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Abstract—We propose a Widely Linear Multi-Stage Wiener
Filter (WL-MSWF) receiver to suppress inter/intra-symbol in-
terference, multi-user interference, and narrowband interference
in a high data rate Direct-Sequence Ultra Wideband (DS-UWB)
system. The proposed WL receiver fully exploits the second-
order statistics of the received signal, yielding a smallerMinimum
Mean Square Error (MMSE) than the linear receiver. The WL-
MSWF receiver mainly consists of a low-rank transformation
and an adaptive reduced-rank filter. The rank-reduction is
achieved via a transformation matrix. Based on the linear MSWF
concept, two constructions of this rank-reduction matrix,namely
Total WL (TWL) and Quasi WL (QWL), are proposed. We
develop Stochastic Gradient (SG) and Recursive Least Squares
(RLS) adaptive versions of the proposed TWL/QWL-MSWF and
theoretically analyze their convergence behavior. The comparison
of the proposed TWL/QWL-MSWF and the existing algorithms
is carried out in terms of the computational complexity and the
resulting MMSE performance. Extensive simulation resultsshow
that the proposed TWL/QWL-MSWF schemes outperform the
existing schemes in both convergence and steady-state perfor-
mance under various conditions.

Index Terms—widely linear, multi-stage Wiener filter, reduced-
rank, non-circular, direct-sequence ultra wideband, narrowband
interference.

I. I NTRODUCTION

COMPLEX-VALUED signals have been widely used in
various fields such as mobile communications, smart an-

tennas, radar, biomedicine, optics and seismics, etc.. Complex-
domain representations are quite convenient to physically
characterize the signals in practice [1], [2], [3]. Most parameter
estimation and filtering techniques for complex-valued signals,
whose samples are often organized in a vectorr, are based
on their second-order statistics. It is often assumed that the
signalr is second-order circular (or proper). As a result, only
the covariance matrixR = E

{

rrH
}

is utilized for signal
processing. However, it is shown that in many applications

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Parts of this paper have been published at theThe Seventh International
Symposium on Wireless Communication Systems (ISWCS 2010), York, UK,
Sept. 2010.

N. Song, M. Haardt, and M. Wolf are with the Communications Re-
search Laboratory, Ilmenau University of Technology, P. O.Box 100565, D-
98684 Ilmenau, Germany, e-mail:{nuan.song, martin.haardt, mike.wolf}@tu-
ilmenau.de, webpage: http://www.tu-ilmenau.de/crl.

R. C. de Lamare is with the Communications Research Group, Department
of Electronics, University of York, Heslington, North Yorkshire, York Y010
5DD, U.K. e-mail: rcdl500@ohm.york.ac.uk.

The authors gratefully acknowledge the partial support of the German Re-
search Foundation (Deutsche Forschungsgemeinschaft, DFG) under contract
no. WO 1442/1-2.

whenr is non-circular or improper, the second-order behavior
should be described by both the covariance matrixR and the
pseudo-covariance (also called complementary covariancein
[2], [4]) matrix Ř = E

{

rrT
}

, where Ř is not vanishing
[5]. The improperness may arise from modulations which
employ improper signal constellations such as Binary Phase
Shift Keying (BPSK), Amplitude Shift Keying (ASK), Bi-
Orthogonal Keying (BOK), or the ones that can be interpreted
as a real constellation after reformulation such as Offset
Quadrature Phase Shift Keying (OQPSK), Minimum Shift
Keying (MSK), or Gaussian MSK (GMSK) [6].

Widely Linear (WL) processing, which fully exploits the
second-order statistics (R andŘ) of improper signals, can sig-
nificantly improve the estimation performance [5], [4], [7], [8].
The WL filtering techniques have gained a great popularity in
the applications of interference suppression, equalization, and
synchronization. Data-aided and blind adaptive WL Minimum
Mean Square Error (MMSE) receivers based on Recursive
Least Squares (RLS) [9] and Stochastic Gradient (SG) [10]
techniques are proposed to achieve interference suppression
in BPSK-based Direct Sequence Code Division Multiple Ac-
cess (DS-CDMA) systems. Different equalization strategies
based on WL processing have been developed for DS-CDMA
[11] and DS Ultra Wideband (DS-UWB) [12]. The authors
of [13] provide new insights into the optimum WL array
receivers for their applications to single antenna interference
cancellation techniques [14] as well as to synchronization
schemes [15] for GSM systems, considering BPSK, MSK, and
GMSK signals in the presence of non-circular interferences.
Compared to the linear processing, these WL receivers exhibit
an increased robustness against interference, and the related
adaptive algorithms are able to provide a better convergence
performance. One important property is that the WL estimate
of the real-valued data from a sequence of complex and
improper observations results in a real-valued estimate. This
not only produces a smaller estimation error than the linear
estimate but may also reduce the receiver complexity since
only the real-valued signal is processed [9], [11].

In many situations, the observation data used for parameter
estimation has a large size due to a high processing gain, a
large number of antennas, or numerous multipath components,
which requires a long receive filter. However, a filter with
a large number of taps requires substantial training, which
considerably slows down the convergence speed, and becomes
highly sensitive to interference. Thereby, in order to decrease
the number of estimated parameters (e.g., filter coefficients),
reduced-rank processing can be applied such that the received
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vector is transformed into a lower dimensional subspace and
the filtering optimization is carried out within this subspace.
Compared to the full-rank techniques, the reduced-rank meth-
ods are able to achieve a faster convergence, an increased
robustness against interference, and a lower complexity by
estimating a reduced number of parameters. There have been
several reduced-rank techniques proposed for interference sup-
pression. Some well-known approaches, namely the ”Principal
Components” (PC) [16], [17] and the ”cross spectral” metric
[18], exclusively rely on the eigen-decomposition for estimat-
ing the signal subspace. This demands huge computational
efforts and an often large rank to reach a satisfactory per-
formance [18]. A more effective method called Multi-Stage
Wiener Filter (MSWF) was proposed in [19], [20]. In contrast
to the eigen-decomposition algorithms, the MSWF does not
require the knowledge of the signal subspace but utilizes a
successive orthogonal decomposition for parameter estimation.
It is capable of attaining an improved convergence with a
filter rank which is much less than the dimension of the
signal subspace [21]. Another reduced-rank approach is called
Auxiliary Vector Filtering (AVF), which iteratively updates
the filter weights according to a sequential and conditioned
optimization of auxiliary vectors [22]. Both the MSWF and the
AVF estimators can be combined with different design criteria
such as MMSE [23], Constrained Minimum Variance (CMV)
[24], or Constrained Constant Modulus (CCM) [24], [25]. The
AVF outperforms the MSWF but has a higher complexity.
In the WL case, both the original received signalr and its
complex conjugater∗ have to be considered, which further
increases the filter length and thus decelerates the convergence
[3], [26]. Reduced-rank techniques are thus more attractive and
efficient in WL signal processing. So far, most of the reduced-
rank algorithms are based on linear processing [24], [27], [28],
[29]. One of the few algorithms that combine both is the
WL reduced-rank Wiener filter investigated in [4], where the
computationally expensive eigen-decomposition is employed.
This reduced-rank WL estimator usually requires twice the
rank of its linear counterpart.

Wireless communication systems can substantially benefit
from the use of UWB signals. However, in high data rate
DS-UWB applications [30], the system performance may be
deteriorated by Inter-/Intra- Symbol Interference (ISI),MUI,
or even by the interference from other non-UWB systems
operating in the same bandwidth. The emissions of the IEEE
802.11a Wireless Local Area Network (WLAN) in the range
of 5.2 GHz [31], for example, occur in a frequency band which
is permitted for UWB operations in the US [32]. The IEEE
802.11a WLAN signal may exhibit a much higher power than
the UWB signal and is treated as Narrowband Interference
(NBI). The large bandwidth requires a high sampling rate and
leads to a received vector with a large size. The reduced-rank
techniques are thus very promising for interference suppres-
sion in DS-UWB systems [33]. One mandatory modulation
scheme for DS-UWB systems is the non-circular BPSK mod-
ulation [30]. Therefore, the combination of the robust MSWF
method and the WL processing is motivated to ensure a faster
convergence and a lower complexity than the full-rank and/or
the linear counterparts.

