents and suppress MAI were presented in [14], [15]. Re-
cently, blind adaptive stochastic gradient (SG) and recursive
least squares (RLS) algorithms based upon the linearly con-
strained minimum variance (CMV) criterion of [15] and that
can operate in frequency selective channels were introduced by
Xu and Tsatsanis in [16]. Later improvements to the method of
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[15] and [16] include those in [17] where the covariance matrix
is raised to a finite power in order to improve the channel esti-
mation and consequently the receiver performance. Therefore,
blind adaptive linear receivers have become an interesting alter-
native for situations where a CDMA receiver loses track of the
desired user and a training sequence is not available.

A question that arises when designing an adaptive receiver for
a DS-CDMA system is: What kind of algorithm should be used?
In the literature of adaptive algorithms [18], [19], SG algorithms
(e.g., LMS) represent simple and low complexity (linear with
the number of adaptive elements) solutions that are subject to
slow convergence depending on the eigenvalue spread of the
covariance matrix of the received vector. Conversely, RLS tech-
niques have fast convergence, are independent from the eigen-
value spread of the covariance matrix of the received vector
but require a quadratic complexity with the number of param-
eters. Despite the faster response of RLS algorithms, however,
it is preferable to implement adaptive receivers with SG algo-
rithms due to complexity and cost issues, and for this reason the
improvement of blind SG techniques is an important research
and development topic. In this regard, the works in [9] and [16]
employ standard SG algorithms with fixed step size (FSS) that
are not efficient with respect to convergence and steady-state
performance. Indeed, the performance of adaptive receivers for
CDMA that use SG algorithms is strongly dependent on the
choice of the step size [18], [19]. In wireless networks char-
acterized by nonstationary environments, users frequently enter
and exit the system, making it very difficult for the receiver to
compute a predetermined step size. This suggests the deploy-
ment of mechanisms to automatically adjust the step size of an
SG algorithm in order to ensure good tracking of the interfer-
ence and the channel. Previous works have shown significant
gains in performance due to the use of averaging methods (AV)
[20], [21] or adaptive step size (ASS) [23], [24] mechanisms.
The works in [20] and [21] have borrowed the idea of averaging
originally developed by Polyak [22] and applied it to CDMA
receivers with the MV criterion. The ASS algorithms in [23],
[24] can be considered MV extensions of the papers [25]–[27],
[35] where one LMS algorithm adapts the parameter vector and
another LMS recursion adapts the step size. All these methods
require an additional number of operations (i.e., additions and
multiplications) proportional to the processing gain and to
the number of multipath components . Furthermore, the tech-
niques so far reported do not introduce any improvement for the
channel estimation procedure of [16] that also employs an SG
recursion.

This paper proposes two novel variable step size mechanisms
for blind MV CDMA receivers in multipath channels that are
used for MAI, ISI suppression, and are also incorporated in the
channel estimation algorithm. The origins of these mechanisms
can be traced back to the works of [28] and [29] where low
complexity adaptive step size mechanisms were developed for
LMS algorithms, that utilize the MMSE criterion. Other rep-
resentative variable step size approaches for supervised LMS
algorithms include the works in [30] and [31], which are sig-
nificantly outperformed by those in [28] and [29], and the tech-
niques in [32] and [33], that obtain marginal gains at the ex-
pense of more computational complexity. In contrast to [28] and

[29], our mechanisms are designed for MV algorithms and for
the complex case. The additional number of operations of the
proposed techniques does not depend on the processing gain

and the number of paths of the channel . A convergence
analysis of the proposed adaptation techniques is carried out for
both frequency selective and flat scenarios, and analytical re-
sults are derived for the computation of the excess MSE. In ad-
dition, simulation experiments are presented for stationary and
nonstationary environments, showing that the new mechanisms
are superior to previously reported methods and exhibit a re-
duced complexity.

The paper is structured as follows. Section II describes the
DS-CDMA system model. The linear MV receiver design is
presented in Section III for both flat and frequency selective
channels. Section IV describes the SG adaptive algorithms that
estimate the receiver and the channel parameters. Section V is
dedicated to the proposed blind adaptive step size mechanisms.
A convergence analysis of the resulting algorithms is developed
in Section VI. Section VII presents and discusses the simulation
results and Section VIII gives the conclusions of this paper.

II. DS-CDMA SYSTEM MODEL

Let us consider the downlink of a synchronous DS-CDMA
system with users, chips per symbol and propagation
paths. The signal broadcasted by the base station intended for
user has a baseband representation given by

(1)

where denotes the th symbol for user , the
real valued spreading waveform and the amplitude associated
with user are and , respectively. The spreading wave-
forms are expressed by , where

, is the chip waveform, is the chip
duration and is the processing gain. Assuming that
the receiver is synchronized with the main path, the coherently
demodulated composite received signal is

(2)

where and are, respectively, the channel coefficient and
the delay associated with the th path. Assuming that

, the channel is constant during each symbol interval and
the spreading codes are repeated from symbol to symbol, the
received signal after filtering by a chip-pulse matched filter
and sampled at chip rate yields the dimensional
received vector

(3)

where is the complex Gaussian noise
vector with , where and de-
notes transpose and Hermitian transpose, respectively, and
stands for expected value, the th user symbol vector is given by

, where is the ISI span, the
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amplitude associated with user is and the
matrix with nonoverlapping shifted versions of the signature
of user is

. . .
...

