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Abstract—We propose a Widely Linear Multi-Stage Wiener
Filter (WL-MSWF) receiver to suppress inter/intra-symbol in-
terference, multi-user interference, and narrowband inteference
in a high data rate Direct-Sequence Ultra Wideband (DS-UWB)
system. The proposed WL receiver fully exploits the second-
order statistics of the received signal, yielding a smalleMinimum
Mean Square Error (MMSE) than the linear receiver. The WL-
MSWF receiver mainly consists of a low-rank transformation
and an adaptive reduced-rank filter. The rank-reduction is
achieved via a transformation matrix. Based on the linear MSVF
concept, two constructions of this rank-reduction matrix, namely
Total WL (TWL) and Quasi WL (QWL), are proposed. We
develop Stochastic Gradient (SG) and Recursive Least Sques
(RLS) adaptive versions of the proposed TWL/QWL-MSWF and
theoretically analyze their convergence behavior. The coparison
of the proposed TWL/QWL-MSWF and the existing algorithms
is carried out in terms of the computational complexity and he
resulting MMSE performance. Extensive simulation resultsshow
that the proposed TWL/QWL-MSWF schemes outperform the
existing schemes in both convergence and steady-state pmf
mance under various conditions.

Index Terms—widely linear, multi-stage Wiener filter, reduced-
rank, non-circular, direct-sequence ultra wideband, narrowband
interference.

I. INTRODUCTION

whenr is non-circular or improper, the second-order behavior
should be described by both the covariance maRiand the
pseudo-covariance (also called complementary covariance
[2], [4]) matrix R = E {rr"}, where R is not vanishing
[5]. The improperness may arise from modulations which
employ improper signal constellations such as Binary Phase
Shift Keying (BPSK), Amplitude Shift Keying (ASK), Bi-
Orthogonal Keying (BOK), or the ones that can be interpreted
as a real constellation after reformulation such as Offset
Quadrature Phase Shift Keying (OQPSK), Minimum Shift
Keying (MSK), or Gaussian MSK (GMSK) [€].

Widely Linear (WL) processing, which fully exploits the
second-order statistic®and R) of improper signals, can sig-
nificantly improve the estimation performance [5], [4],.[[8].

The WL filtering techniques have gained a great popularity in
the applications of interference suppression, equatimagnd
synchronization. Data-aided and blind adaptive WL Minimum
Mean Square Error (MMSE) receivers based on Recursive
Least Squares (RLS) [9] and Stochastic Gradient (SG) [10]
techniques are proposed to achieve interference suppnessi
in BPSK-based Direct Sequence Code Division Multiple Ac-
cess (DS-CDMA) systems. Different equalization strategie
based on WL processing have been developed for DS-CDMA

OMPLEX-VALUED signals have been widely used in[11] and DS Ultra Wideband (DS-UWB) [12]. The authors
various fields such as mobile communications, smart a@f [13] provide new insights into the optimum WL array

tennas, radar, biomedicine, optics and seismics, etc. pleom

receivers for their applications to single antenna interiee

domain representations are quite convenient to physicafigncellation techniques [14] as well as to synchronization
characterize the signals in practice [1], [2], [3]. Mostgaeter schemes [15] for GSM systems, considering BPSK, MSK, and
estimation and filtering techniques for complex-valueaalg, GMSK signals in the presence of non-circular interferences
whose samples are often organized in a veetoare based Compared to the linear processing, these WL receivers gxhib
on their second-order statistics. It is often assumed that @n increased robustness against interference, and thedela
signalr is second-order circular (or proper). As a result, onfgdaptive algorithms are able to provide a better convergenc
the covariance matrix@ = E {rrf} is utilized for signal Performance. One important property is that the WL estimate

processing. However, it is shown that in many applicatio®d the real-valued data from a sequence of complex and
improper observations results in a real-valued estimaltés T

< ) | not only produces a smaller estimation error than the linear
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vector is transformed into a lower dimensional subspace andn this paper, we propose a WL-MSWF receiver for interfer-
the filtering optimization is carried out within this subspa ence suppression in DS-UWB systems. The proposed receiver
Compared to the full-rank techniques, the reduced-rankmetonsists of a bijective transformation to form an augmented
ods are able to achieve a faster convergence, an increaskservation vector, a rank-reduction block to perform thve-1
robustness against interference, and a lower complexity tank transformation, and an adaptive reduced-rank filter. |
estimating a reduced number of parameters. There have beentrast to the WL reduced-rank Wiener filter based on PC
several reduced-rank techniques proposed for interferemg- [4], the proposed receiver applies the linear MSWF concept
pression. Some well-known approaches, namely the "Prhcipn the WL case. It does not require the eigen-decomposition
Components” (PC) [16], [17] and the "cross spectral” metriand thus its computational complexity is considerably oedi

[18], exclusively rely on the eigen-decomposition for estt- Combining the WL processing with the MSWF not only
ing the signal subspace. This demands huge computatioachieves a lower MMSE than that of the linear case but also
efforts and an often large rank to reach a satisfactory péras a better convergence performance compared to the full-
formance [18]. A more effective method called Multi-Stageank techniques.

Wiener Filter (MSWF) was proposed in [19], [20]. In contrast The main contributions of our work are summarized as
to the eigen-decomposition algorithms, the MSWF does nfefilows.

require Fhe knowledge of the S|gr_1al subspace but L_m_llzes al) We derive the WL-MSWF and characterize some key
successive orthogonal decomposition for parameter estima

It is capable of attaining an improved converagence with a properties. Two constructions of the rank-reduction ma-
i P S 9 P Verger trix are introduced, namely the Total WL (TWL) and
filter rank which is much less than the dimension of the . .
. , the Quasi WL (QWL) designs.
signal subspace [21]. Another reduced-rank approach lisccal i S
. S S . 2) For both low-rank WL projection methods (TWL and
Auxiliary Vector Filtering (AVF), which iteratively updas QWL), we develop the SG and the RLS adaptive algo-
the filter weights according to a sequential and conditioned rithms, to compute the WL-MSWE
optimization of auxiliary vectors [22]. Both the MSWF anctth P o ' .
. . Lo . . 3) We analyze the statistical performance in terms of MSE
AVF estimators can be combined with different design ciater for the adaptive SG and RLS algorithms. including the
such as MMSE [23], Constrained Minimum Variance (CMV) X 9 ' 9

[24], or Constrained Constant Modulus (CCM) [24], [25]. The 4) ?/:/aebgggrr?gtde t,:,f dcggr\rl]ergreentcheep;r::rmz?igiél complexit
AVF outperforms the MSWF but has a higher complexity. P b plexity

In the WL case, both the original received sigmabnd its of the proposed and the existing schemes in terms of