In this paper, we propose a WL-MSWF receiver for interfer-
ence suppression in DS-UWB systems. The proposed receiver
consists of a bijective transformation to form an augmented
observation vector, a rank-reduction block to perform the low-
rank transformation, and an adaptive reduced-rank filter. In
contrast to the WL reduced-rank Wiener filter based on PC
[4], the proposed receiver applies the linear MSWF concept
in the WL case. It does not require the eigen-decomposition
and thus its computational complexity is considerably reduced.
Combining the WL processing with the MSWF not only
achieves a lower MMSE than that of the linear case but also
has a better convergence performance compared to the full-
rank techniques.

The main contributions of our work are summarized as
follows.

1) We derive the WL-MSWF and characterize some key
properties. Two constructions of the rank-reduction ma-
trix are introduced, namely the Total WL (TWL) and
the Quasi WL (QWL) designs.

2) For both low-rank WL projection methods (TWL and
QWL), we develop the SG and the RLS adaptive algo-
rithms to compute the WL-MSWF.

3) We analyze the statistical performance in terms of MSE
for the adaptive SG and RLS algorithms, including the
stability and the convergence performance.

4) We estimate and compare the computational complexity
of the proposed and the existing schemes in terms of
real additions and multiplications.

5) The proposed TWL/QWL-MSWF schemes are exam-
ined for interference suppression in a DS-UWB system
under realistic scenarios and compared with the linear
MSWF counterparts, linear/WL full-rank schemes, as
well as the linear/WL PC-based methods. We mainly
focus on the scenario when both the signal and the
interference (MUI and NBI) are non-circular. We also
show the suitability of the proposed methods applied in
the case when the desired signal is strictly circular but
the interference (MUI or NBI) is non-circular.

Section II introduces the data model for the DS-UWB sys-
tem. Section III reviews the linear reduced-rank Wiener filter
according to the MSWF design. The WL-MSWF receiver is
presented along with its key properties in Section IV. Section
V details the SG/RLS adaptive algorithms for the WL-MSWF
and analyzes the corresponding convergence and transient
behavior. The computational complexity of all the studied
algorithms is evaluated in Section VI. Section VII providesex-
tensive simulation results of the proposed TWL/QWL-MSWF
algorithms and compares them to the existing schemes.

Notation:The superscriptsT , H , and∗ stand for transpose,
conjugate transpose, and complex conjugation, respectively.
We usea as the subscript to denote the associated augmented
quantities. The reduced-rank quantities are symbolized with a
“bar”. The Hadamard (element-wise) product is denoted by
⊙. The expectation and the trace operations are expressed by
E{·} andtr{·}. The floor/ceiling operator⌊x⌋/⌈x⌉ rounds the
argumentx down/up to the closest integer that is less/greater
than or equal tox. The operationℜ{·} is to take the real
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part of a variable. We use the bold capital letters to represent
matrices and the bold small letters for vectors.

II. SYSTEM MODEL

We consider the uplink of a BPSK DS-UWB system with
Nu asynchronous users in the presence of NBI. In the complex
baseband, the transmitted signal for thek-th user is given by

sk(t) =

∞
∑

i=−∞

bk(i)

N−1
∑

n=0

√

Ekck(n)g(t− iTb − nTc), (1)

wherebk(i) ∈ {±1} is the i-th BPSK symbol for the userk
with unit varianceσ2

b = E
{

|b1(i)|2
}

= 1, Tb is the bit du-
ration,Ek and ck(n) ∈ {±1/

√
N} denote the corresponding

energy per bit and the multiple access code with chip interval
Tc. The baseband reference pulseg(t) is the impulse response
of a Root Raised Cosine (RRC) low pass filter with30 %
excess bandwidth, i.e., the roll-off factor isβ = 0.3. For both
the low and high frequency bands, the filter cutoff frequency
(-3 dB point) is 1

2Tc
[30]. The processing gainN is equal to

Tb/Tc.
Since the signal bandwidth is constrained toB = (β+1)B3,

the complex-valued impulse response of the multipath UWB
channel can be fully described by the discrete response, i.e.,
tapped-delay line model written ashk(t) =

∑L−1
l=0 αk(l)δ(t−

l/B), whereαk(l) is the l-th complex channel tap for thek-
th user and

∑L−1
l=0 |αk(l)|2 = 1. In our case, the channel

is assumed to be time-invariant block fading. For UWB
communications withB ≥ 500 MHz, the statistics of the
path gains are different from those in narrowband systems.
The large bandwidth also results in a significant number of
resolvable multipath components and severe ISI.

The received signal at the output of a pulse matched filter
with the impulse responseg(T − t) can be expressed as

y(t) =

∞
∑

i=−∞

Nu
∑

k=1

N−1
∑

n=0

L−1
∑

l=0

√

Ekbk

(

i+

⌊

n−Dk

N

⌋)

ck(n)

αk(l)ĝ

(

t− iTb − nTc −
l

B
− τk

)

+ J(t) + n(t),

(2)
whereT represents the delay to ensure that the received pulse
filter is causal,̂g(t) = g(t) ∗ g(T − t), J(t) = Ĵ(t) ∗ g(T − t),
andn(t) = n̂(t) ∗ g(T − t) are the filtered pulse, NBI, and
noise, respectively. The zero-mean, complex Additive White
Gaussian Noise (AWGN)̂n(t) is assumed to have a power
spectral densityN0. Asynchronous (but chip synchronous)
transmission is assumed, meaning thatτ1−τk = DkTc, where
the random variableDk takes values in{0, 1, . . . , N−1} with
equal probability. Without loss of generality, we assume that
the delay of the desired userτ1 is known andτ1 = 0 is chosen.

The NBI is often modeled as a single tone. It is more
realistic to consider the Orthogonal Frequency Division Mul-
tiplexing (OFDM) signal from the IEEE 802.11a WLAN that
overlays the UWB emission spectrum. Such an OFDM signal
can be regarded as a sum of multiple single-tone NBIs, given
by

Ĵ(t) =

√

PJ

Nc

Nc−1
∑

n=0

xne
j(2π(fJ+n·∆f)t+θ), (3)

wherePJ is the NBI power,Nc is the number of sub-carriers,
xn ∈ {±1} is a BPSK-modulated symbol,fJ is the frequency
difference between the carrier frequencies of the NBI and the
UWB signal,∆f denotes the sub-carrier frequency spacing,
and a random phaseθ is uniformly distributed in[0, π). The
Signal to NBI ratio is computed asSIR = Es/(PJTs),
whereEs is the signal energy per symbol andEs = Eb for
BPSK. Usually in UWB communications, it is assumed that
the duration of a NBITJ is greater thanTb.

At the receiver, by samplingy(t) at a chip rate1/Tc, the
received signal vector is obtained. For thei-th transmitted bit
i = 0, 1, . . . , Ns − 1, the corresponding received vector of
lengthM = N + L− 1 can be written as

r(i) =
√

E1b1(i)C1h1 + v(i) + η(i) + j(i) + n(i), (4)

including the desired user signal, the MUI partv(i), all the
interference from the chips of the current symbols (intra-
symbol) as well as from the previous and subsequent symbols
(inter-symbol) η(i), the NBI vector j(i) observed in the
i-th bit, and the AWGN. The code matrix for thek-th user
Ck ∈ RM×L is a Toeplitz matrix, which can be expressed as

Ck =

























ck(0) 0 · · · 0
ck(1) ck(0) · · · 0

...
...

. . .
...

ck(N) ck(N − 1) · · · 0
0 ck(N) · · · 0
...

...
. . .

...
0 0 · · · ck(N)

























. (5)

In what follows, we denoteX(m : n, :) as a matrix consisting
of the rows inX that are indexed fromm to n.

The NBI vector is expressed as

j(i) =

√

PJ

Nc

Nc−1
∑

n=0

xn(i)⊙ ej[2π(fJ+n·∆f)·kTc+θ], (6)

wherexn(i) =
[

xn

(⌊

iNTc

TJ

⌋)

, . . . , xn

(⌊

(iN+M−1)Tc

TJ

⌋)]T

,

j =
√
−1, and k = [iN, iN + 1, . . . , iN + M − 1]T 1.