...
. . .

...
(4)

where the signature sequence for the -th user is
and the channel matrix

is

...
. . .

. . .
. . .

... (5)

where for . The MAI arises
from the nonorthogonality between the received signature se-
quences, whereas the ISI span depends on the length of the
channel response, which is related to the length of the chip se-
quence. For , (no ISI), for , ,
for , and so on.

III. MINIMUM VARIANCE LINEAR CDMA RECEIVERS

The linear receiver design is equivalent to determining an FIR
filter with coefficients that provide an estimate of the
desired symbol, as illustrated in Fig. 1 and given by

(6)

where selects the real part, is the signum function
and the receiver parameter vector is optimized according to
the MV cost function.

A. Single-Path MV Receivers

Let us consider the received vector for a flat channel
that contains samples, define the parameter

vector , where is constrained to be orthogonal
to . The design of a parameter vector using the MV
criterion corresponds to the optimization of the following cost
function

(7)

subject to the constraint given by

(8)

where and . Using the method of
Lagrange multipliers, as in [9], the solution can be obtained by
setting the gradient terms of
with respect to equal to zero

(9)

Fig. 1. Block diagram of the blind adaptive MV receiver with variable step
size mechanisms.

and the resulting MV is expressed by

(10)

B. Linearly CMV Receivers

Consider the received vector that contains
samples, the constraint matrix that contains

one-chip shifted versions of the signature sequence for user
and the constraint vector

...
. . .

...
. . .

...

(11)
The design of a parameter vector with elements based
on the MV criterion corresponds to the optimization of the MV
cost function

(12)

subject to the constraints given by

(13)

where is the constraint vector to be determined. Using the
method of Lagrange multipliers, the receiver solution [16] is

(14)

where and the resulting MV is expressed by

(15)
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According to (15) depends on . The optimization of the
constraint vector proposed in [15] and [16] maximizes (15) as
described by

(16)

The solution is the eigenvector corresponding to the minimum
eigenvalue of and it was shown in [15]and [16] to
provide a channel estimate.

IV. BLIND ADAPTIVE SG MV ALGORITHMS

We describe blind adaptive SG MV for estimating the pa-
rameters of the linear receiver, as depicted in Fig. 1, for both
single-path and multipath scenarios.

A. Single-Path Blind Adaptive SG MV Algorithm

An SG blind algorithm, similar to the one of Honig et al. [9],
optimizes the Lagrangian cost function described by

(17)

where is a scalar Lagrange multiplier and .
Taking the gradient of (17) with respect to and using the
orthogonal decomposition of [9] yields

(18)

where and . A normal-
ized version of this recursion that facilitates the setting of the
convergence factor for a wide range of loads, can be derived
by adding to both sides of (18) and substituting it into the
cost function, differentiating it with respect to the step size ,
setting the terms to zero and solving the resulting equations, as
shown in Appendix I. Hence, we have

where is the chosen fixed convergence factor. In
terms of computational complexity the minimum variance SG
algorithm of (18) requires additions and multipli-
cations for the estimation of the receiver parameters.

B. Multipath Blind Adaptive SG CMV Algorithm

The SG algorithm of Tsatsatnis and Xu [16] optimizes the
Lagrangian cost function described by

(19)

where is a vector of Lagrange multipliers and is a scalar
Lagrange multiplier. An SG solution to (19) can be obtained
by taking the gradient terms with respect to and as
described by [16] which yield the recursions for the blind esti-
mation of the parameters of the receiver and the channel

(20)

If (else do not update)

(21)

where is the step size of the channel estimation algorithm,

and

We remark that the channel estimation algorithm of (21) is con-
venient for a theoretical analysis such as the one that is carried
out in Section V-B1. An alternative adaptive channel estimator,
that is slightly less complex, can be obtained by abolishing in
(19) and normalizing at each iteration

(22)

Note that the algorithms in (20) and (21) are used for the con-
vergence analysis and for the analytical experiments. For the re-
maining experiments such as SINR and BER performance eval-
uations involving different loads, a normalized version of the
channel estimation algorithm, given by (22), is preferred. A nor-
malized version of the recursion that estimates , can be also
derived by substituting (20) into the cost function, differenti-
ating them with respect to , setting them to zero and solving
the resulting equations, as shown in Appendix II. Hence, we
have where is the chosen fixed
convergence factor. The normalized algorithm facilitates the set-
ting of the convergence factor for a wide range of loads.