complex conjugate-* have to be considered, which further real additions and multiplications.
comp ug ' 5) The proposed TWL/QWL-MSWF schemes are exam-
increases the filter length and thus decelerates the canvesg . ; S
. ) ined for interference suppression in a DS-UWB system
[3], [26]. Reduced-rank techniques are thus more attractid L . . )
P . . under realistic scenarios and compared with the linear
efficient in WL signal processing. So far, most of the reduced :
. : . MSWEF counterparts, linear/WL full-rank schemes, as
rank algorithms are based on linear processing [24], [Z8],[ . .
. : . well as the linear/WL PC-based methods. We mainly
[29]. One of the few algorithms that combine both is the . )
: L . . focus on the scenario when both the signal and the
WL reduced-rank Wiener filter investigated in [4], where the . .
; . ) Lo interference (MUI and NBI) are non-circular. We also
computationally expensive eigen-decomposition is engdoy L o
. : . . show the suitability of the proposed methods applied in
This reduced-rank WL estimator usually requires twice the . . : ) .
o the case when the desired signal is strictly circular but
rank of its linear counterpart. ) 4 .
. . . . the interference (MUI or NBI) is non-circular.
Wireless communication systems can substantially benefit
from the use of UWB signals. However, in high data ratgection Il introduces the data model for the DS-UWB sys-
DS-UWB applications [30], the system performance may dem. Section Ill reviews the linear reduced-rank Wieneeffilt
deteriorated by Inter-/Intra- Symbol Interference (ISWUI, according to the MSWF design. The WL-MSWF receiver is
or even by the interference from other non-UWB systenggesented along with its key properties in Section IV. Secti
operating in the same bandwidth. The emissions of the |IER£details the SG/RLS adaptive algorithms for the WL-MSWF
802.11a Wireless Local Area Network (WLAN) in the rang@nd analyzes the corresponding convergence and transient
of 5.2 GHz [31], for example, occur in a frequency band whichehavior. The computational complexity of all the studied
is permitted for UWB operations in the US [32]. The IEEERIgorithms is evaluated in Section VI. Section VI providas
802.11a WLAN signal may exhibit a much higher power thaiensive simulation results of the proposed TWL/QWL-MSWF
the UWB signal and is treated as Narrowband Interferenagorithms and compares them to the existing schemes.
(NBI). The large bandwidth requires a high sampling rate andNotation: The superscript¥’, H, andx stand for transpose,
leads to a received vector with a large size. The reducekl-ratonjugate transpose, and complex conjugation, respéctive
techniques are thus very promising for interference suppré&Ve usea as the subscript to denote the associated augmented
sion in DS-UWB systems [33]. One mandatory modulatioguantities. The reduced-rank quantities are symbolized ai
scheme for DS-UWB systems is the non-circular BPSK motbar”. The Hadamard (element-wise) product is denoted by
ulation [30]. Therefore, the combination of the robust MSWFE). The expectation and the trace operations are expressed by
method and the WL processing is motivated to ensure a fasidr} andtr{-}. The floor/ceiling operatofz |/[«] rounds the
convergence and a lower complexity than the full-rank and/argumentz down/up to the closest integer that is less/greater
the linear counterparts. than or equal tor. The operation?{-} is to take the real



part of a variable. We use the bold capital letters to reprtesavhere P, is the NBI power,N, is the number of sub-carriers,

matrices and the bold small letters for vectors. x, € {£1} is a BPSK-modulated symbof, is the frequency
difference between the carrier frequencies of the NBI awd th
Il. SYSTEM MODEL UWB signal, Af denotes the sub-carrier frequency spacing,

We consider the uplink of a BPSK DS-UWB system witiand a random phaseis uniformly distributed in[0, 7). The
N, asynchronous users in the presence of NBI. In the compl@ignal to NBI ratio is computed aSIR = FE,/(P;T}),
baseband, the transmitted signal for #h¢h user is given by where E; is the signal energy per symbol atl = £ for

- BPSK. Usually in UWB communications, it is assumed that
- . the duration of a NBIT'; is greater thar¥y,.

ax(f) = Z Z Exer(nlg(t =iy =nle). (1) At the receiver, by sampling(¢) at a chip ratel /T., the
received signal vector is obtained. For th#éh transmitted bit

=0,1,...,Ns — 1, the corresponding received vector of
lengthM = N + L — 1 can be written as

1=—00

whereby (i) € {£1} is thei-th BPSK symbol for the usek
with unit variances? = E {|b1(i)]*} = 1, T is the bit du-
ration, E;, andci(n) € {+1/v/N} denote the corresponding
energy per bit and the multiple access code with chip interva ,. \/_bl )Crhy +v(i) +n(i) +36) +n(i), (4)
T.. The baseband reference pulge) is the impulse response
of a Root Raised Cosine (RRC) low pass filter with % including the desired user signal, the MUI paiti), all the
excess bandwidth, i.e., the roll-off factor fs= 0.3. For both interference from the chips of the current symbols (intra-
the low and high frequency bands, the filter cutoff frequengymbol) as well as from the previous and subsequent symbols
(-3 dB point) is 57 [30]. The processing gaiV is equal to (inter- symbol) (i), the NBI vector j(i) observed in the
T,/ T.. i-th bit, and the AWGN. The code matrix for theth user
Since the signal bandwidth is constrainede= (3+1)B;, Cj € RM*L is a Toeplitz matrix, which can be expressed as
the complex-valued impulse response of the multipath UWB _

channel can be fully described by the discrete response, i.e cx(0) 0 0
tapped-delay line model written als, (1) = "' c.(1)3(t — cr(1) cr(0) 0

l/B), Whereak( ) |s the(-th complex channel tap for the- : : :

th user and Zz |ak( )J? = 1. In our case, the channel Ci=| cx(N) cp(N—-1) -- 0 ) (5)
is assumed to be time-invariant block fading. For UWB 0 cr(N) 0
communications withB > 500 MHz, the statistics of the

path gains are different from those in narrowband systems.

The large bandwidth also results in a significant number of L O 0 e er(N)

resolvable multlpgth components and severe IS, . In what follows, we denot&X (m : n,:) as a matrix consisting
The received signal at the output of a pulse matched fl|t8f the rows inX that are indexed fromn to n

with the impulse responsgT — ¢) can be expressed as The NBI vector is expressed as

s Ny N-1L—1
ZZZZ\/E—kbk(H-{ NDkJ) k(n) j(i)_\/?ﬁfi:lmn © eI (fr+n-A) KT+0]

(6)

i=—o0 k=1 n=0 [=0 ;
Ozk(l)g <t—in —TLTC— E —Tk) + J(t) —|—n(t),

. . B T
(2) wherez, (i) = {xn (V%FJ) T, QWD] ,
whereT represents the delay to ensure that the received pulse. /=7 and k = [iN,iN +1,....iN + M — 1]¥

filter is causalg(t) = g(t) « g(T —1t), J(t) = J (1) x g(T —1), We represent the asynchronous MUI each with an oﬁ%@t
andn(t) = n(t) x g(T — t) are the filtered pulse, NBI, and|0 v(i) = Zk o VErbi(i )Cphi, where G, € RM*L is

noise, respectively. The zero-mean, complex Additive Wh'Eonstructed from a zero matrix and the fitst — D;, rows
Gaussian Noise (AWGNJ,(t) is assumed to have a powelyt ¢, defined as

spectral densityNy. Asynchronous (but chip synchronous)

transmission is assumed, meaning that 7, = Dy 7., where Gy = { Op, } @)

the random variabl®;, takes values if0,1,..., N —1} with Cr(1: M — Dy,:)

equal probability. Without loss of generality, we assumat th

the delay of the desired useris known andr; = 0 is chosen.
The NBI is often modeled as a single tone. It is more

realistic to consider the Orthogonal Frequency DivisionMu  n(i Z \/E_;C Z C’khkbk

tiplexing (OFDM) signal from the IEEE 802.11a WLAN that j=i—¢

overlays the UWB emission spectrum. Such an OFDM signal Y« e L—-1+D

can be regarded as a sum of multiple single-tone NBIs, given +Z \/E_k Z Ckhkbk , §= [%W )

by j=1+1

Ne—1
. p, Ne ,
J(t) = L E zpel GrfotnAft+o) 3) 1For a quantity, either a vectat or a matrix X, the expressior® or eX
returns the exponential for each elementior X (MATLAB-like notation).

The ISl is expressed as

(8)



whereC,, andC), € RM*L include the lasi\/ —(i—j)N+D;, and SINR < SINR. Another important property is that the
and the firstM — (j — i)N + D;. rows of C, respectively, rank D required to achieve the full rank performance does not
given by scalesignificantlywith the system size such #se number of
usersiN, and the length of the received vectif. Generally,

Ci = { Ch (5(:)M’ ) } , with € = (i — j)N — Dy + 1, D < 8 can be chosen. The analysis in [19], [20] also indicates
A K that D can be decreased without considerably increasing the
Ci = . } with € = M — (j — i)N + Dy,. MSE.