We represent the asynchronous MUI each with an offsetDk

by v(i) =
∑Nu

k=2

√
Ekbk(i)Čkhk, where Čk ∈ RM×L is

constructed from a zero matrix and the firstM − Dk rows
of Ck defined as

Čk =

[

0Dk

Ck(1 : M −Dk, :)

]

. (7)

The ISI is expressed as

η(i) =

Nu
∑

k=1

√

Ek

i−1
∑

j=i−ξ

C̃khkbk(j)

+

Nu
∑

k=1

√

Ek

i+ξ
∑

j=i+1

Ĉkhkbk(j), ξ =

⌈

L− 1 +Dk

N

⌉

,

(8)

1For a quantity, either a vectorx or a matrixX, the expressionex or eX

returns the exponential for each element inx or X (MATLAB-like notation).
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whereC̃k andĈk ∈ RM×L include the lastM−(i−j)N+Dk

and the firstM − (j − i)N + Dk rows of Ck, respectively,
given by

C̃k =

[

Ck(ξ̃ : M, :)
0

]

, with ξ̃ = (i − j)N −Dk + 1,

Ĉk =

[

0

Ck(1 : ξ̂, :)

]

, with ξ̂ = M − (j − i)N +Dk.

(9)

III. L INEAR REDUCED-RANK WIENER FILTER

This section recalls the key concept of linear reduced-rank
filters as preliminaries and summarizes the major results on
the Linear MSWF (L-MSWF) algorithm. The cost function of
the linear MMSE filter is given by2

J = E

{

∣

∣b1(i)−wHr(i)
∣

∣

2
}

. (10)

The Wiener solutionwo = R−1p with p = E {b∗1(i)r(i)}
can be estimated by adaptive algorithms such as SG and RLS
[34]. However, when a large amount of data is processed, the
conventional full-rank filterw ∈ CM that has the same length
as the received vectorr(i) ∈ CM exhibits a slow convergence
and a high interference sensitivity. The reduced-rank technique
is able to exploit the key features of the data and to reduce the
number of adaptive parameters. The rank-reduction is achieved
by transforming the received vectorr(i) onto aD-dimensional
subspace withD ≪ M . Let us denote the rank-reduction
matrix asSD ∈ CM×D and the reduced-rank vector is given
by r̄(i) = SH

Dr(i) ∈ CD. The weight vectorw̄ ∈ CD is esti-
mated based on̄r(i) and the filter length can be significantly
reduced. The linear reduced-rank Wiener solution can be
obtained asw̄o = R̄−1p̄, where the reduced-rank covariance
matrix is R̄ = E{r̄(i)r̄H(i)} = SH

DRSD and the reduced-
rank cross-correlation vector is̄p = E{b∗1(i)r̄(i)} = SH

Dp.
We can then calculate the corresponding MMSE

J̄min = 1− p̄HR̄−1p̄, (11)

and the SINR

¯SINR =
p̄HR̄−1p̄

1− p̄HR̄−1p̄
=

1

J̄min
− 1. (12)

A. Linear MSWF

One method to construct the rank-reduction matrix is to
apply the L-MSWF [19], [20]. It is shown in [21] that the
rank-reduction matrix for the L-MSWFSD is spanned byD
normalized basis vectorsf1, · · · ,fD, wherefn = Rn−1p can
be chosen. In other words, the linear reduced-rank filter trans-
forms the received signal into the Krylov subspace represented
by

SD =
[

p,Rp, · · · ,RD−1p
]

. (13)

The MMSE and the output SINR of the L-MSWF asymptot-
ically converge to the linear full-rank case, i.e.,J̄min ≥ Jmin

2In some cases when the observation data vectorr(i) is not stationary, e.g.,
it contains time-varying interference, the cost function shown in equation 10
also depends on the time indexi [9]. For notational simplicity, we remove
the indexi in some cases that are related with non-stationary variables such
asRa andŘ shown in (15).

and ¯SINR ≤ SINR. Another important property is that the
rankD required to achieve the full rank performance does not
scalesignificantlywith the system size such asthe number of
usersNu and the length of the received vectorM . Generally,
D ≤ 8 can be chosen. The analysis in [19], [20] also indicates
that D can be decreased without considerably increasing the
MSE.

The associated adaptive algorithms based on the powers of
R given in (13) can be carried out in terms of SG or RLS [24].
Compared to the full-rank adaptive algorithms, the adaptive L-
MSWF with a small rankD can provide a faster convergence
speed and a better steady state performance for a given data
record.

IV. W IDELY L INEAR MULTI -STAGE WIENER FILTER

The main purpose of this section is to investigate the WL-
MSWF techniques and compare them to the linear counterpart.

A. Preprocessing: Augmented Vector Formulation

In order to exploit the information contained in both second-
order statistics, i.e.,R andŘ, the received signalr(i) and its
complex conjugater∗(i) are formulated into an augmented
vector using a bijective transformationT

r
T−→ ra : ra =

1√
2

[

rT , rH
]T ∈ C

2M×1. (14)

The filter with coefficientswa, which is designed according
to the augmented received vectorra(i), is widely linear with
r(i). It is thus named as a WL filter.

For example, the solution for a WL Wiener filter has a
similar expression as in the linear case shown in Section IIIbut
with a subscript “a”, denoting the augmented quantities. Let
us then analyze the augmented covariance matrix, which can
be represented by the covariance matrixR and the pseudo-
covariance matrixŘ of r(i) as

Ra =
1

2

[

R Ř

Ř∗ R∗

]

, (15)

where

R =

Nu
∑

k=1

EkČkhkh
H
k ČH

k +Rηη +Rjj +N0IM

and

Ř =

Nu
∑

k=1

EkČkhkh
T
k Č

T
k + Řηη + Řjj(i).

The covariance and pseudo-covariance matrices of ISIη(i)
are denoted byRηη andŘηη as

Rηη =

Nu
∑

k=1

Ek





i−1
∑

j=i−ξ

C̃khkh
H
k C̃H

k +

i+ξ
∑

j=i+1

Ĉkhkh
H
k ĈH

k



 ,

Řηη =

Nu
∑

k=1

Ek





i−1
∑

j=i−ξ

C̃khkh
T
k C̃

T
k +

i+ξ
∑

j=i+1

Ĉkhkh
T
k Ĉ

T
k



 .
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Since the modulated symbolsxn(i) on different sub-carriers
are uncorrelated, the second-order statistics of the BPSK-
modulated OFDM NBI vectorj(i) can be expressed as

Rjj =
PJ

Nc

Nc−1∑

n=0

e
j2π(fJ+n·∆f)·KTc ⊙ E

{

xn(i)x
H
n (i)

}

,

Řjj(i) =
PJ

Nc

Nc−1∑

n=0

e
j[2π(fJ+n·∆f)·Ǩ(i)Tc+2θ] ⊙ E

{

xn(i)x
T
n (i)

}

,

(16)
where

K =











0 1 · · · M − 1
−1 0 · · · M − 2
...

...
. . .

...
−(M − 1) −(M − 2) · · · 0











and

Ǩ(i) =











2iN 2iN + 1 · · · 2iN +M − 1
2iN + 1 2(iN + 1) · · · 2iN +M

...
...

. . .
...

2iN +M − 1 2iN +M · · · 2(iN +M − 1)











.

If Tj/Tc is an integer,Rjj does not vary with respect to the
time indexi. The matrixŘjj is time-varying with respect to
i. In our case where BPSK modulated signals are considered,
the improperness ofr arises from signals of all users, the ISI,
and the NBI. SinceŘ is non-zero, the WL processing is able
to take full advantage of this improper nature.

It is shown in [5], [9] that when the data to be es-
timated are real, the WL Wiener filter weight vectorwa

follows the transformation defined in (14) such thatwa =
[ w̌T , w̌H ]T /

√
2, where w̌ ∈ CM×1. Therefore, for the

real estimated data, a key property of the WL filtering is
conjugate symmetry defined by

wH
a ra(i) = rT

a (i)w
∗
a = ℜ

{

w̌Hr(i)
}

. (17)

In contrast to the conventional linear filter whose estimateis
generally complex, the WL procedure exploits the statistics of
both the covariance matrix and the pseudo-covariance matrix,
yielding a real estimate with a smaller error [5], [9].