In terms of computational complexity, the normalized con-
strained minimum variance (NCMV) SG algorithm requires

additions and
multiplications for the estimation the parameters of the
receiver, while for channel estimation using (22) it requires

additions and
multiplications, where .

V. BLIND VARIABLE STEP SIZE (BVSS) MECHANISMS

This section describes the proposed low complexity BVSS
mechanisms for CDMA receivers that adjust the step size
of the update equation of the receiver and the step size of
the algorithm that estimates the channel, as shown in Fig. 1.
A convergence analysis of the mechanisms is carried out and
approximate expressions relating the mean convergence factor
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, the mean square convergence factor and
the minimum variance are derived. It is worth noting that
for both mechanisms, or is truncated between

. In addition, the computational complexity
of the novel mechanisms is presented in terms of additions and
multiplications and compared to existent ones.

A. BVSS Mechanism

The first proposed BVSS mechanism employs the instanta-
neous output energy, is denoted BVSS and uses the update rule

(23)

where , and is the parameter vector of the
receiver. The motivation for the BVSS is that for large output
energies the code-aided algorithm will employ larger step sizes
whereas small output energies (that are also associated with sat-
isfactory MAI suppression) will result in a decrease of the step
size, yielding smaller misadjustment. Furthermore, it is worth
pointing out that other rules have been experimented and the
BVSS is a result of several attempts to devise a simple and yet
effective mechanism. Indeed, the mechanism is simple to imple-
ment and a detailed analysis of the algorithm is possible under
a few assumptions commonly made in the literature. The addi-
tional computational complexity required for the BVSS is only
four operations. Another possibility for (23) would be to con-
sider energy preserving coefficients such as and . In order
to control the input’s energy and to scale it at different levels,
we used the independent variable . From a practitioner’s point
of view, however, it might be easier to design the memory of the
recursion by the choice of one parameter and then scale the
overall signal by a decoupled second parameter , which can
be performed as follows: . The same
proposed BVSS rule is applied to the SG channel estimation
procedure introduced in [16] and described here in Section III.
For the sake of simplicity we will drop the index and proceed
with the analysis for the even though it is still valid for the
adaptive channel estimator.

Assumption 1: Let us consider that for the algorithms in (18)
and (23)

and

respectively.
This assumption holds if is a constant and we claim that

it is approximately true if is small and also because should
be close to one (as will be shown in the simulations), because

will vary slowly around its mean value. By writing

(24)

and

(25)

we note that for sufficiently small, the second term on the
right-hand side (RHS) of the (24) and (25) will be small com-
pared to the first one. Assumption 1 help us to proceed with the
analysis. We point out that this approach can be also used for
analyzing the channel estimator.

Let us also define the first- and second-order
statistics of the proposed BVSS mechanism

(26)

where . By computing the
square of , we obtain

. Since
is small, the last term of the previous equation is negligible as
compared to the other terms, thus, with the help of Assumption
1 we assume that the expected value of is
approximately

(27)

If we consider the steady-state values of
and by making

and
, and using
[9] we have

the following:

(28)

(29)

where the minimum variance provided by the optimum solu-
tion is given by for the single-path and

for the multipath case, and is
the excess MSE. At this point we reached the expressions in (28)
and (29) that still have the inconvenient term on the right.
To further simplify those expressions, let us consider another
assumption.

Assumption 2: Let us consider that for (28) and (29),
and , respectively.

This assumption holds if and we claim that
it is approximately true when the SG adaptive algorithm is close
to optimum solution and is a small fraction of .

By using Assumption 2 we have the following:

(30)

(31)
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Note that (30) and (31) will be used for the computational of the
excess MSE of the algorithms. It is worth pointing out that (30)
and (31) can be further simplified, even though our studies re-
veal that (30) and (31) have proven to be valid and useful for
predicting the steady-state performance of the BVSS mecha-
nism. We also remark that the above analysis is analogous for
the BVSS mechanism when used for channel estimation.

B. Blind Recursive Variable Step Size (BRVSS) Mechanism

The second mechanism employs a time average estimate of
the correlation of and . We call
it BRVSS. It employs the recursion

(32)

where
and . The BRVSS is an alternative mechanism that
employs an exponential weighting parameter that controls the
quality of the estimation of the minimum variance. We remark
that should be slightly smaller than 1 so that it is able to adapt
to the current statistics. The BRVSS mechanism is also simple
to implement and a detailed analysis of the algorithm is possible
under a few assumptions commonly made in the literature. The
additional computational complexity required for the BRVSS is
only eight operations. The BRVSS rule is also applied to the SG
channel estimation procedure and we will drop the index and
proceed with the analysis for the even though it is still valid
for the adaptive channel estimator.