Ck(l : 51 :)

) The associated adaptive algorithms based on the powers of
R given in (13) can be carried out in terms of SG or RLS [24].
Compared to the full-rank adaptive algorithms, the adativ
MSWEF with a small rankD can provide a faster convergence

_ This section recalls the key concept of linear reduced-ragfeed and a better steady state performance for a given data
filters as preliminaries and summarizes the major results piyorqg.

the Linear MSWF (L-MSWF) algorithm. The cost function of
the linear MMSE filter is given by

. H /2

/= E{|b1(l) v r(l)‘ } ’ (10) The main purpose of this section is to investigate the WL-
The Wiener solutionw, = R~ 'p with p = E{b%(i)r(i)} MSWF techniques and compare them to the linear counterpart.
can be estimated by adaptive algorithms such as SG and RLS
[34]. However, when a large amount of data is processed, t'Re
conventional full-rank filtenv € CM that has the same length™
as the received vecter(i) € CM exhibits a slow convergence In order to exploit the infprmation contained in both second
and a high interference sensitivity. The reduced-rankitiegte order statistics, i.e.R and R, the received signat(i) and its
is able to exploit the key features of the data and to reduee gpmplex conjugate-*(i) are formulated into an augmented
number of adaptive parameters. The rank-reduction is aetiie vector using a bijective transformation
by transforming the received vectofi) onto aD-dimensional - 1 -
subspace withD < M. Let us denote the rank-reduction = — 7 : =75 [»T, o 7 eC®™* (19)
matrix asSp € CM*P and the reduced-rank vector is given 2
by 7(i) = SHr(i) € CP. The weight vectorw € CP is esti- The filter with coefficientsw,, which is designed according
mated based ofi(:) and the filter length can be significantlyto the augmented received vectey(i), is widely linear with
reduced. The linear reduced-rank Wiener solution can béi). It is thus named as a WL filter.
obtained aswv, = R~!p, where the reduced-rank covariance For example, the solution for a WL Wiener filter has a
matrix is R = E{#(i)7" (i)} = SERSp and the reduced- similar expression as in the linear case shown in Sectidsutll
rank cross-correlation vector ig = E{b;(i)7(i)} = SHp. with a subscript “a”, denoting the augmented quantitied. Le
We can then calculate the corresponding MMSE us then analyze the augmented covariance matrix, which can
be represented by the covariance matkixand the pseudo-

IIl. LINEAR REDUCED-RANK WIENER FILTER

IV. WIDELY LINEAR MULTI-STAGE WIENER FILTER

Preprocessing: Augmented Vector Formulation

7. _1_~Hp-15 7
Jmin =1 =P Rp. (11) covariance matrixR of (i) as
and the SINR \TR R
- “Hp—15 R,=-| 5. x| 15
SNR— PR P 1 (12) 2{R R } (15)

1- ﬁHR_lﬁ Jmin
where
A. Linear MSWF

Ny
One method to construct the rank-reduction matrix is to R = ZEkC‘khkthC,f +R,, + Rj; + Noly

apply the L-MSWF [19], [20]. It is shown in [21] that the k=1

rank-reduction matrix for the L-MSWISp is spanned byD and

normalized basis vectorg, - - - , fp, wheref, = R 'p can N,

be chosen. In other words, the linear reduced-rank filterstra R= Z EyCrhihi C + R, + R (4).

forms the received signal into the Krylov subspace reptesen =1

by . [p,Rp, . RDflp] ' (13) The covariance and pseudo-covariance matrices ofnk3)

are denoted byR,,, and R, as
The MMSE and the output SINR of the L-MSWF asymptot-

ically converge to the linear full-rank case, i.€min > Juin AL Ut N e
! = HAH HAH
R7777 = E FEy, Ckhkhk Ck + E Ckhkhk Ck R
2In some cases when the observation data veetéxis not stationary, e.g., k=1 j=i—¢& j=i+1
it contains time-varying interference, the cost functitrown in equation 10 N, i1 ite

also depends on the time indéX9]. For notational simplicity, we remove - ~ T AT A T AT
the index: in some cases that are related with non-stationary vasahieh R, = Z Ej, Crhih; Cp + Z Cihihi, Cy,
as R, and R shown in (15). k=1 j=i—¢& j=i+1



Since the modulated symbals, (i) on different sub-carriers  The principle of the proposed WL reduced-rank receiver
are uncorrelated, the second-order statistics of the BPSK-shown in Fig. 1, where the reduced-rank signal processing
modulated OFDM NBI vectoyi(i) can be expressed as and the adaptive receiver design follow after the bijective
p, e oy A K o transfprmatian. The augmented received sigrm_of di- _
Rjj=7> ) &7 ‘ GE{%(Z)% (1)}7 mension2)M is then transformed by a rank-reduction matrix
N S.p € C?*MxD onto a D-dimensional subspace, yielding
R;;(i) = % 37 Rt An KOTer20] @E{mn(i)mf(i)}, a reduced-rank vectof, (i) = S r.(i) € CP. The WL
¢ n=o reduced-rank Wiener solution is written &%, , = R, 'p,.

h (16) Using augrrlented notations, the resulting MMngmin and
where the SINRSINR,, can also be represented in the same fashion
0 1 e M —1 as (11) and (12), respectively.
P -1 0 e M =2 It is worth mentioning that if the received signal is circu-
B : : . : lar, the WL solutions become equivalent to the linear case.
(M—1) —(M—2) - 0 The_r_efore, the p_roposed WL reduced-rank receiver, which
additionally requires a bijective transformation befolee t
and filtering implementation, can be regarded as a generalized
2iN 21N +1 e 2iN + M — 1 framework.
} 2iN + 1 2(iN +1) - 2iN + M
K(i) = . . , .
o I B o C. The WL-MSWF Strategies
2IN+M—-1 2iN+M -+ 2N+ M —1)
If T;/T. is an integer,R;; does not vary with respect to the do() =b1() 4 S0l
time indexi. The matrixR;; is time-varying with respect to (") | 4 () GG T2
: -- - AN Py ; S
i. In our case where BPSK modulated signals are considered, | 11 :

the improperness af arises from signals of all users, the ISI,
and the NBI. SinceR is non-zero, the WL processing is able
to take full advantage of this improper nature.

It is shown in [5], [9] that when the data to be es-
timated are real, the WL Wiener filter weight vectar, Loy
follows the transformation defined in (14) such thaj = Forward decomposition «—— Backward recursion
[ wT, wf ]T/\/2, wherew € CM*1. Therefore, for the
real estimated data, a key property of the WL filtering i
conjugate symmetry defined by

2 (i) )
W

real-valued implementation

Eig. 2. The structure of 4-stage WL-MSWF.

a) Total-WL Construction (TWL)one way to construct
wllra(i) = vl (w; =R{w"r()}. (17) the rank-reduction matrisS, p is to extend the L-MSWF to

In contrast to the conventional linear filter whose estimate the_ widely I|_near case. Fig. 2 repre_serlts the fQur'StaQQEESW
which consists of several nested filtefs,--- , fp € C

generally complex, the WL procedure exploits the stasstit o . e -
) . . and a combining procedure via the weighting coefficients
both the covariance matrix and the pseudo-covariance xnatri _ ‘, - _ o .
ielding a real estimate with a smaller error [5], [9] w1, -+, wp. The “observation” data, (i) is successively
y T decomposed by the filterg, into one direction of the cross-

correlation vector and the other subspace orthogonal ® thi

B. Widely Linear Reduced-Rank Filter direction by a blocking matrixB,,. This matrix satisfies
b BIf, = 0 and can be chosen as th&/ x 2M-dimensional