B. Widely Linear Reduced-Rank Filter

estimation
error

+

-

Bijective
transform.

Rank-
Reduction

Widely Linear
Reduced-Rank
Filter

Adaptive
Algorithm

g(T − t)

T {·}

y(t) r ra r̄a

Sa,D w̄a

b1

z

eM × 1 D × 1

Fig. 1. Block diagram of the WL reduced-rank receiver in the complex
baseband.

In the WL case, the augmented vector with twice the size
of the received signal has to be considered. This requires a
large number of symbols to reach the steady-state performance
and imposes an even higher complexity on the receiver. To
this end, the reduced-rank signal processing techniques can
be combined with the WL filter to achieve a fast convergence,
increased robustness to interference, and a lower complexity.

The principle of the proposed WL reduced-rank receiver
is shown in Fig. 1, where the reduced-rank signal processing
and the adaptive receiver design follow after the bijective
transformationT . The augmented received signalra of di-
mension2M is then transformed by a rank-reduction matrix
Sa,D ∈ C

2M×D onto a D-dimensional subspace, yielding
a reduced-rank vector̄ra(i) = SH

a,Dra(i) ∈ CD. The WL
reduced-rank Wiener solution is written as̄wa,o = R̄−1

a p̄a.
Using augmented notations, the resulting MMSĒJa,min and
the SINR ¯SINRa can also be represented in the same fashion
as (11) and (12), respectively.

It is worth mentioning that if the received signal is circu-
lar, the WL solutions become equivalent to the linear case.
Therefore, the proposed WL reduced-rank receiver, which
additionally requires a bijective transformation before the
filtering implementation, can be regarded as a generalized
framework.

C. The WL-MSWF Strategies

+

-

+

-

+

-

+

-

Backward recursionForward decomposition

real-valued implementation

r̃0(i)
= ra(i)

r̃1(i)

r̃2(i)

r̃3(i)

B̃1

B̃2

B̃3

f̃1

f̃2

f̃3

f̃4

d0(i) = b1(i)

d1(i)

d2(i)

d3(i)

d4(i) = ζ4(i)

ζ0(i)

ζ1(i)

ζ2(i)

ζ3(i)

w̃1

w̃2

w̃3

w̃4

z(i)

Fig. 2. The structure of 4-stage WL-MSWF.

a) Total-WL Construction (TWL):one way to construct
the rank-reduction matrixSa,D is to extend the L-MSWF to
the widely linear case. Fig. 2 represents the four-stage MSWF,
which consists of several nested filters̃f1, · · · , f̃D ∈ C2M×1

and a combining procedure via the weighting coefficients
w̃1, · · · , w̃D. The “observation” datãrn−1(i) is successively
decomposed by the filters̃fn into one direction of the cross-
correlation vector and the other subspace orthogonal to this
direction by a blocking matrixB̃n. This matrix satisfies
B̃H

n f̃n = 0 and can be chosen as the2M × 2M -dimensional
matrix B̃n = I2M−f̃nf̃

H
n . In Fig. 2,dn(i) denotes the output

of the filter f̃n and r̃n(i) is the output ofB̃n. Whenn = 0,
d0(i) = b1(i) is the desired signal and̃r0(i) = ra(i) is the
augmented vector of the received signal. At then-th stage,
the filter f̃n is calculated according to the cross-correlation
between the “desired” datadn−1(i) and the “observation” data
vector r̃n−1(i) from the previous stage

f̃n = E
{

d∗n−1(i)r̃n−1(i)
}

, ‖f̃n(i)‖ = 1, n = 1, · · ·D.
(18)

Then the forward recursion can be continued by

dn(i) = f̃H
n r̃n−1(i), n = 1, · · · , D, (19)

r̃n(i) = B̃H
n r̃n−1(i), n = 1, · · · , D − 1. (20)

In the combining phase, the weighting coefficients are de-
signed based on the MMSE criterion, i.e.,w̃n is chosen so that
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E
{

|ζn−1(i)|2
}

is minimized. Forn = D, · · · , 1, the backward
recursion is completed by

w̃n = E
{

d∗n−1(i)ζn(i)
}

/E
{

|ζn(i)|2
}

(21)

ζn−1(i) = dn−1(i)− w̃∗
nζn(i). (22)

Note that whenn = D, ζD(i) = dD(i) and whenn = 1,
w̃∗

1ζ1(i) is the estimate ford0(i).
Similarly to [21], the rank-reduction matrixSa,D defines

the D-dimensional subspace spanned bỹfn and can be
constructed by the Krylov subspace, i.e.,

Sa,D =
[

f̃1, f̃2, · · · , f̃D

]

(23)

=
[

pa,Rapa, · · · ,RD−1
a pa

]

. (24)

The TWL construction of the rank-reduction matrix fully
utilizes the second-order statistics of the observation signal.
This scheme is denoted as TWL-MSWF.

b) Quasi-WL Construction (QWL):a simpler way to
construct the rank-reduction matrix is based on adopting a
transformationT on SD using the L-MSWF

Sa,D =
1√
2

[

ST
D, SH

D

]T
= T {SD} , (25)

whereSD represents the Krylov subspace as shown in (13).
The reduced-rank vector is thus calculated byr̄a(i) =
ℜ
{

SH
Dr(i)

}

= ℜ{r̄(i)}, i.e., by taking the real part of the
reduced-rank vector from the L-MSWF algorithm.With the
QWL design, the general block diagram shown in Fig. 1 can be
simplified to an equivalent model depicted in Fig. 3, where the
block “Widely Linear Reduced-Rank Filter” is still preserved.
Compared to the TWL method, the only difference lies in
how to construct the the rank-reduction matrixSa,D. Both
constructions (24) and (25) can be generalized in the form of
Sa,D = T

{

ŠD

}

= T {SD +∆SD}, where∆SD contains
the difference between the linear and the widely linear designs,
i.e., the firstM rows of Sa,D − T {SD}. If ∆SD = 0, we
have a QWL construction, which does not exploit the second-
order information contained in the pseudo-covariance matrix
Ř. However, the succeeding filter design still takes advantage
of the improper signals, providing a better performance than
the L-MSWF. The associated filtering method is named QWL-
MSWF. WhenD = 1, i.e., Sa,D = pa = T {p} = T {SD},
the QWL-MSWF and the TWL-MSWF methods have the
same performance. We will show in Sections IV-E and VII
that in most cases for improper signals, the TWL-MSWF
outperforms the QWL-MSWF.

Rank-
Reduction

estimation
error

+

-

Widely Linear
Reduced-Rank
Filter

Adaptive
Algorithm

ℜ{·}
r r̄ r̄a

SD w̄a

b1

z

e
M × 1 D × 1

Fig. 3. Receiver structure of QWL-MSWF.

D. Comparison with the PC methods

One of the few WL reduced-rank filters has been proposed
in [4] using the PC technique. It is based on the eigen-
decomposition of the augmented covariance matrixRa =
V ΣV H , where the columns ofV ∈ C2M×2M are the
eigenvectors ofRa and Σ is a diagonal matrix with the
ordered eigenvaluesσk on its diagonal such thatσ1 ≥ σ2 ≥
· · · ≥ σ2M . The rank-reduction matrix obtained via PC is
Sa,D = V (:, 1 : D), which contains the firstD columns ofV ,
corresponding to theD largest eigenvalues with a descending
order. A modified PC method introduced in [21] improves the
performance. It chooses the eigenvectors associated with the
D largest values of

∣

∣vH
k pa

∣

∣

2
/σk, wherevk is thek-th column

of V . This method selects a set ofD eigenvectors to form the
rank-reduction matrix that minimizes the MSE.

Compared to the proposed TWL/QWL-MSWF, there are
some disadvantages of the above WL-PC techniques.

1) A larger rankD is required than that for the MSWF.
2) These methods rely on the eigen-decomposition, which

is much more computationally expensive.
3) The WL-PC requires a largerD to achieve a better

performance than the linear PC [4].