Computing the term
and using the fact that is small,

the last term is negligible as compared to the others. Thus,
. The estimate

can be alternatively written as

(33)

and

(34)

In the analysis of the BRVSS mechanism, we consider
its steady-state performance. Therefore, we assume that
the algorithm has converged. In this case, the sam-
ples of can be assumed uncorrelated, i.e.,

. Taking
the expectation of and and using Assumption 1 and (32),

TABLE I
ADDITIONAL COMPUTATIONAL COMPLEXITY OF VARIABLE STEP SIZE

MECHANISMS FOR SINGLE-PATH CHANNELS

the mean and the mean-square behavior of the mechanism upon
convergence are

(35)

(36)

where
. If we consider the

steady-state values of , and
by making

,
and , and using

[9] we have
the following:

(37)

(38)

(39)

where the minimum variance provided by the optimum solu-
tion is given by for the single-path and

for the multipath case, and is
the excess MSE. To further simplify (37)–(39), we employ As-
sumption 2 and extend it by using the approximation

, which is approximately true if
. Thus, we obtain the following:

(40)

(41)

Note that (40) and (41) will be used for the computational of the
excess MSE of the algorithms.

C. Computational Complexity

In this section, we show the computational complexity of the
proposed BVSS mechanisms and the other analyzed methods.
In Table I, we show the additional computational complexity of
the proposed variable step size mechanisms, BVSS and BRVSS,
and other recently reported methods for single-path channels:
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TABLE II
ADDITIONAL COMPUTATIONAL COMPLEXITY OF VARIABLE STEP SIZE

MECHANISMS FOR MULTIPATH CHANNELS

Fig. 2. Complexity in terms of arithmetic operations per symbol for
the variable step size mechanisms in (a) single-path and (b) multipath
environments. (a) SG algorithm for single-path channels. (b) SG algorithm for
multipath.

AV [20] and ASS [23], where . The addi-
tional computational complexity of the proposed variable step
size mechanisms, BVSS and BRVSS, the AV and the ASS [24]
methods for multipath environments is depicted in Table II.

We remark that the algorithms presented in [23] and [24]
use the same principle of adaptation although they differ in the
number of operations. Specifically, the method in [23] can only
operate in single path channels, whereas the technique reported
in [24] can work in multipath environments.

An important advantage of the proposed adaptation rules is
that they require only a few fixed number of operations while
the other existing techniques have additional complexity pro-
portional to the processing gain and to the number of prop-
agation paths , as shown in Fig. 2. Note that we estimated
the number of arithmetic operations by taking into account the
number of complex additions and multiplications required by
the mechanisms. A small reduction in complexity can be ob-
tained by using real additions and multiplications in certain sit-
uations where the quantities are no longer complex and shifting
operations if the quantities , and are chosen as powers of
two.

VI. CONVERGENCE ANALYSIS

In this section, we investigate the convergence behavior of
our mechanisms when used in MV-based algorithms in terms of
trajectory of the mean receiver vector and the steady-state excess

MSE. We remark that global convergence of the method has
been established in [16] and here we will focus on the analysis
of the mechanisms BVSS and BRVSS.

A. Single-Path Case

Here, we focus on the single-path case SG minimum variance
algorithm and rely on the analysis carried out for a fixed step
size in [9]. Note that we will include most steps of the analysis
in [9] for completeness and then we will take into account the
new BVSS mechanisms.

1) Trajectory of Mean Receiver Vector: To study the tra-
jectory of the mean parameter vector and constraint vector for
the SG algorithm

given by (18) with variable step size , let us
add to both sides of the equation and define the receiver error
vector at time

(42)

where . By taking expectations on both
sides of (42) and using Assumption 1 we have

(43)

where
and . Therefore, it can be concluded that

converges to and (43) is stable if and only if
, which is a necessary

and sufficient condition for and
. For stability, a sufficient condition for (43)

to hold implies that

(44)

where is the th eigenvalue of , that is not real since
is not symmetric.

2) Trajectory of Excess MSE: Now let us consider an anal-
ysis of the steady-state excess MSE that follows the general
steps presented in [9] for variable step size algorithms. Let us
define the MSE at time using the fact that

and

(45)
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where

is the MSE with where
is the minimum variance, and

is the excess MSE due to the adaptation process at
the time instant . Since we have

(46)

where the third term in (46) is the steady-state excess MSE re-
sulted from the adaptation process. Thus, we conclude as in [9]
that the asymptotic excess MSE is equal to the asymptotic ex-
cess minimum variance plus the minimum variance ob-
tained with , which is used in the expressions of the BVSS
and BRVSS. To analyze the trajectory of , let us rewrite it
similarly to [9]

(47)

where
[9]. To proceed with the anal-

ysis, we must define the quantities , where the
columns of are the eigenvectors of the symmetric and
positive semidefinite matrix and is the diagonal matrix
of corresponding eigenvalues, ,
the rotated tap error vector , the ro-
tated signal vectors , and