WL-MSWF e matrix B,, = Ioy — f,. f. In Fig. 2,d,, (i) denotes the output
y(t) 7| Bectve |irq Rarke |7, |Wisellnear 1i z w*  of the filter f,, and 7, (i) is the output ofB,,. Whenn = 0
_ -|B ion -Ran N n n n: !
_> ADC Ty [T Sap [T1F% a5, [ =F  do(i) = bi(i) is the desired signal and (i) = r,(i) is the
v 'X 1 D 'X 1 _ e augmenteg yector of the receive_d signal. At tixh stage,_

T A e—maion the filter f,, is calculated according to the cross-correlation
error between the “desired” dat, 1 (¢) and the “observation” data

vector+,,_1 (i) from the previous stage
Fig. 1. Block diagram of the WL reduced-rank receiver in tlenplex

baseband. fo=E{d, 1 (i)fn_1(i)}, Ifu(i)| =1, n=1,---D

n—1 .
18
In the WL case, the augmented vector with twice the Sizg,o, the forward recursion can be continued by (18)

of the received signal has to be considered. This requires a _

large number of symbols to reach the steady-state perfarenan dn(i) = flFp_1(i), n=1,---,D, (19)
ar_ld imposes an even higher_ complexity on the rec_eiver. To i) = BYF, (i), n=1,---,D—1. (20)
this end, the reduced-rank signal processing techniques ca "
be combined with the WL filter to achieve a fast convergencks, the combining phase, the weighting coefficients are de-
increased robustness to interference, and a lower contplexsigned based on the MMSE criterion, i.@,, is chosen so that



E {|¢n—1(7)|*} is minimized. Fom = D, - - - , 1, the backward D. Comparison with the PC methods
recursion is completed by One of the few WL reduced-rank filters has been proposed

B = E {1 (1)Ca (i)} /E {1 ()2} (21) in [4] using the PC technique. It is based on the eigen-
decomposition of the augmented covariance maffix =
Cn-1(8) = dn—1(i) — @3, (9). (22) vV, where the columns o € C2M*2M gre the
Note that whemn = D, (p(i) = dp(i) and whenn = 1, eigenvectqrs ofR, and 2 is a diagonal matrix with the
@t (1 (i) is the estimate fotly (i). ordered eigenvalues;, on its (_j|agonal .such thatl 2.02 > .
Similarly to [21], the rank-reduction matri$, p defines *°* = 02M- The rank-reduction matrix obtained via PC is
the D-dimensional subspace spanned By and can be Sap =V(,1: D), which contains the firsb columns ofV',
constructed by the Krylov subspace, i.e., correspondln_g_ to thé largest _elgenvalues_ with a descending
o R order. A modified PC method introduced in [21] improves the
So.p = [fl, fo, ,fp} (23) performance. It chooses the eigenvectors associated kéth t

— [pu. Rupa--  RPp.] . (24) D Iarges.t values o’fv,{fpa]2 /o, wher_evk is thek-th column
of V. This method selects a set bf eigenvectors to form the
The TWL construction of the rank-reduction matrix fullyrank-reduction matrix that minimizes the MSE.
utilizes the second-order statistics of the observatigmadi Compared to the proposed TWL/QWL-MSWEF, there are
This scheme is denoted as TWL-MSWF. some disadvantages of the above WL-PC techniques.
b) Quasi-WL Construction (QWL)a simpler way to 1) A larger rankD is required than that for the MSWF.

construct the rank-reduction matrix is based on adopting a2) These methods rely on the eigen-decomposition, which
transformatiori7” on Sp using the L-MSWF is much more computationally expensive.

1 T g7 3) The WL-PC requires a largeb to achieve a better
Sa.p = ﬁ [ Sp. Sp ] =T1{5p}, (25) performance than the linear PC [4].
where Sp represents the Krylov subspace as shown in (13).
The reduced-rank vector is thus calculated by(i) = E. MMSE and SINR Analysis of the WL-MSWF

R{SpHr(i)} = R{7(i)}, i.e., by taking the real part of the | et us first consider the L-MSWF described in Section Iil.
reduced- r.ank vector from the L-MSWF algorithmiith the  The eigenvalue decomposition of the reduced-rank covegian
QWL design, the general block diagram shown in Fig. 1 can Ratrix can be obtained bz = QAQ*, whereQ contains
simplified to an equivalent model depicted in Fig. 3, wheee thhe eigenvectorg,, k = 1,---, D andA is a diagonal matrix
block “Widely Linear Reduced-Rank Filter” is still presex.  consisting of eigenvalues, in a descending order. Applying

Compared to the TWL method, the only difference lies i3)to (11), the MMSE of the L-MSWF can thus be expressed
how to construct the the rank-reduction mat$ p. Both g

constructions (24) and (25) can be generalized in the form of

S.p =T{Sp} = T{Sp+ASp}, where AS,, contains Jmin = 1-p"SpQAT'Q"Sp

_the dn‘fergnce between the linear and the widely lineargiesi B ‘qk Sgp)‘

i.e., the firstM rows of S, p — T {Sp}. If ASp =0, we = 1- Z DY (26)
have a QWL construction, which does not exploit the second- k=1

order information contained in the pseudo-covariance imatiyhere it can be easily proven th&tp is real-valued.

R. However, the succeeding filter design still takes advantag Similarly to the linear case, the eigenvalue decomposition
of the improper signals, providing a better performance thaf the reduced-rank augmented covariance matrix is cordpute
the L-MSWF. The associated filtering method is named QWlpy R, — Q.A.Q!, where the columns af), are the eigen-
MSWF. WhenD = 1, i.e., So.p = pa = T {p} = T {Sp}, vectorsq..,k = 1,---,D and A, contains the eigenvalues
the QWL-MSWF and the TWL-MSWF methods have the . in a descending order on its diagonal. Wjth = T {p}
same performance. We will show in Sections IV-E and ViandS, p = T{SD} the resulting MMSE of the WL-MSWF
that in most cases for improper signals, the TWL-MSWEan be written by

outperforms the QWL-MSWF.

b ja,min = 1- pfsa,DQa 1QHSa DPa
1 2
1 i ’qtgc(sa,Dpa)’
r Rank- | T T | Widely Linear Zr‘: k f Aak
—»| Reduction | R {-} »| Reduced-Rank |—» > )
e = L | Fiter o, -\ o Z a4, (SEp + SThp*) /2|
Mx1 Dx1 A B Nak
: k=1
1 L_ 3| Adaptive | _ €
b - > Algorithm [© estimation _ |q %{S p}‘ 27
error - Z (27)
Fig. 3. Receiver structure of QWL-MSWF. The MMSE is mainly determined by the eigenvalued®yf. In

Appendix A, we show thab,, < A\, k=1,2,---,D,D <



K with K being the number of eigenvectors @@ (or However, it is of prime interest to evaluate the convergence
R,) that correspond to the signal subspace. This applieskiehavior of the adaptive reduced-rank algorithms. In this
both the TWL and the QWL constructions. If the QWL issection, we focus on the convergence analysis of both the
applied, Sp = Sp holds and thus (27) is simplified toSG and the RLS versions of the WL-MSWF as well as the

_ H (qH,_\|2 . . L
Jamin = 1_2521 |<1ak(AS,]::p)| . When the TWL is used, more cOmparison with their linear counterparts.
information can be explored, yielding a smaller MMSE than

the QWL. Therefore, a comparison of (26) and (27) indicatéds SG and RLS Adaptive Algorithms for the WL-MSWF

that even with the same filter lengib, the MMSE of the  The rank-reduction matris,, , for the TWL is constructed
that of the L-MSWF, i.e..Jomin < Jmin- Since the SINR the gugmented cross-correlation vegbarby
has a simple relationship with the MMSE as shown in (12),

SINR,, > SINR holds. This will be verified in Section VII-A. R.(i) = ARu(i—1)+ra(i)ry (i) (28)

Pa(i) = Apa(i—1)+bj(i)ra(i), (29)