E. MMSE and SINR Analysis of the WL-MSWF

Let us first consider the L-MSWF described in Section III.
The eigenvalue decomposition of the reduced-rank covariance
matrix can be obtained bȳR = QΛQH , whereQ contains
the eigenvectorsqk, k = 1, · · · , D andΛ is a diagonal matrix
consisting of eigenvaluesλk in a descending order. Applying
(13) to (11), the MMSE of the L-MSWF can thus be expressed
as

J̄min = 1− pHSDQΛ
−1QHSH

Dp

= 1−
D
∑

k=1

∣

∣qH
k (SH

Dp)
∣

∣

2

λk

, (26)

where it can be easily proven thatSH
Dp is real-valued.

Similarly to the linear case, the eigenvalue decomposition
of the reduced-rank augmented covariance matrix is computed
by R̄a = QaΛaQ

H
a , where the columns ofQa are the eigen-

vectorsqak, k = 1, · · · , D andΛa contains the eigenvalues
λak in a descending order on its diagonal. Withpa = T {p}
andSa,D = T

{

ŠD

}

, the resulting MMSE of the WL-MSWF
can be written by

J̄a,min = 1− pH
a Sa,DQaΛ

−1
a QH

a SH
a,Dpa

= 1−
D
∑

k=1

∣

∣qH
ak(S

H
a,Dpa)

∣

∣

2

λak

= 1−
D
∑

k=1

∣

∣qH
ak

(

ŠH
Dp+ ŠT

Dp∗
)

/2
∣

∣

2

λak

= 1−
D
∑

k=1

∣

∣qH
akℜ

{

ŠH
Dp

}∣

∣

2

λak

. (27)

The MMSE is mainly determined by the eigenvalues ofR̄a. In
Appendix A, we show thatλak < λk, k = 1, 2, · · · , D,D ≪
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K with K being the number of eigenvectors ofR (or
Ra) that correspond to the signal subspace. This applies to
both the TWL and the QWL constructions. If the QWL is
applied, ŠD = SD holds and thus (27) is simplified to

J̄a,min = 1−∑D
k=1

|qH
ak(S

H
Dp)|2

λak
. When the TWL is used, more

information can be explored, yielding a smaller MMSE than
the QWL. Therefore, a comparison of (26) and (27) indicates
that even with the same filter lengthD, the MMSE of the
WL-MSWF estimate with both constructions is smaller than
that of the L-MSWF, i.e.,J̄a,min < J̄min. Since the SINR
has a simple relationship with the MMSE as shown in (12),
¯SINRa > ¯SINR holds. This will be verified in Section VII-A.

F. Properties of the WL-MSWF

With the real-valued data being estimated, the WL-MSWF
has the following key properties:

1) It has been shown in [35] that after the multi-stage
decomposition, the reduced-rank vectorr̄a(i), the filter
weight vectorw̄a(i), the decision variablez(i), and the
estimation errore(i) are all real-valued.

2) With increasingD, the MMSE and the output SINR of
the WL-MSWF converge to the solutions of the WL
full-rank Wiener filter.

3) In contrast to the eigen-decomposition methods, the WL-
MSWF inherently extracts key characteristics of the
processed data and the rankD required to achieve the
full-rank performance is much smaller.

4) With the same rankD, the WL-MSWF outperforms the
L-MSWF in terms of the MMSE and the maximum
SINR.

5) The rankD required to approach the full-rank perfor-
mance is only slightly affected by the system load such
as the number of usersNu, the NBI, as well asthe
processing gainN and the number of channel tapsL,
which determine the ISI impact.

6) Compared to the full-rank filters, the complexity is
significantly reduced by using the reduced-rank tech-
niques [21], [24]. On one hand, due to the processing
on the augmented received vector, the WL forward
decomposition has a higher complexity compared to the
linear case. On the other hand, it has been shown that
the combining phase of the WL-MSWF is carried out on
the real-valued data, which alleviates the computational
efforts. It is worth mentioning that the QWL-MSWF
design simply deals with the real part of the reduced-
rank vector from the L-MSWF algorithm. Consequently,
it has an even lower complexity than the L-MSWF.
The complete computational complexity analysis will be
addressed in Section VI.

V. A DAPTIVE ALGORITHMS AND CONVERGENCE

ANALYSIS

In this section we develop two training-based adaptive
algorithms, the SG and the RLS, for the proposed WL-MSWF
techniques. The convergence performance of the WL adaptive
schemes based on the SG has been discussed in [1], [10].

However, it is of prime interest to evaluate the convergence
behavior of the adaptive reduced-rank algorithms. In this
section, we focus on the convergence analysis of both the
SG and the RLS versions of the WL-MSWF as well as the
comparison with their linear counterparts.

A. SG and RLS Adaptive Algorithms for the WL-MSWF

The rank-reduction matrixSa,D for the TWL is constructed
based on estimating the augmented covariance matrixRa and
the augmented cross-correlation vectorpa by

Ra(i) = λRa(i− 1) + ra(i)r
H
a (i) (28)

pa(i) = λpa(i − 1) + b∗1(i)ra(i), (29)

where0 < λ < 1 is the forgetting factor andb1(i) is the i-th
training symbol. Using (24), the rank-reduction matrix at time
instanti can thus be calculated by

Sa,D(i) =
[

pa(i),Ra(i)pa(i), · · · ,RD−1
a (i)pa(i)

]

. (30)

The QWL constructionSa,D is obtained by (25), whereR(i)
andp(i) are recursively estimated. Tables I and II show the
related SG and RLS algorithms for the WL-MSWF, whereδ
andδ̃ are initialization scalars to ensure the numerical stability.
In Table II, the reduced-rank augmented covariance matrix is
given byR̄a(i) = SH

a,D(i)Ra(i)Sa,D(i) and the RLS scheme
estimates its inversēR−1

a (i).

TABLE I
SG ADAPTIVE ALGORITHM FOR WL-MSWF 3

Initialize the algorithm by setting:
pa(0) = 0,Ra(0) = δI, w̄a(0) = 0

Choose the rankD and the step sizeµ
For the time indexi = 1, 2, · · · , Ns

The rank-reduction matrix is estimated by TWL or QWL
The reduced-rank vector̄ra(i) = SH

a,D
(i)ra(i)

The estimate ofb1(i) is z(i) = w̄H
a (i)r̄a(i)

The estimation errore(i) = b1(i) − z(i)
Update WL-MSWFw̄a(i+ 1) = w̄a(i) + µe∗(i)r̄a(i)

end

TABLE II
RLS ADAPTIVE ALGORITHM FOR WL-MSWF

Initialize the algorithm by setting:
pa(0) = 0,Ra(0) = δI, p̄a(0) = 0, R̄−1

a (0) = δ̃−1I, w̄a(0) = 0

Choose the rankD,
For the time indexi = 1, 2, · · · , Ns

The rank-reduction matrix is estimated by TWL or QWL
The reduced-rank vector̄ra(i) = SH

a,D(i)ra(i)

The estimate ofb1(i) is z(i) = w̄H
a (i)r̄a(i)

The recursive calculation:
k(i) = R̄−1

a (i − 1)r̄a(i)

g(i) =
λ−1k(i)

1 + λ−1r̄H
a (i)k(i)

R̄−1
a (i) = λ−1R̄−1

a (i − 1) − λ−1g(i)r̄H
a (i)R̄−1

a (i− 1)
p̄a(i) = λp̄a(i− 1) + b∗1(i)r̄a(i)

Update WL-MSWFw̄a(i) = R̄−1
a (i)p̄a(i)

end

3We use this “complex conjugate” to have a general expression, since for
linear filtering methods, the estimatez might be complex-valued. The real-
valued estimate is observed as one special property of the WLalgorithms,
when the data to be estimated is real (e.g., BPSK).
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B. Convergence Analysis of the WL-MSWF with SG

1) Step Size:As discussed in [34], to ensure the conver-
gence, the step size should be chosen such that

0 < µ <
2

max{λak}
, k = 1, · · · , D. (31)

Similarly, the step size of the L-MSWF-SG approach sat-
isfies 0 < µ < 2

max{λk} , k = 1, · · · , D. Since for

k = 1, · · · , D,D < K, λak < λk is observed, indicating that
the step size of the WL-MSWF-SG algorithm can be larger
than the L-MSWF-SG.