. Rewriting (47) in terms of the
above transformed quantities we have

(48)

Because , then
. Thus, it becomes clear that to assess the evolution of

it is sufficient to study . Using the results of [9], (43),
Assumption 1 and incorporating a variable step size mechanism
we have

(49)

Remark that if the signal vectors were approximately orthog-
onal, then the first eigenvectors of can be approximated
as . Similarly to [9], we make the approximation
that the matrix is diagonal, so that is approximately
diagonal. Let us now define the vector with elements

equal to the diagonal elements of and with some manipu-
lations (49) can be rewritten as:

(50)

where is the vector containing the eigenvalues of .
Since converges to zero as , to guar-
antee stability it is sufficient that all eigenvalues of

have
magnitude less than one. This is true if the row sums of are
less than one, which implies that for stability

(51)

If we apply limits on both sides of (50) and let , we
obtain ,

,

and because the last term of (50)
associated with is eliminated, yielding

(52)

Using the fact that , that
[9] and rearranging the terms we obtain

(53)

By employing Assumption 2, substituting (30) and (31), we ob-
tain for the BVSS

(54)

whereas replacing (40) and (41), for the BRVSS we get

(55)

The parameters , and are selected to achieve a small excess
MSE, while accelerating the convergence of the algorithm and
maintaining its stability. The constant provides exponential
forgetting similarly to the leaky LMS [18], [19], reducing the
excess MSE. A larger results in a larger step size in the initial
stages of adaptation, ensuring faster convergence. A smaller
provides a smaller level of misadjustment at the expense of a
slower convergence speed. The choice of is very important
to achieve a good performance and tracking in a nonstationary
environment because it can cope with the time-varying statistics
of a dynamic channel and the interference. The value of should
be slightly less than one in nonstationary environments.

B. Multipath Case

Here, we focus on the multipath case SG minimum variance
algorithm and rely on the analysis carried out for a fixed step
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size in [16]. We remark that we will follow the analysis in [16]
for completeness and then we will take into account the new
BVSS mechanisms.

1) Trajectory of Mean Receiver Vector: To study the trajec-
tory of the mean parameter vector and constraint vector for the
multipath SG algorithm, let us drop the user index for ease of
presentation and define the receiver error vector and the
constraint error vector at time

(56)

where is the optimal constraint vector which is
the eigenvector of matrix that corre-
sponds to its maximum eigenvalue and

.
The error vectors and must be considered to-

gether due to the joint optimization procedure. By using the fact
that and replacing by , similarly to [16]
we can write

Taking expectations on both sides, using Assumption 1 and the
independence theory [18], we obtain

(57)

where the term has been eliminated.
Now, let us consider the constraint error vector

After taking expectations on both sides, the mean constraint
error vector is expressed by

(58)

where . By combining (57) and (58) the trajec-
tory of the error vectors is given by the following:

(59)

where

and

By examining the previous expression we see that the stability
of the algorithm depends on the matrix and the study of its
trajectory is intractable, as pointed out in [16]. Specifically, we
will focus on the variable step size mechanisms, whose max-
imum values allowed for adaptation must be chosen such that
the eigenvalues of have magnitude less than one.

2) Trajectory of Excess MSE: Now let us consider an anal-
ysis of the steady-state excess MSE taking into account the
novel variable step size mechanisms. The analysis follows the
general steps presented for the single-path case and was first re-
ported in [16] for fixed step size (FSS) algorithms. Let us define
the MSE at time

(60)

By using the fact that and em-
ploying the independence assumption the MSE can be written
as

(61)

where . Since
we have

(62)

where the second term in (62) is the steady-state excess MSE
resulted from the adaptation process. Let us define

, and use the property of
trace to express the steady-state
excess MSE as

(63)

Thus, it becomes clear that to assess is sufficient to study
, which depends on the tap error vector . To simplify the

analysis let us assume that , which is true when
adaptation is close to the steady state, as pointed out in [16].
Now, we can rewrite as

(64)



DE LAMARE et al.: LOW COMPLEXITY VARIABLE STEP SIZE MECHANISMS 2311

where . By substituting into
(64), taking expectation on both sides and using Assumption 1
we obtain

(65)

By making , we have
and ,

and then using these limits on both sides of (65), we arrive at

(66)

At this point we can use the “vec” operation, i.e., we arrange all
elements of a matrix into a vector along column-wise, and the
property of trace to express the
steady-state excess MSE as

(67)

where

and accounts for the Kronecker product.
By using Assumption 2 for the BVSS, the substitution of (30)

and (31) into (67) yields

(68)

where . By proceeding similarly for the
BRVSS, using Assumption 2 (i.e., ) and re-
placing (40) and (41) into (67) we obtain

(69)

It is worth noting that the expressions in (68) and (69) reduce
to the one given in [16] if we employ a fixed step size rather than
a variable step size. Despite they involve fourth-order statistics,

it can be seen that increases almost linearly with ,
similarly to the single-path case. Another aspect that should be
mentioned is that a variable step size approach is able to deal
with the tradeoff between excess error and convergence rate,
by automatically tuning the convergence factor so that larger
step sizes are used for improving convergence rate and smaller
step sizes are employed for ensuring a small . With regard
to stability, it can be guaranteed provided the designer chooses
adequate values for the maximum and the minimum step sizes
allowed by truncation, as described in Section V.