F. Properties of the WL-MSWF where0 < \ < 1 is the forgetting factor and (i) is thei-th

With the real-valued data being estimated, the WL-MSW#Faining symbol. Using (24), the rank-reduction matrixiatet
has the following key properties: instanti can thus be calculated by

1) It has bee_zrj shown in [35] that after the muIFi-stage Su.p(i) = [Pa(i), Ra()pali), -+, RP7 (i)pa(i)] . (30)
decomposition, the reduced-rank veciqxi), the filter . . . _
weight vectorw, (i), the decision variable(i), and the The QWL constructiorS, p is obtained by (25), wher&(i)
estimation errok(i) are all real-valued. andp(i) are recursively estimated. Tables | and Il show the

2) With increasingD, the MMSE and the output SINR of related SG and RLS algorithms for the WL-MSWF, whére
the WL-MSWF converge to the solutions of the wLando are initialization scalars to ensure the numerical stigbili
full-rank Wiener filter. In Table I, the reduced-rank augmented covariance magdrix i

3) In contrast to the eigen-decomposition methods, the Wgiven by R, (i) = Sfp(i)Ra(i)Sa_,D(i) and the RLS scheme
MSWF inherently extracts key characteristics of thestimates its invers&, " (i).

processed data and the rahkrequired to achieve the
TABLE |

ful_l-rank performance is much smaller. SG ADAPTIVE ALGORITHM FORWL-MSWE 2
4) With the same ranl), the WL-MSWEF outperforms the Initialize the algorithm by setting:
L-MSWF in terms of the MMSE and the maximum Pa(0) =0, R4 (0) =61, wa(0) = 0
SINR. Choose the ranlD and the step sizg
. For the time index = 1,2,--- , N,
5) The rar_1kD requ_lred to approach the full-rank perfor- The rank-reduction matrix is estimated by TWL or QWL
mance is only slightly affected by the system load such The reduced-rank vectat, (i) = SH , (i)ra (i)
as the number of userd,, the NBI, as well aghe The estimate oby (i) is z(i) = W) (i)7a (i)
processing gairiV and the number of channel tags The estimation erroe(s) = b1(3) —2()
which determine the 1SI impact en‘;pdate WLMSWPDa (i +1) = Wa (i) + e’ (7 (0
6) Compared to the full-rank filters, the complexity is
significantly reduced by using the reduced-rank tech-
niques [21], [24]. On one hand, due to the processing TABLE I

on the augmented received vector, the WL forward RLS ADAPTIVE ALGORITHM FORWL-MSWE
decomposition has a higher complexity compared to theTnitalize the algorithm by setting:
linear case. On the other hand, it has been shown thap. (0) = 0, R.(0) = 6I,5,(0) =0, R;*(0) =6 11, w,(0) =0
the combining phase of the WL-MSWF is carried out 01 Choose the raniD,
_ ; i ; For the time index = 1,2,--- , Ng
thﬁe rteal I\t/a.lued dtita’ WhtI.Ch .a”e\:ll_]attestht he C\?\/Tphl/:?\x/opn I The rank-reduction matrix is estimated by TWL or QWL
e O_r S. - IS wor me_n ioning that the QWL- The reduced-rank vectaf, (i) = Sﬁ{D(i)ra(i)
design simply deals with the real part of the reduced-r The estimate oby (4) is z(i) = W (i)7a (i)
rank vector from the L-MSWF algorithm. Consequently,| The recursive calculation:
it has an even lower complexity than the L-MSWF. k(i) = Ra (;jl,lc)’fa(i)
The complete computational complexity analysis will be g(i) = 1+H(2)
ddressed in Section VI A LA ed (Dk() A
a : R.'()=X"1'R,'(i— 1) = A 1g(i)rl ()Ra ' (i — 1)
Pa(i) = APa(i— 1) + b7 (i)7a (i)
Update WL-MSWFw,, (i) = Ry (i
end

i
V. ADAPTIVE ALGORITHMS AND CONVERGENCE ()Pa (i)

ANALYSIS

In this section we develop two training-based adaptive

algorithms, the SG and the RLS, for the proposed WL-MSWFawe use this “complex conjugate” to have a general expressioce for
inear filtering methods, the estimatemight be complex-valued. The real-

teChniques- The convergence performanc? of the WL adapt\'/\éﬁjed estimate is observed as one special property of thealgfrithms,
schemes based on the SG has been discussed in [1], [#@n the data to be estimated is real (e.g., BPSK).



B. Convergence Analysis of the WL-MSWF with SG E {e,(m)e’(n)} = gﬁ = Ja,min, M =1 . The weight er-

. . . , m#n

1) Step Size:As discussed in [34], to ensure the convely, correlation matrix can then be expressed as

gence, the step size should be chosen such that
9 K. (i) = E{eieg (i)} 37)
O<M<m,l€:1,"',D. (31) i i
X1 Aq _ _ _

. e = JounE S RS0 DD mu(m)rl ()R (D)
Similarly, the step size of the L-MSWF-SG approach sat- oyt
isfi 2 = e i - 5_1-
isfles 0 < u < max (] k = 1, ,Q. fSlnc_:e for _ Ja,minE{Ral(l)}
k=1,---,D,D < K, \i; < A\ IS observed, indicating that T min =
the step size of the WL-MSWF-SG algorithm can be larger —ER, i>D+1 (38)

than the L-MSWF-SG. i=b-l

2) The Mean Square Error Learning Curv&he MSE of
the WL-MSWF-SG algorithm at timé can be expressed as
[34]

2) The Learning Curve of a priori Estimation Errortn
RLS algorithms, the a priori estimation error definedsloi) =
=y 2 b1 (i) —wH (i — 1)7,(i) is chosen to characterize the learning
Jal?) = ]E{|e(2)| }7 (32) curve [34]. By eliminatingb; (i) based on the expression of
Applying the eigen-decomposition dR,, when the steady e, (i), we can represeiii) in terms of the weight errog, (i —

state is achieved, i.ei,— oo, we get 1) as
D €(1) = eo(i) — €' (i = D7 (i) (39)
Ju(00) = Jomin + 1, Zﬂ
“ = Jemin T fia,min =2 — pak The resulting learning curve is expressed as
_ Ju min J,(1) = E{E¢ = Jomin +tr{ R, K, (i — 1
~ Ja,min + MT7 Z )\aka 1 Sma'llv (33) ( ) _{|E( )| } ’ _ { ( )}
k=1 = Ja,min + ﬁffa,mina i>D+1 (40)
_ _ o i—D —
where Jo,min is calculated by (11). The excess M cx(i) Compared to SG in (34) and (35), the learning curve of RLS
can be represented as = 8 B
_ _ _ indicates that the excess MSE ., (i) = ————Ja.min
Ja,eX(i) = Ja(i) - Ja,mina ’ 7 1

vanishes as — oo and does not depend on the eigenvalue

_ _ T o spread ofR,. In the steady state, a zero excess MSE can

meaning that/, ex(e) ~ T’Zx\ak- Considering that pe reached by the RLS algorithm, exhibiting a faster con-
- - k=1 vergence and a higher robustness than the SG method. Since
Jamin < Jmin; Ak < Ak k= 1,---,D,D < K shown 7 ‘min < Jumin, the transient excess MSE of the WL-MSWF-

::njegilsgslsvﬁ’s\éveo?at%:O\?\/C:u&?s\t/cEt Stge ﬂg;}%ﬁszf :;\)/Io g‘/ S approach is smaller than those of the linear counterpart
j J en with the same rank, i.e., J. .. (i) < J..(3).

smaller than that of the linear case, i.&,(c0) < J(o0) and P aex
Ja.ex(00) < Jox(00).
The transient behavior of the MSE is mainly determined VI. COMPLEXITY ANALYSIS

by the excess MSE, consisting of the transient excess MSEThe computational complexity of the adaptive algorithms