2) The Mean Square Error Learning Curve:The MSE of
the WL-MSWF-SG algorithm at timei can be expressed as
[34]

J̄a(i) = E
{

|e(i)|2
}

. (32)

Applying the eigen-decomposition of̄Ra, when the steady
state is achieved, i.e.,i → ∞, we get

J̄a(∞) = J̄a,min + µJ̄a,min

D
∑

k=1

λak

2− µλak

≈ J̄a,min +
µJ̄a,min

2

D
∑

k=1

λak, µ small, (33)

whereJ̄a,min is calculated by (11). The excess MSĒJa,ex(i)
can be represented as

J̄a,ex(i) = J̄a(i)− J̄a,min, (34)

meaning thatJ̄a,ex(∞) ≈ µJ̄a,min

2

D
∑

k=1

λak. Considering that

J̄a,min < J̄min, λak < λk, k = 1, · · · , D,D < K shown
in Section IV-E, we can conclude that the steady-state MSE
and excess MSE of the WL-MSWF-SG method are both
smaller than that of the linear case, i.e.,J̄a(∞) < J̄(∞) and
J̄a,ex(∞) < J̄ex(∞).

The transient behavior of the MSE is mainly determined
by the excess MSE, consisting of the transient excess MSE
J̄a,extrans(i) and the steady-state excess MSE [34] as

J̄a,ex(i) = J̄a,extrans(i) + J̄a,ex(∞). (35)

It will be shown via experiments that the WL-MSWF-SG
algorithm has a smaller transient excess MSE than the linear
method, showing a superior convergence performance for the
WL case even with the same rankD.

C. Convergence Analysis of the WL-MSWF with RLS

1) Weight Error Correlation Matrix: To analyze the RLS
implementation of the WL-MSWF receiver shown in Table II,
we assume the forgetting factorλ = 1 and obtain the weight
error as follows [34]

ǫa(i) = w̄a(i)− w̄a,o = R̄−1
a (i)

i
∑

n=1

r̄a(n)e
∗
o(n), (36)

where eo(i) = b1(i) − w̄H
a,or̄a(i) is the estimation er-

ror produced by the optimal solution̄wa,o. We assumed
eo(n) to be white with zero-mean and varianceσ2

e , where

E {eo(m)e∗o(n)} =

{

σ2
e = J̄a,min,m = n

0, m 6= n
. The weight er-

ror correlation matrix can then be expressed as

Ka(i) = E
{

ǫa(i)ǫ
H
a (i)

}

(37)

= J̄a,minE

{

R̄−1
a (i)

i
∑

n=1

i
∑

m=1

r̄a(m)r̄H
a (n)R̄−1

a (i)

}

= J̄a,minE
{

R̄−1
a (i)

}

=
J̄a,min

i−D − 1
R̄−1

a , i > D + 1 (38)

2) The Learning Curve of a priori Estimation Error:In
RLS algorithms, the a priori estimation error defined byξ(i) =
b1(i)− w̄H

a (i− 1)r̄a(i) is chosen to characterize the learning
curve [34]. By eliminatingb1(i) based on the expression of
eo(i), we can representξ(i) in terms of the weight errorǫa(i−
1) as

ξ(i) = eo(i)− ǫHa (i − 1)r̄a(i). (39)

The resulting learning curve is expressed as

J̄ ′
a(i) = E

{

|ξ(i)|2
}

= J̄a,min + tr
{

R̄aKa(i − 1)
}

= J̄a,min +
D

i−D − 1
J̄a,min, i > D + 1 (40)

Compared to SG in (34) and (35), the learning curve of RLS

indicates that the excess MSĒJ ′
a,ex(i) =

D

i−D − 1
J̄a,min

vanishes asi → ∞ and does not depend on the eigenvalue
spread ofR̄a. In the steady state, a zero excess MSE can
be reached by the RLS algorithm, exhibiting a faster con-
vergence and a higher robustness than the SG method. Since
J̄a,min < J̄min, the transient excess MSE of the WL-MSWF-
RLS approach is smaller than those of the linear counterparts
even with the same rankD, i.e., J̄ ′

a,ex(i) < J̄ ′
ex(i).

VI. COMPLEXITY ANALYSIS

The computational complexity of the adaptive algorithms
is estimated according to the number of real additions and
real multiplications per iteration for each received symbol
of size M . The estimated computational complexity of the
proposed WL-MSWF schemes is summarized in Table III,
where we consider the existing algorithms for comparison. Fig.
4 illustrates the total number of real operations (additions and
multiplications) per iteration per symbol for each algorithm
as a function ofM , where the rank of the MSWFD = 4
is chosen. For all the algorithms, the SG always has a lower
complexity than RLS. In the full-rank case, the WL-SG is
slightly simpler than the L-SG due to the conjugate symmetric
property of the WL approaches, while the multiplication of
bigger matrices results in a higher complexity of the WL-
RLS than that of the L-RLS. In the MSWF, the construction
of the rank-reduction matrix that requires a higher-order matrix
multiplication imposes more computational efforts than the
full-rank case. A largerD will considerably increase the
computational costs. We can observe that the proposed TWL-
MSWF SG/RLS methods exhibit the highest complexity. It is
worth emphasizing that the proposed QWL-MSWF SG/RLS
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algorithms are slightly less complex than the L-MSWF coun-
terparts and significantly reduce the complexity compared to
the full-rank WL-RLS.

TABLE III
ESTIMATED COMPUTATIONAL COMPLEXITY ACCORDING TO THE

NUMBER OF REAL OPERATIONS

Algorithms Additions Multiplications

L-Full-SG 8M 8M + 2

WL-Full-SG 6M − 1 6M + 1

L-MSWF-SG 4(D − 1)M2 4(D − 1)M2

+2(D + 1)M + 6D +4D(M + 2) + 2

QWL-MSWF-SG 4(D − 1)M2+ 4(D − 1)M2+

2(D + 1)M 2D(2M + 1) + 1

TWL-MSWF-SG 8(D − 1)M2+ 8(D − 1)M2+

2(D + 1)M 2D(2M + 1) + 1

L-Full-RLS 12M2 + 2M − 1 16M2 + 10M + 2

WL-Full-RLS 20M2 + 2M − 1 28M2 + 10M + 1

L-MSWF-RLS 4(D − 1)M2+ 4(D − 1)M2+

2M(D + 1) + 12D2
− 1 2D(2M + 5) + 16D2 + 2

QWL-MSWF-RLS 4(D − 1)M2+ 4(D − 1)M2+

2M(D + 1) + (D − 1)2 + 1 4DM + (2D + 1)2

TWL-MSWF-RLS 8(D − 1)M2+ 8(D − 1)M2+

2M(D + 1) + (D − 1)2 + 1 4DM + (2D + 1)2

Length of Received Vector M
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Fig. 4. Computational complexity in terms of real additionsand multipli-
cations per iteration per symbol as a function ofM . For MSWF schemes,
D = 4 is chosen. The zoomed-in curves are also shown atM = 87.

VII. S IMULATION RESULTS

In this section, we evaluate the steady-state, the transient,
and the convergence performance of the proposed TWL/QWL-
MSWF schemes and compare them with the linear MSWF, the
linear/WL full-rank Wiener filters, as well as the linear/WL
PC-based reduced-rank methods. The rank-dependent perfor-
mance along with the adaptive rank selection algorithms are
presented. We further analyze the SINR performance of the
proposed methods in the case when the desired signal is strictly
circular (e.g., QPSK-modulated signal) but the interference
(MUI or NBI) is non-circular.