VII. SIMULATION RESULTS

In this section, we investigate the effectiveness of the pro-
posed variable step size mechanisms through simulations and
verify the validity of the convergence analysis undertaken
for predicting the MSE obtained by the BVSS and BRVSS
methods. We have conducted experiments under stationary and
nonstationary scenarios to assess the convergence performance
in terms of SINR of the proposed VSS and RVSS mechanisms
and compared them with other recently reported techniques,
namely the ASS [23], [24] and the AV [20], [21]. Moreover,
the BER performance of the receivers employing the different
analyzed mechanisms is assessed for different loads, processing
gains , channel paths and profiles, and fading rates.
The spreading sequences used in the DS-CDMA system are
indicated for each experiment, and chosen amongst random
and Gold sequences. All simulations are averaged over 100
experiments and when the proposed mechanisms are employed
for both receiver and channel estimation, the legends show (rec
and channel). For the remaining cases and for the single-path
algorithm, the examined adaptation techniques are used only
for receiver estimation. For all algorithms the step size
is truncated between .

All channels are normalized so that

For fading channels, the sequence of channel coefficients
( ), where , is obtained with

Clarke’s model [34]. The phase ambiguity derived from
channel estimation is eliminated in our simulations by using
the phase of as a reference to remove the ambiguity and
for fading channels we assume ideal phase tracking and express
the results in terms of the normalized Doppler frequency
(cycles/symbol).

A. MSE Performance: Analytical Results

Here, we verify that the results (54), (55), (68), and (69) of
the section on convergence analysis of the mechanisms can pro-
vide a means of estimating the excess MSE. The steady-state
MSE between the desired and the estimated symbol obtained
through simulation is compared with the steady-state MSE com-
puted via the expressions derived in Section VI. In order to
illustrate the usefulness of our analysis we have carried out some
experiments. To semianalytically compute the MSE for the
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TABLE III
PARAMETERS FOR THE VARIABLE STEP SIZE MECHANISMS: CONVERGENCE TO THE SAME MSE

TABLE IV
OPTIMIZED PARAMETERS FOR THE VARIABLE STEP SIZE MECHANISMS: CONVERGENCE TO THE SMALLEST MSE

Fig. 3 MSE analytical versus simulated performance for the variable
step size mechanisms in (a) single-path channels with K = 5 users.
(b) In multipath channels with K = 8 users. (a) N = 16, K = 5 users,
E =N = 15 dB. (b) N = 31, K = 8 users, E =N = 15 dB.

single-path recursion, we have used (46), [9],
(54), (55), ,

, where and
. For the multipath case and taking into

account the variable step size mechanism for channel estima-
tion, we employed a semianalytical approach with

and ,
where was obtained from the SG channel estimator with the
different mechanisms. The channel parameters for these exper-
iments are , and (or alternatively 0,

6, and 6 dB, respectively).
In the first experiment, we have tuned the parameters of the

mechanisms, shown in Table III, in order to achieve the same

steady-state MSE upon convergence for the algorithms. The re-
sults are shown in Fig. 3, for the single and multipath cases,
respectively, and indicate that the BVSS and BRVSS proposed
mechanisms enjoy a significantly faster convergence than the
FSS approach. For the multipath case, we note that when BVSS
and BRVSS are employed for channel estimation the perfor-
mance is further improved. By comparing the curves, it can be
seen that as the number of received symbols increase and the
simulated MSE converges, the analytical curves obtained con-
verge to about the same steady-state MSE, showing the useful-
ness of our analysis and assumptions.

In the second experiment, we have tuned the parameters of the
mechanisms, shown in Table IV, in order to achieve the smallest
steady-state MSE upon convergence. The results are shown in
Fig. 4, for the single and multipath cases, respectively, and indi-
cate that the BVSS and BRVSS proposed mechanisms achieve
a significant improvement over the FSS. For the multipath case,
the variable step size mechanisms incorporated in the channel
estimation improve the performance of the algorithm. Again,
a comparison of the curves indicates that the analytical curves
match the simulated ones upon convergence, verifying the va-
lidity of our analysis. The parameters shown in Table IV are
used for the remaining experiments in this paper.