Ja,extrans (1) and the steady-state excess MSE [34] as is estimated according to the number of real additions and
= N7 . 7 real multiplications per iteration for each received symbo
Jasex(0) = Jasextrans (0) + Ja,ex(00). (35) of size M. The estimated computational complexity of the

It will be shown via experiments that the WL-MSWF-SGproposed WL-MSWF schemes is summarized in Table I,

algorithm has a smaller transient excess MSE than the linediere we consider the existing algorithms for comparisam. F

method, showing a superior convergence performance for thélustrates the total number of real operations (addgiand

WL case even with the same raiik multiplications) per iteration per symbol for each algiomit
as a function ofM, where the rank of the MSWIP = 4
C. Convergence Analysis of the WL-MSWF with RLS is chosen. For all the algorithms, the SG always has a lower

complexity than RLS. In the full-rank case, the WL-SG is
slightly simpler than the L-SG due to the conjugate symroetri
property of the WL approaches, while the multiplication of
bigger matrices results in a higher complexity of the WL-
RLS than that of the L-RLS. In the MSWF, the construction
_ - - _ L . of the rank-reduction matrix that requires a higher-ordatrin
€a(i) = Wa(i) — Wao = R, (1) Zra(")eo(”)’ (36) multiplication imposes more computational efforts thae th
n=1 full-rank case. A largerD will considerably increase the
where e,(i) = b(i) — wk r,(i) is the estimation er- computational costs. We can observe that the proposed TWL-
ror produced by the optimal solutiow, ,. We assumed MSWF SG/RLS methods exhibit the highest complexity. It is
eo(n) to be white with zero-mean and varianeé, where worth emphasizing that the proposed QWL-MSWF SG/RLS

1) Weight Error Correlation Matrix: To analyze the RLS
implementation of the WL-MSWF receiver shown in Table I
we assume the forgetting factar= 1 and obtain the weight
error as follows [34]



algorithms are slightly less complex than the L-MSWF courwere carried out by the IMST GmbH [36]. The transfer
terparts and significantly reduce the complexity compaced function of a certain channel realization is firstly transfied
the full-rank WL-RLS.

TABLE Il

ESTIMATED COMPUTATIONAL COMPLEXITY ACCORDING TO THE

NUMBER OF REAL OPERATIONS

[ Algorithms Additions Multiplications |
L-Full-SG 8N SM + 2
WL-Full-SG 6M — 1 6M + 1
L-MSWF-SG 4D — 1)Mm? 4D — 1)Mm?

QWL-MSWF-SG

+2(D 4+ 1)M + 6D
4(D — 1)M2+

+4D(M +2) + 2
4D — 1)M2+

2(D 4+ 1)M 2D(2M +1) + 1
TWL-MSWF-SG 8(D — 1)M2+ 8(D — 1)M2+

2(D 4+ 1)M 2D(2M +1) + 1
L-Full-RLS 12M2 4 2M — 1 16M2 + 10M + 2
WL-Full-RLS 20M2 4 2M — 1 28M2 4+ 10M + 1
L-MSWF-RLS 4(D — 1)M2+ 4D — 1)M2+

2D(2M + 5) + 16D2 + 2
4(D — 1)M24
ADM + (2D + 1)2
8(D — 1)M2+4
ADM + (2D + 1)2

2M(D + 1) + 12D2 — 1
4D — 1)M2+
2M(D + 1) + (D — 1)2 + 1
8(D — 1)M2+
2M(D +1) + (D — 1)2 41

QWL-MSWF-RLS

TWL-MSWF-RLS

—6— L-Full-SG
—>— WL-Full-SG
—+— L-MSWEF-SG
—k— QWL-MSWF-SG
—x— TWL-MSWEF-SG |3
—<— L-Full-RLS
—+— WL-Full-RLS
> L-MSWEF-RLS E
7 QWL-MSWF-RLS
—8—- TWL-MSWF-RLS

L 1 I
80 100 120 140 160 180 200

Number of Real Operations

| | |
10 ] 20 40 60

Length of Received Vector M
Fig. 4. Computational complexity in terms of real additicensd multipli-

cations per iteration per symbol as a function /f. For MSWF schemes,
D = 4 is chosen. The zoomed-in curves are also showh/at 87.

VII. SIMULATION RESULTS

from the band-pass to the low-pass range at a center freguenc
fe = 4 GHz, and afterwards converted into a tapped-delay
line model with equally spaced taps. The RRC pulse is
chosen withBs; = 500 MHz and 8 = 0.3. At the receiver,

the sampling rate of the ADC is 1 GHz and thus the channel
resolution is 1 ns. The maximum channel delay is 64 ns. We
assume that the UWB channel is time-invariant block fading
during the estimation. The DS code of length = 24 is
generated pseudo-randomly for the DS-UWB system. The
dimension of the received vectpris M = 87. The parameters

of the OFDM interference used for the simulations are shown
in Table 1V, where the cyclic prefix and the guard interval are
not considered for simplicifyand the OFDM symbol period
T is larger than the symbol duration. We consider a scheme
in which the proposed adaptive WL-MSWF algorithms are
first trained by a pilot sequence of 400 symbols and are then
switched to the decision-directed mode.

TABLE IV
PARAMETERS FORIEEE 802.1h OFDM SIGNAL

forpm | Ne Af Ty
522 GHz | 48 | 3125KHz | 4 us

modulation
BPSK

A. Achievable SINR and Transient Analysis

The simulation results are presented to validate the theo-
retical analysis in Sections V-B and V-C. We first compare
the eigenvalues of the reduced-rank covariance matrix for
both linear and WL casesR( and R,). Fig. 5(a) depicts
the eigenvalues using linear, QWL, and TWL reduced-rank
matrix constructions forD = 2.4,6, where the number of
usersN, = 16, E,/Ny = 15 dB, and NBI is absent. It
is observed that the eigenvalues of using both TWL and
QWL constructions are smaller than the linear case, i.e.,
Ak < Mg,k = 1,--- D, meaning that a larger step size
for WL-MSWF-SG algorithms can be chosen compared to
the L-MSWF-SG (cf. (31)). When the NBI is present, the
eigenvalues are shown in Fig. 5(b) wilh = 4. With very
low SIR, the TWL-MSWF method has larger eigenvalues
(k = 3,4) than the L-MSWF due to the “contribution” of the
strong NBI. However, the dominant eigenvalues (ke= 1,2)
of TWL-MSWF are no greater than L-MSWF at various
SIR values. Fig. 5(c) plots the eigenvalues changing wiéh th

In this section, we evaluate the steady-state, the tramsierumber of users, which shows the higher values of L-MSWF
and the convergence performance of the proposed TWL/QWhan those of the TWL/QWL-MSWF algorithms. The SINR
MSWF schemes and compare them with the linear MSWF, thalues of different schemes as a function&f/ N, (dB), SIR,
linear/WL full-rank Wiener filters, as well as the linear/WLand the number of users, are also illustrated in Fig. 6, where
PC-based reduced-rank methods. The rank-dependentpertoe rankD = 4 is chosen. It can be clearly seen that both the
mance along with the adaptive rank selection algorithms ar&vVL-MSWF and QWL-MSWF outperform the L-MSWF in
presented. We further analyze the SINR performance of ttegms of the SINR and the TWL construction which utilizes
proposed methods in the case when the desired signal idystricmore second-order information produces a higher SINR than
circular (e.g., QPSK-modulated signal) but the interfeeenthe QWL case. The performance gain of the TWL over the

(MUI or NBI) is non-circular.