For the multipath propagation channel, we use UWB
channels measured in a line-of-sight office of size
5 m × 5 m × 2.6 m. The measurements (including antennas)

were carried out by the IMST GmbH [36]. The transfer
function of a certain channel realization is firstly transformed
from the band-pass to the low-pass range at a center frequency
fc = 4 GHz, and afterwards converted into a tapped-delay
line model with equally spaced taps. The RRC pulse is
chosen withB3 = 500 MHz and β = 0.3. At the receiver,
the sampling rate of the ADC is 1 GHz and thus the channel
resolution is 1 ns. The maximum channel delay is 64 ns. We
assume that the UWB channel is time-invariant block fading
during the estimation. The DS code of lengthN = 24 is
generated pseudo-randomly for the DS-UWB system. The
dimension of the received vectorr is M = 87. The parameters
of the OFDM interference used for the simulations are shown
in Table IV, where the cyclic prefix and the guard interval are
not considered for simplicity4 and the OFDM symbol period
TJ is larger than the symbol duration. We consider a scheme
in which the proposed adaptive WL-MSWF algorithms are
first trained by a pilot sequence of 400 symbols and are then
switched to the decision-directed mode.

TABLE IV
PARAMETERS FORIEEE 802.11a OFDM SIGNAL

modulation fOFDM Nc ∆f TJ

BPSK 5.22 GHz 48 312.5 KHz 4 µs

A. Achievable SINR and Transient Analysis

The simulation results are presented to validate the theo-
retical analysis in Sections V-B and V-C. We first compare
the eigenvalues of the reduced-rank covariance matrix for
both linear and WL cases (̄R and R̄a). Fig. 5(a) depicts
the eigenvalues using linear, QWL, and TWL reduced-rank
matrix constructions forD = 2, 4, 6, where the number of
usersNu = 16, Eb/N0 = 15 dB, and NBI is absent. It
is observed that the eigenvalues of using both TWL and
QWL constructions are smaller than the linear case, i.e.,
λak < λk, k = 1, · · · , D, meaning that a larger step size
for WL-MSWF-SG algorithms can be chosen compared to
the L-MSWF-SG (cf. (31)). When the NBI is present, the
eigenvalues are shown in Fig. 5(b) withD = 4. With very
low SIR, the TWL-MSWF method has larger eigenvalues
(k = 3, 4) than the L-MSWF due to the “contribution” of the
strong NBI. However, the dominant eigenvalues (i.e.,k = 1, 2)
of TWL-MSWF are no greater than L-MSWF at various
SIR values. Fig. 5(c) plots the eigenvalues changing with the
number of users, which shows the higher values of L-MSWF
than those of the TWL/QWL-MSWF algorithms. The SINR
values of different schemes as a function ofEb/N0 (dB), SIR,
and the number of users, are also illustrated in Fig. 6, where
the rankD = 4 is chosen. It can be clearly seen that both the
TWL-MSWF and QWL-MSWF outperform the L-MSWF in
terms of the SINR and the TWL construction which utilizes
more second-order information produces a higher SINR than
the QWL case. The performance gain of the TWL over the

4The overall spectrum does not change with the cyclic prefix orthe guard
interval. This implies that the performance of the algorithms will not be
affected by adding the guard interval for the OFDM signal. Therefore, we
ignore this for simplicity.
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QWL increases with the number of users, cf., Fig. 6(c).
In summary, this shows that given a value of rankD, the
proposed TWL-/QWL-MSWF schemes are more robust to
interference and can accommodate more users compared to
the L-MSWF.
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Fig. 5. Eigenvalues of the reduced-rank covariance matrix constructed by
L/TWL/QWL-MSWF algorithms withEb/N0 = 15 dB versus (a) thek-th
stage projection for differentD, (b) various SIR in the presence of OFDM
NBI, and (c) different number of users.
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Fig. 6. The SINR of L/TWL/QWL-MSWF algorithms versus (a)Eb/N0

(dB), (b) various SIR in the presence of OFDM NBI, and (c) different number
of users.

We assess the SINR of the proposed TWL/QWL-MSWF
algorithms as a function of the rankD and compare them to
the PC-based reduced-rank filters shown in Fig. 7(a) and (b).
The performance of the full-rank linear/WL schemes is shown

only for the case, where NBI is present andNu = 16. The
conventional PC method that uses the firstD eigenvectors of
V corresponding toD largest eigenvalues ofR or Ra in a
descending order is denoted as “PC-conv”. The modified PC
scheme is called “PC-modi”. AsD increases, i.e., more signal
information is utilized, the SINR increases until it gets close
to the full-rank state. The TWL-MSWF only requires the rank
D = 2 to D = 6 to achieve the highest SINR and the selected
D is only slightly affected by the number of users and the
presence of NBI. For both the PC-conv and the PC-modi, the
necessaryD to approach the full-rank SINR does not depend
on the presence of NBI but is quite sensitive to the number of
users, e.g., to obtain the best performance, we needD = 10 for
the 2-user case andD > 60 for Nu = 16. The QWL-MSWF
cannot reach the WL full-rank SINR but it still outperforms
the PC-based methods with a much smaller rank. ForNu = 16
with D < 35, the advantage of the WL-PC-conv scheme over
the L-PC-conv is lost, unless a higher rank is chosen. With the
same rankD, the WL-PC-modi method exhibits a higher SINR
than the L-PC-modi, since theD eigenvectors are selected to
minimize the MSE.

S
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 (

d
B

)

Rank D Rank D
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=2N

u

no NBI
=16N

u

NBI
=16N

u
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no NBI
=16N

u

NBI
=16N

u

WL-PC-conv
L-PC-modi
L-PC-conv

WL-PC-modi
L-MSWF
TWL-MSWF
QWL-MSWF

WL-full

L-full NBI
=16N

u

Fig. 7. The SINR of the discussed algorithms versus the rankD for (a) the
L/WL-PC algorithms and for (b) the L/TWL/QWL-MSWF algorithms. We
considerEb/N0 = 15 dB, Nu = 2 and16, OFDM NBI of SIR = -5 dB.

Fig. 8 shows the transient excess MSE of the training-based
SG algorithmsJ̄a,extrans(i) for the TWL/QWL-MSWF-SG
schemes compared to the linear counterpart. It is assumed that
the augmented covariance matrix is known and is computed
by (15). We consider the step sizeµ = 0.02 without NBI and
µ = 0.024 in the presence of NBI,Nu = 16, Eb/N0 = 15 dB,
and D = 4. For each time instant, the excess MSE of the
WL methods is smaller than that of the linear case and TWL
exhibits a better transient performance than QWL.

B. BER Convergence Performance

We show the Bit Error Rate (BER) performance of the
adaptive TWL/QWL-MSWF algorithms and compare it to the
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Fig. 8. The transient excess MSE of L/TWL/QWL-MSWF-SG algorithms
in the cases when OFDM NBI is absent (a) and present (b). It is chosen that
Eb/N0 = 15 dB, D = 4, andNu = 16.

existing methods in Fig. 9(a) for SG and in (b) for RLS. The
rank D = 4 is chosen as a representative value to compare
the performance of different schemes. It is obvious that all
the RLS algorithms outperform the SG in the convergence
and tracking performances. Even with the sameD, the TWL-
MSWF which fully exploits the second-order behavior of the
non-circular signal performs the best. Since the QWL-MSWF
constitutes the rank-reduction matrix from the linear estimates
and utilizes the complementary covariance statistics onlyfor
the weight adaptation, it still exhibits a better convergence
performance than the L-MSWF but has a lower complexity.
The proposed TWL/QWL-MSWF algorithms show a better
BER performance compared to the WL full-rank counterparts.
The reason is that after the augmented received signal of a
dimension2M is projected onto a Krylov subspace with a
much lower dimensionD, the estimation of filter weights is
only based on a small amount of parameters. This implies a
faster convergence to the steady-state performance.

C. Rank-Dependent Performance

The number of parameters for estimating the filter weights,
i.e., the rankD, has an influence on the performance of
the proposed adaptive algorithms. We first examine the BER
performance versus the rankD and then introduce an adap-
tive rank selection method. Fig. 10 depicts the BER of the
TWL/QWL-MSWF algorithms as a function of the rankD,
where the performances of the L-MSWF as well as the full-
rank counterparts are included for comparison. It can be
observed that for both SG and RLS algorithms,D = 4
provides the best performance. It is worth remarking that
D = 3 which performs the same asD = 4 is preferred for
the SG methods.