B. SINR Convergence Performance

The SINR at the receiver end has been chosen as the perfor-
mance index to evaluate the convergence performance in the re-
maining situations. In the following experiments we will assess
the SINR performance of the analyzed mechanisms, namely,
FSS, ASS, AV, BVSS, and BRVSS. We remark that the param-
eters of the FSS, ASS, and AV techniques have been tuned in
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Fig. 4. MSE analytical versus simulated performance for the variable step
size mechanisms in (a) single-path channels with K = 5 users (b) multipath
channels with K = 8 users. (a) N = 16, K = 5 users, E =N = 15 dB.
(b) N = 31, K = 8 users, E =N = 15 dB.

Fig. 5. SINR performance for the variable step size mechanisms with fading
(f T = 0:001) and E =N = 15 dB.

order to optimize performance, allowing for a fair comparison
with the new mechanisms. The normalization described in
Appendix I and II is utilized in order to facilitate the setting of
the step sizes for different loads.

In the first experiment, shown in Fig. 5, for a fading channel
the system starts with 4 interferers with 7 dB above the desired
user’s power level and 1 interferer with the same power level
of the desired one, which corresponds to . At
500 symbols, 2 interferers with 10 dB above the desired signal
power level and 2 with the same power level enter the system,
whereas 2 interferers with 7 dB above the desired signal power
level leave it. At 1000 symbols, 1 interferer with 10 dB above, 1
interferer with 7 dB above, and 2 interferers with the same power
level of the desired signal exit the system, while 1 interferer
with 15 above the desired user enters the system. The channel
parameters are , , and (or alternatively
0, 6, and 10 dB, respectively).

In the second experiment, shown in Fig. 6, we illustrate the
performance in terms of SINR of the analyzed algorithms and

Fig. 6. (a) SINR and (b) MSE performance of the channel estimators for the
variable step size mechanisms without fading and E =N = 15 dB.

Fig. 7. (a) SINR performance and (b) step size values for the variable step size
mechanisms in nonstationary environment with AWGN channel andE =N =
15 dB. (a) N = 16, E =N = 15 dB; (b) N = 16, E =N = 15 dB.

their respective channel estimation performance in terms of
MSE. The channel parameters to be estimated are ,

, and (or alternatively 0, 3, and 6 dB,
respectively) and the system has 6 users, where 1 interferer
operates with 7 dB above the desired user’s power level, 1
interferer 10 dB above the desired signal and the remaining
interferers work with the same power level of the desired one,
which corresponds to .

In the third and fourth experiments, shown in Figs. 7 and 8,
we illustrate the performance in terms of SINR of the analyzed
algorithms and their respective step size values as a function
of the received symbols in a nonstationary setup. In Fig. 7, the
system starts with 4 users, where 1 interferer operates with 7 dB
above the desired user’s power level, and the remaining inter-
ferers work with the same power level of the desired one, which
corresponds to . At 1000 symbols, one inter-
ferer with 10 dB above the desired user signal enters the system.
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Fig. 8. (a) SINR performance and (b) step size values for the variable step size
mechanisms in nonstationary environment with channel p = 1, p = 0:5 and
p = 0:5 and E =N = 15 dB.

In Fig. 8, we employ the mechanisms with the multipath algo-
rithm, where the channel parameters to be estimated are ,

and . The system starts with 8 users, where
1 interferer operates with 7 dB above the desired user’s power
level, 1 interferer operates with 10 dB above the desired user
and the remaining interferers work with the same power level
of the desired one, which corresponds to .
At 1000 symbols, two interferers with 15 dB above the de-
sired user signal enter the system. The curves show that the en-
trance of a near-far user degrades the performance of the re-
ceiver and the variable step size mechanisms are superior to the
FSS in dealing with nonstationary environments, exhibiting a
faster convergence improvement than the FSS. Moreover, the
novel adaptation mechanisms, the BVSS and the BRVSS, ex-
hibit faster convergence than the ASS even though they are less
complex.

C. BER Performance

In the next experiments, we evaluate the BER performance
of the variable step size mechanisms versus , the pro-
cessing gain , the number of channel paths and versus
the number of users (K), as shown in Figs. 9 to 13. The receivers
process 2000 symbols, averaged over 100 independent runs for
all BER simulations and employ the normalization described in
the appendices in order to facilitate the setting of the step sizes
for different loads.

In Fig. 9 we depict a scenario where the BER versus and
is assessed. The channel parameters are randomly gener-

ated using uniform random variables (r. v.) and normalized so
that and the received power of the interferers are
log-normal r. v. with associated standard deviation 3 dB. The
curves show that the proposed mechanisms BVSS and BRVSS
outperform the FSS, ASS, and AV methods. When the new
mechanisms are incorporated in the channel estimator the BER
performance is further improved. In addition, we notice that as

is increased so is the BER performance and the resistance
against multipath effects, while an increase in degrades BER
performance, as expected.

Fig. 9. BER performance versus (a) processing gain (N), L = 3 and
(b) number of channel paths (L ) for the variable step size mechanisms
without fading using random generated spreading sequences.