For the multipath propagation channel, we use UWB 4The overall spectrum does not change with the cyclic prefisherguard

channels measured in a line-of-sight

office of sizgy

interval. This implies that the performance of the algorighwill not be
ected by adding the guard interval for the OFDM signalefBEfore, we

5m x 5m x 2.6 m. The measurements (including antennaigjore this for simplicity.
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QWL increases with the number of users, cf., Fig. 6(cpnly for the case, where NBI is present angl = 16. The

In summary, this shows that given a value of rabk the conventional PC method that uses the fitseigenvectors of
proposed TWL-/QWL-MSWF schemes are more robust & corresponding taD largest eigenvalues aR or R, in a
interference and can accommodate more users comparedi¢ecending order is denoted as “PC-conv”. The modified PC
the L-MSWF. scheme is called “PC-modi”. AB increases, i.e., more signal
information is utilized, the SINR increases until it getess

N? NBI’ N= 16 b =‘4’ N”‘z 16 1 NF’ NBI’ P :l‘l to the full-rank state. The TWL-MSWF only requires the rank
10’ =1 10k : ! D = 2to D = 6 to achieve the highest SINR and the selected
. 107 F Ng D is only slightly affected by the number of users and the
10 10° presence of NBI. For both the PC-conv and the PC-modi, the
I~ b necessanp to approach the full-rank SINR does not depend
I~ 10 1077 10" on the presence of NBI but is quite sensitive to the number of
S0 D= users, e.g., to obtain the best performance, we fied10 for
2 102 >y 10° ¢ the 2-user case anb > 60 for N, = 16. The QWL-MSWF
=P “ cannot reach the WL full-rank SINR but it still outperforms
s 10° the PC-based methods with a much smaller rank ¥rpe= 16
5] 10 106 ; with D < 35, the advantage of the WL-PC-conv scheme over
-53” D=4 - 3 the L-PC-conv is lost, unless a higher rank is chosen. Wigh th
10°} -1 same rankD, the WL-PC-modi method exhibits a higher SINR
6| ) . . .
. O e  LMSWE  J1o° L thgr_1 the L-PC-modi, since thB eigenvectors are selected to
10°F D=6\ |6 TWL-MSWF minimize the MSE.
D ¥|-% QWL-MSWF :
— 107 ; i R e 20
1 2 3 4 5 X -20 -10 0 10 5 10 15 20
The index k NBISIR (dB)  Number of users
(a) (b) (c) 157
Fig. 5. Eigenvalues of the reduced-rank covariance mawvistucted by 10 :
L/TWL/QWL-MSWF algorithms with £, /Ng = 15 dB versus (a) the-th
stage projection for differenD, (b) various SIR in the presence of OFDMa
NBI, and (c) different number of users. = 5
N
NoNBIL, N,=16 E/N,=15dB,N,=16 E,/N,=15dB, No NBI Z °
18— ‘ 18 18 wn
_5- _5 L
16] > 16 16} —— L-full \NBI
/ 0 WL-PC-modi --- WL-fulld N=16
14} 1 14 14/ R or ¢ WL-PC-conv || 10 O L-MSWF
\ \Q\ v L-PC-modi O TWL-MSWF
—~ 12l ¢ 1o 12 y 154 - [ L-PC-conv a5l X _QWL-MSWF ||
% \ \ 1 20 40 60 74 5 10
=~ 10 ! JOS 10 K Rank D Rank D
& A\ (a) (b)
= > \,
n 8r 18 y 8
ga/e_€ Fig. 7. The SINR of the discussed algorithms versus the rarfbr (a) the
6l | o€ 6 L/WL-PC algorithms and for (b) the L/TWL/QWL-MSWF algorittis. We
6(5' considerEy, /Nog = 15 dB, N, = 2 and16, OFDM NBI of SIR = -5 dB.
4 4| [& L-MSWF 4 . . o
§ -6~ TWL-MSWF Fig. 8 shows the transient excess MSE of the training-based
¢ QWL-MSWH SG algorithms.J, extrans(i) for the TWL/QWL-MSWF-SG

: : 2
5 10 20 25 -20

2 . )
100 10 0 10 20 schemes compared to the linear counterpart. It is assuraéd th
E/No)(dB) NBI S]:I)R (dB) Numb?é)‘)fusers the augmented covariance matrix is known and is computed
a

by (15). We consider the step size= 0.02 without NBI and

_ _ w = 0.024 in the presence of NBLV,, = 16, E;, /Ny = 15 dB,
0 e S o LTWLQUL ST oot verse @8/ and D — . For each tme instant, the excess MSE of the
of users. WL methods is smaller than that of the linear case and TWL

exhibits a better transient performance than QWL.
We assess the SINR of the proposed TWL/QWL-MSWF

algorithms as a function of the ranR and compare them to B- BER Convergence Performance
the PC-based reduced-rank filters shown in Fig. 7(a) and (b)We show the Bit Error Rate (BER) performance of the
The performance of the full-rank linear/WL schemes is shovadaptive TWL/QWL-MSWF algorithms and compare it to the
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. No NBI .. NBISIR=-5dB SG

10 , :
‘ — L-full

-6~ L-MSWF — — WL-full

-0~ TWL-MSWF -©- L-MSWF

- QWL-MSWF -~ TWL-MSWF

N\ QWL-MSWF
N
59 10" SO~
2 : ~
= <o
2 o
Q
=
&8
Se60660¢ 107}
10" b 10" -
X
: : ‘ ‘ >
0 500 1000 1500 0 500 1000 1500 10° i i 10° ‘ i
Number of received symbols Number of received symbols 0 500 1000 1500 0 500 1000 1500
(a) (b) Number of received symbols Number of received symbols
(a) (b)

Fig. 8. The transient excess MSE of L/ITWL/QWL-MSWF-SG altfons _ )

in the cases when OFDM NBI is absent (a) and present (b). hdsen that Fig. 9. The BER convergence performance of (a) SG and (b) RjBitams

Ey/No =15 dB, D = 4, and N,, = 16. for E,/No = 15 dB, N, = 16, and OFDM-NBI with SIR = -5 dB. We
considerD = 4 for the MSWF techniques.

existing methods in Fig. 9(a) for SG and in (b) for RLS. The o ) )
rank D = 4 is chosen as a representative value to compdik the beginning of the adaptation and a largeresults in
the performance of different schemes. It is obvious that & better steady-state performance (cf. Fig. 11). Theréigy, t
the RLS algorithms outperform the SG in the convergen&@nk can be adapted to ensure both advantages. We employ
and tracking performances. Even with the saethe TWL- an adaptive method proposed in [21] to select the rahk
MSWEF which fully exploits the second-order behavior of th82sed on the MSE estimate froa posteriori least-squares
non-circular signal performs the best. Since the QWL-MSWgPSt function
constitutes the rank-reduction matrix from the linearreates . d . y " 9
and utilizes the complementary covariance statistics éaly Ca(i) = Z A |b1(m) — W, q(m —1)8; 4(m — 1)7“a(m)| ,
the weight adaptation, it still exhibits a better converggen m=1

f han the L-MSWF but h I lexi (41)
_r;fe]r ormanceé _?nwf_/e VV-L MSWE Utl ai? owc;r Compbex'%here d represents the rank to be chosen akdis the

€ pro?ose QWL- dto th agor]:t ”ms Sk ow a e‘tteéxponential weighting factor. For each received symbdad, th
BER per ormance compare to the WL fu -ran couqterpar ptimal rank that minimizes the exponentially weightedtcos
The reason is that after the augmented received signal o Acti ;

. . . ) ) unction (41) is selected
dimension2M is projected onto a Krylov subspace with a
much lower dimensiorD, the estimation of filter weights is Dopt (i) = arg min Cali), (42)
. . Dnin <d<D.
only based on a small amount of parameters. This implies a e .
faster convergence to the steady-state performance. Dinin @nd Dy @re the minimum and maximum ranks con-
sidered. We assess the adaptive rank selection technigque fo

C. Rank-Dependent Performance the TWL/QWL-MSWF with both SG and the RLS adaptive

The number of parameters for estimating the filter weight‘réll,g.Orlthms as shown_ in Fig. 11, where the performance using
fixed rank is also included for comparison. We choose the

i.e., the rankD, has an influence on the performance of )
' o . . . ge of the considered rank 13,,;, = 2 and D, = 6.
the proposed adaptive algorithms. We first examine the B Y ‘adapting the rank at each received symbol, both a fast

performance versus the rarR and then introduce an adap_conver ence and a better steady-state performance can be
tive rank selection method. Fig. 10 depicts the BER of th g Y P

TWL/QWL-MSWF algorithms as a function of the ranR, ata}lned..The. complexity O.f the adaptlve rank seleqlon al-
where the performances of the L-MSWF as well as the ful jorithm lies in the adaptation .qf the |nvolveq quantities fo
< D < D,ax and the additional calculations of the cost

rank counterparts are included for comparison. It can b = * . oo
observed that for both SG and RLS algorithni3, — 4 unction in (41). The complexity can be reduced by switching

provides the best performance. It is worth remarking thg{Lr the rank-selection after the steady state is reached.