The performance of the proposed algorithms is rank-
dependent. A smaller rankD provides a faster convergence

L-MSWF
TWL-MSWF
QWL-MSWF

WL-full

L-full

Number of received symbolsNumber of received symbols

SG RLS

(a) (b)

P
b

Fig. 9. The BER convergence performance of (a) SG and (b) RLS algorithms
for Eb/N0 = 15 dB, Nu = 16, and OFDM-NBI with SIR = -5 dB. We
considerD = 4 for the MSWF techniques.

at the beginning of the adaptation and a largerD results in
a better steady-state performance (cf. Fig. 11). Thereby, the
rank can be adapted to ensure both advantages. We employ
an adaptive method proposed in [21] to select the rankD,
based on the MSE estimate froma posteriori least-squares
cost function

Cd(i) =
i

∑

m=1

λi−m
∣

∣b1(m)− w̄H
a,d(m− 1)SH

a,d(m− 1)ra(m)
∣

∣

2
,

(41)
where d represents the rank to be chosen andλ is the
exponential weighting factor. For each received symbol, the
optimal rank that minimizes the exponentially weighted cost
function (41) is selected

Dopt(i) = arg min
Dmin≤d≤Dmax

Cd(i), (42)

Dmin andDmax are the minimum and maximum ranks con-
sidered. We assess the adaptive rank selection technique for
the TWL/QWL-MSWF with both SG and the RLS adaptive
algorithms as shown in Fig. 11, where the performance using
a fixed rank is also included for comparison. We choose the
range of the considered rank isDmin = 2 and Dmax = 6.
By adapting the rank at each received symbol, both a fast
convergence and a better steady-state performance can be
attained. The complexity of the adaptive rank selection al-
gorithm lies in the adaptation of the involved quantities for
Dmin ≤ D ≤ Dmax and the additional calculations of the cost
function in (41). The complexity can be reduced by switching
off the rank-selection after the steady state is reached.

D. Other Applicable Situations

In the above discussions, we consider the case when both
the desired signal and the interference (MUI as well as
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Fig. 10. The BER performance of (a) SG and (b) RLS algorithms versus
the rankD for Eb/N0 = 15 dB, Nu = 16, and OFDM-NBI with SIR = -5
dB. The number of the received symbols is chosen as 1500.

Number of received symbols

QWL-MSWF TWL-MSWF

(a) (b)
Number of received symbols

SG = 2D

SG D = 4
SG adapted D

RLS D = 3
RLS D = 4
RLS adapted D

SG = 2D

SG D = 4
SG adapted D

RLS D = 3
RLS D = 4
RLS adapted D

P
b

Fig. 11. The BER convergence performance of the adaptive rank selection
method for (a) the QWL-MSWF and (b) the TWL-MSWF. We choose
Eb/N0 = 15 dB, Nu = 16, and OFDM-NBI with SIR = -5 dB.

NBI) are strictly non-circular. In the following, we show the
proposed TWL/QWL-MSWF algorithms are still applicable
and outperform the L-MSWF in the situation when the desired
signal is strictly circular but the interference is non-circular
(i.e., the received observation vectorr is still non-circular).
If r is circular, the performance of the WL algorithms is
the same with the linear counterpart. In Fig. 12(a), QPSK
is considered for all the users and the same processing gain
N = 24 is chosen for simplicity. It is obvious that since no

advantage can be exploited for the circular observation data
(QPSK), the WL methods performs the same as the linear
one. Fig. 12(b) and (c) show the case when the desired signal
is QPSK modulated (circular) but the interference is non-
circular, i.e., MUI is BPSK modulated withN = 24 and NBI
is the BPSK-OFDM signal. The WL schemes fully exploit
the second-order information of the interference, showinga
superior performance over the linear scheme.

S
IN

R
 (

d
B

)

E /N
b 0

(dB)

No NBI, = 16N
u

E /N
b 0

=15 dB, 1 user E /N
b 0

=15 dB, No NBI

(a) (b) (c)
NBI SIR (dB) Number of users

L-MSWF
TWL-MSWF
QWL-MSWF

Fig. 12. The SINR of L/TWL/QWL-MSWF algorithms for the QPSK system
versus (a)Eb/N0 (dB), (b) various SIR in the presence of BPSK-OFDM NBI,
and (c) different number of users (MUI is BPSK modulated withN = 24).

VIII. C ONCLUSION

To suppress the ISI, the MUI, and the NBI in a high-data-
rate DS-UWB system, we propose a WL-MSWF receiver and
develop the corresponding adaptive algorithms (i.e., SG and
RLS). Based on the linear MSWF concept, two constructions
of the rank-reduction matrix (TWL and QWL) are derived.
The TWL/QWL-MSWF schemes fully/partially exploit the
second-order information of the non-circular signal, yielding
a higher SINR than the L-MSWF. Compared to the WL-PC
methods, the proposed TWL/QWL-MSWF are simpler and
can approach the optimal MMSE with a much smaller rank.
We show that the QWL-MSWF can be simplified by taking
the real part of the reduced-rank vector after the low-rank
transformation in the L-MSWF receiver, indicating a lower
complexity. The computational complexity with respect to
the number of real additions and multiplications is estimated
for the associated SG and RLS adaptive algorithms. The
convergence analysis shows that the step size of the WL-
MSWF-SG can be larger than that of the L-MSWF-SG. From
the MSE point of view, the proposed adaptive algorithms (SG
and RLS) exhibit a better transient behavior than the linear
counterparts.

Extensive simulation results in terms of the SINR and the
BER convergence performance are presented to assist the
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theoretical analyses. It is shown that the TWL/QWL-MSWF
perform better than the existing techniques and the TWL-
MSWF provides the best performance. The BER of the WL-
MSWF is rank-dependent, whereD = 3 is desired for the
SG algorithm andD = 4 for the RLS. Furthermore, we
assess an adaptive rank selection method for the WL-MSWF
to achieve both a faster convergence and a better steady-state
performance. Under the situation when the desired signal is
strictly circular but the interference (MUI or NBI) is non-
circular, the proposed WL-MSWF outperforms the L-MSWF.

APPENDIX A
EIGENVALUE ANALYSIS OF R̄ AND R̄a

We consider the same rank for both the linear and the
WL MSWF schemes. Two constructions for the rank-reduction
matrix can be represented asSa,D = T

{

ŠD

}

= T {SD} +
T {∆SD}, where∆SD = 0 indicates the QWL construction.
We define∆Sa,D = T {∆SD}. The augmented reduced-rank
covariance matrixR̄a can be written as

R̄a =
1

2
(T {SD}+∆Sa,D)H

[
R Ř

Ř
∗

R
∗

]

(T {SD}+∆Sa,D)

=
1

2
R̄+

1

2
Re

{

S
H
D ŘS

∗

D

}

︸ ︷︷ ︸

¯̌
R

+
1

4

(

∆S
H
a,DRaSa,D + S

H
a,DRa∆Sa,D +∆S

H
a,DRa∆Sa,D

)

︸ ︷︷ ︸

∆R̄a

=
1

2
R̄+

1

2
¯̌
R+

1

4
∆R̄a.

(43)
Since all the components in (43) are Hermitian matrices, by
using the theorem (Weyl) 4.3.1 in [37], we can obtain thek-th
eigenvalue of the augmented reduced-rank covariance matrix
(expressed byλk (·) , k = 1, · · · , D,D ≪ K) satisfying

λk

(

R̄a

)

= λk

(

1

2
R̄+

1

2
¯̌
R+

1

4
∆R̄a

)

≤ 1

2
λk

(

R̄
)

+
1

2
λmax

(

¯̌
R
)

+
1

4
λmax

(

∆R̄a

)

.

(44)

If the QWL is applied,∆R̄a = 0 and (44) can be simplified
as

λQWL
ak ≤ 1

2
λk

(

R̄
)

+
1

2
λmax

(

¯̌R
)

<
1

2
λk

(

R̄
)

+
1

2
λk

(

R̄
)

= λk, (45)

where it is given that in general, the singular values of the
complementary covariance matrix are smaller than those of the
covariance matrix. For the TWL construction, the eigenvalue
analysis shows that

λTWL
ak < λk +

1

4
λk

(

∆R̄a

)

. (46)

If λk

(

∆R̄a

)

is not dominant,λTWL
ak < λk still holds.

However, it is shown in Section VII-A that when there is
strong NBI,λTWL

ak > λk will occur.
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