Fig. 10. BER performance versus (a) E =N and (b) number of users (K) for
the variable step size mechanisms with AWGN channel using random spreading
sequences. (a) N = 32, K = 10 users; (b) N = 32, E =N = 12:5 dB.

In Fig. 10, we assess the BER performance versus
and number of users in a flat channel environment,
where 1 interferer operates with 7 dB above and 1 interferer
with 10 dB above the desired signal, which corresponds
to , for . The results show that
new mechanisms can afford significant gains in BER perfor-
mance over the FSS, the AV, and the ASS at a low additional
complexity.

In Fig. 11, we evaluate the BER performance versus
and number of users in a multipath channel environment,
where 1 interferer operates with 7 dB above and 1 interferer with
10 dB above the desired signal, which corresponds to

, for . The channel parameters are randomly gener-
ated using uniform r.v., normalized so that and the
received power of the interferers are log-normal r. v. with asso-
ciated standard deviation 3 dB. The curves depicted in Fig. 11
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Fig. 11. BER performance versus (a) E =N and (b) number of users (K)
for the variable step size mechanisms without fading using random spreading
sequences. (a) N = 32, K = 8 users; (b) N = 32, E =N = 15 dB.

Fig. 12. BER performance versus f T with (a) Gold spreading sequences
and two interferers with 5 and 10 dB above the desired signal and (b) random
generated spreading sequences. (a) N = 31, E =N = 15 dB, K = 8 users;
(b) N = 32, E =N = 15 dB, K = 8 users.

indicate that the new mechanisms offer superior BER perfor-
mance to the FSS, the AV, and the ASS, as observed for the
single-path case. It can also be noted that the incorporations of
these mechanisms for channel estimation can further improve
the BER performance.

In Figs. 12 and 13, we consider scenarios with multipath
fading and assess the BER performance of the techniques so far
analyzed. The channel has a power profile given by 0, 3, and

6 dB, respectively, where in each run the second path delay
is given by a discrete uniform r. v. between 1 and 4 chips,

the third path delay is taken from a discrete uniform r. v. between
1 and chips and the received power of the interferers given
by log-normal r. v. with associated standard deviation 3 dB.

In Fig. 12, the BER performance versus is assessed and
it can be noted that again the novel mechanisms achieve the
best performances. It should be remarked that advantages of the

Fig. 13. BER performance versus (a) E =N and (b) number of users (K) for
the variable step size mechanisms with fading using Gold spreading sequences
with N = 31. (a) N = 8, f T = 0:005. (b) E =N = 15 dB, f T = 0:005.

BVSS and BRVSS techniques are more pronounced for more
severe near-far situations as in Fig. 12(a), where a larger BER
performance gap is noticed. In Fig. 13, the BER performance
versus and number of users is depicted. The results
indicate once more that the BVSS and the BRVSS mechanisms
are highly effective for use with SG algorithms in minimum
variance receivers.

VIII. CONCLUDING REMARKS

We have investigated the performance of blind adaptive re-
ceivers for DS-CDMA systems that employ SG algorithms with
variable step size mechanisms. Two low complexity variable
step size mechanisms have been proposed and analyzed for es-
timating the parameters of linear CDMA receivers that operate
with SG algorithms in both single-path and multipath chan-
nels. For multipath channels, the new blind adaptation mecha-
nisms, namely the BVSS and the BRVSS, were incorporated in
the channel estimation algorithms, showing significant improve-
ments over the conventional channel estimation method with
fixed step sizes. We have also derived analytical expressions for
predicting the excess MSE of the adaptive receivers in steady
state using approximations and assumptions. The analytical re-
sults have been compared with simulations and show that our
analysis is consistent and capable of predicting the steady-state
MSE for nonfading scenarios with AWGN. Finally, experiments
for typical mobile channels show that the new mechanisms out-
perform existent methods at a lower complexity.

APPENDIX I
DERIVATION OF NORMALIZED STEP SIZE: SINGLE-PATH CASE

To derive a normalized step size for the algorithm in (18) let
us add to both sides of it and write the minimum variance
cost function as

(70)
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where . If we take the gradient of with
respect to and equal it to zero, we have

(71)

and the solution is . Note that we intro-
duce a convergence factor so that the algorithm can operate
with adequate step sizes that are usually small to ensure good
performance, and, thus, we have .

APPENDIX II
DERIVATION OF NORMALIZED STEP SIZE: MULTIPATH CASE

To derive a normalized step size for the multipath case in (19)
let us write the minimum variance cost function as

(72)

If we take the gradient of with respect to and equal it to
zero, we have

(73)

If we substitute into the first term
of (73) and use we can eliminate the third term of
(73) obtain the solution . Note that we intro-
duce again a convergence factor so that the algorithm can
operate with adequate step sizes that are usually small to ensure
good performance, and, thus, we have .
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