D = 3 which performs the same &3 = 4 is preferred for ) o
the SG methods. D. Other Applicable Situations

The performance of the proposed algorithms is rank-In the above discussions, we consider the case when both
dependent. A smaller rank provides a faster convergencehe desired signal and the interference (MUl as well as
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RLS

— L-full

— = WL-full

-~ L-MSWF
—— TWL-MSWF

advantage can be exploited for the circular observatioa dat
(QPSK), the WL methods performs the same as the linear
one. Fig. 12(b) and (c) show the case when the desired signal
is QPSK modulated (circular) but the interference is non-

circular, i.e., MUl is BPSK modulated withv = 24 and NBI

is the BPSK-OFDM signal. The WL schemes fully exploit
the second-order information of the interference, showang
superior performance over the linear scheme.

- QWL-MSWF||

NoNBL N,=16 E/N,=15dB, 1 user E,/N,=15 dB, No NBI
T T T 18 T 18—

16} 1 16t 1 16
14} 114 14¢
—_
27 \
10° L i i ‘ 10° ‘ ‘ ‘ % 12+ ‘ 1 12} 12f X
2 4 6 8 10 2 4 6 8 10 ~
Rank D Rank D 2 ¢
a b i y 10/
(a) (b) &
Fig. 10. The BER performance of (a) SG and (b) RLS algorithmsws 8 \'<
the rankD for E},/No = 15 dB, N,, = 16, and OFDM-NBI with SIR = -5 }S\
dB. The number of the received symbols is chosen as 1500. | [“o= L-MSWF ol
-~ TWL-MSWF 5
e QWL-MSWF o TWL-MSWF ; . > QWL—MSW‘F \
T —SGD=2 —SGD=2 5 10 15 20 25 -50 -40 30 25 2 5 10 15 20
—-©-SGD=4 —£-SGD=4 E/N, (dB) NBISIR (dB)  Number of users
—%— SG adapted D —$— SG adapted D (a (b) (c)
----RLS D=3 ----RLSD=3
-O-RLSD=4 -H-RLSD=4
->- RLS adapted D -<>- RLS adapted D

Fig. 12. The SINR of L/TWL/QWL-MSWEF algorithms for the QPSl{stem
versus (a)Ey/No (dB), (b) various SIR in the presence of BPSK-OFDM NBI,
and (c) different number of users (MUl is BPSK modulated with= 24).

VIII. CONCLUSION

To suppress the IS, the MUI, and the NBI in a high-data-
rate DS-UWB system, we propose a WL-MSWF receiver and

_ ﬂ@g@@ develop the corresponding adaptive algorithms (i.e., S& an
Koy RLS). Based on the linear MSWF concept, two constructions
\ , B of the rank-reduction matrix (TWL and QWL) are derived.
1075 ‘ g 7 107 g ‘ 7904 The TWL/QWL-MSWF schemes fully/partially exploit the
Nuomber osfogeceivzaoc(lmsyml;cs)(llg N?meer goforecei:/?((i sym]asgcis secpnd-order information of the non-circular signal, gieg
(a) (b) a higher SINR than the L-MSWF. Compared to the WL-PC

methods, the proposed TWL/QWL-MSWF are simpler and
Fig. 11. The BER convergence performance of the adaptivie safection can approach the optimal MMSE with a muc_h_ smaller r?‘nk'
method for (a) the QWL-MSWF and (b) the TWL-MSWF. We choosdVe show that the QWL-MSWF can be simplified by taking
Ey/No = 15 dB, N,, = 16, and OFDM-NBI with SIR = -5 dB. the real part of the reduced-rank vector after the low-rank

transformation in the L-MSWF receiver, indicating a lower

complexity. The computational complexity with respect to
NBI) are strictly non-circular. In the following, we showeh the number of real additions and multiplications is estadat
proposed TWL/QWL-MSWF algorithms are still applicabldor the associated SG and RLS adaptive algorithms. The
and outperform the L-MSWF in the situation when the desirambnvergence analysis shows that the step size of the WL-
signal is strictly circular but the interference is nonecilar MSWF-SG can be larger than that of the L-MSWF-SG. From
(i.e., the received observation vecteris still non-circular). the MSE point of view, the proposed adaptive algorithms (SG
If » is circular, the performance of the WL algorithms iand RLS) exhibit a better transient behavior than the linear
the same with the linear counterpart. In Fig. 12(a), QPS¢&ounterparts.
is considered for all the users and the same processing gaiixtensive simulation results in terms of the SINR and the
N = 24 is chosen for simplicity. It is obvious that since ndBER convergence performance are presented to assist the



theoretical analyses. It is shown that the TWL/QWL-MSWF

perform better than the existing techniques and the TWL-
MSWF provides the best performance. The BER of the WLHI
MSWEF is rank-dependent, whei® = 3 is desired for the
SG algorithm andD = 4 for the RLS. Furthermore, we
assess an adaptive rank selection method for the WL-MSWF
to achieve both a faster convergence and a better steaéy-stﬁ]
performance. Under the situation when the desired signal is
strictly circular but the interference (MUl or NBI) is non- [4]
circular, the proposed WL-MSWF outperforms the L-MSWF.

(5]

(2]

APPENDIXA

EIGENVALUE ANALYSIS OF R AND R, (6]

We consider the same rank for both the linear and the
WL MSWF schemes. Two constructions for the rank-reductiofy]
matrix can be represented &5 p = T{SD} =T{Sp}+
T{ASp}, whereASp = 0 indicates the QWL construction. (8]
We defineAS, p = 7 {ASp}. The augmented reduced-rank
covariance matrix, can be written as

9
R R [0l
R* R

R, = % (T{Sp}+ AS.p)" {

} (T{Sp}+ ASa,p)
1
§R+ RG{SDRSD}

~———

[10]

R

+ 1 (ASIpRSup + SIpRuASwp + ASIpRAS.D ),

»Pl?—‘

AR,

= SR+ R+ AR, 12
(43)
Since all the components in (43) are Hermitian matrices, by
using the theorem (Weyl) 4.3.1 in [37], we can obtain ki
eigenvalue of the augmented reduced-rank covariancexmatri

(expressed by () ,k=1,---, D, D < K) satisfying

1 1o [14]
Ak (Ra) = A\ <§R+ §R+ AR >
1 _ 1 = 1 _
< M (B) + P (B) + Phoa (AR,) . 1

(44)
If the QWL is applied, AR, = 0 and (44) can be simplified el
as

[17]
A < D0 (R) + e (R)
T 1 [18]
M (R) + =\ (R) = A 45
< 2k( )+2k() ks (45) (1]

where it is given that in general, the singular values of the
complementary covariance matrix are smaller than thosieeof {20]
covariance matrix. For the TWL construction, the eigengalu
analysis shows that [21]

1 _
Aad’ " < e+ 7 (AR (46)

[22]
If X\ (AR,) is not dominant,A\7V: < X, still holds.
However, it is shown in Sectlon VII -A that when there |§
strong NBI,ATWE > A\, will occur.
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