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Abstract—In this work, we propose low-complexity adaptive
biased estimation algorithms, called group-based shrinkage esti-
mators (GSEs), for parameter estimation and interference sup-
pression scenarios with mechanisms to automatically adjust the
shrinkage factors. The proposed estimation algorithms divide the
target parameter vector into a number of groups and adaptively
calculate one shrinkage factor for each group. GSE schemes
improve the performance of the conventional least squares (LS)
estimator in terms of the mean-squared error (MSE), while
requiring a very modest increase in complexity. An MSE analysis
is presented which indicates the lower bounds of the GSE schemes
with different group sizes. We prove that our proposed schemes
outperform the biased estimation with only one shrinkage factor
and the best performance of GSE can be obtained with the
maximum number of groups. Then, we consider an application
of the proposed algorithms to single-carrier frequency-domain
equalization (SC-FDE) of direct-sequence ultra-wideband (DS-
UWB) systems, in which the structured channel estimation
(SCE) algorithm and the frequency domain receiver employ the
GSE. The simulation results show that the proposed algorithms
significantly outperform the conventional unbiased estimator in
the analyzed scenarios.

Index Terms–DS-UWB systems, parameter estimation, in-
terference suppression, biased estimation, adaptive algorithm.

I. INTRODUCTION

In this work, biased estimation algorithms are considered
in two common deterministic estimation scenarios in com-
munications engineering, which are parameter estimation and
interference suppression [1]-[5]. It is known that under the
assumption of AWGN, the least-square (LS) algorithm can
provide an efficient solution to these estimation problems and
will lead to minimum variance unbiased estimators (MVUE).
The unbiasness is usually considered as a good property for an
estimator because the expected value of unbiased estimators is
the true value of the unknown parameter [6]. However, in some
scenarios the LS method is not directly related to the mean
square error (MSE) associated with the target parameter vector
and it has been found that a lower MSE can be achieved by
adding an appropriately chosen bias to the conventional LS
estimators [7],[31]. Note that some reduced-rank techniques
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also employ a bias to accelerate the convergence speed [32]-
[35].

A class of biased estimator that has been studied in recent
years is known as the biased estimators with a shrinkage factor
[7]-[14]. These biased estimation algorithms have shown their
ability to outperform the existing unbiased estimators espe-
cially in low signal-to-noise ratios (SNR) scenarios and/or with
short data records [9]. For these biased estimators [7]-[14], the
complexity is much lower than for MMSE algorithms because
the additional number of coefficients to be computed is only
one. The motivation for the group-based shrinkage estimator
(GSE) is to find a generalized estimator with a number of
shrinkage factors that can achieve a better performance and
complexity tradeoff than the biased estimator with only one
shrinkage factor.

In the parameter estimation scenario,some biased estimators
have been proposed to achieve a smaller estimation error
than the LS solutions by removing the unbiasedness of the
conventional estimators with a shrinkage factor in the param-
eter estimation scenario. The earliest shrinkage estimators that
reduce the MSE over MVUE include the well known James-
Stein estimator [10] and the work of Thompson [11]. Some
extensions of the James-Stein estimator have been proposed in
[12]-[15]. In [16], blind minimax estimation (BME) techniques
have been proposed, in which the biased estimators were
developed to minimize the worst case MSE among all possible
values of the target parameter vector within a parameter set. If
a spherical parameter set is assumed, the shrinkage estimator
obtained is named spherical BME (SBME) [16].

For the interference suppression scenario, the biased esti-
mators can be employed to achieve a lower estimation error
between the estimated filter and the optimal linear LS estima-
tor. The major motivation for adopting the biased algorithms
here is to accelerate the convergence rate for the adaptive
implementations and provide a better performance with short
training data support in long filter scenarios [13].

To the best of our knowledge, biased estimators with
shrinkage factors are rarely implemented into real-world signal
processing and have not been considered in the frequency
domain for communication systems. One possible reason is
that some assumptions required for the signal model may not
be satisfied. For example, in time-hopping UWB (TH-UWB)
systems, the multiple access interference (MAI) cannot be
accurately approximated by a Gaussian distribution for some
values of the the signal-to-interference-plus-noise ratio (SINR)
[17]. Another possible reason is that the existing shrinkage-
based estimators usually require some statistical information
such as the noise variance and the norm of the actual parameter
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vector. In our previous work [13] and [14], adaptive biased
estimation algorithms with only one shrinkage factor have
been proposed to fulfill the tasks of interference suppression
and parameter estimation. In this work, a novel biased es-
timation technique, named group-based shrinkage estimators
(GSE), is proposed. In this algorithm, the target parameter
vector is divided into several groups and one shrinkage factor
is calculated for each group. Least mean square (LMS)-based
adaptive estimation algorithms are then developed to calculate
the shrinkage factors. The GSE estimators are able to improve
the performance of the recursive least squares (RLS) algorithm
that recursively computes the LS estimator. In DS-UWB
systems, the estimation tasks are usually very challenging
because the environments include dense multipath. In this
work, in order to test the proposed algorithms, we consider
applications of DS-UWB systems with SC-FDE. Specifically,
we concentrate on the channel estimation and interference
suppression with the proposed algorithms. The MSE perfor-
mance of the proposed GSE schemes is then analyzed, a lower
bound of the MSE performance is derived and the relationship
between the number of groups and the lower bound is set up.
Simulations show that with an additional complexity that is
only linearly dependent on the size of the parameter vector and
the number of groups, the proposed biased GSE algorithms
outperform the conventional RLS algorithm in terms of MSE
in low SNR scenarios and/or with short data support. It should
be noted that the proposed GSE estimator can be employed
for applications where a high estimation accuracy is required.
These include localization in wireless sensor networks [28]
and in dense cluttered environments with UWB technology
[29]. The proposed estimators can also be employed into
emergent multicast and broadcast systems [5], such as the
orthogonal frequency-division multiplexing (OFDM) based
multi-user multiple-input multiple-output (MIMO) systems as
specified in the IEEE 802.11ac standard and the 3GPP long-
term-evolution (LTE) systems.

The main contributions of this work are summarized as
follows:

• Novel GSE schemes are proposed to improve the per-
formance of the frequency domain RLS algorithms in
the applications of parameter estimation and interference
suppression in DS-UWB systems.

• LMS based adaptive algorithms are developed for both
scenarios to adjust the shrinkage factors.

• The MSE analysis is carried out which indicates a lower
bound of the proposed estimator and the relationship
between the lower bound and the number of groups.

• The performance of the proposed biased estimators is
examined in multiuser SC-FDE for DS-UWB systems
with the IEEE 802.15.4a channel model, convolutional
and low-density parity-check (LDPC) codes.

The rest of this paper is structured as follows. In Section II,
we first review the LS solution for the parameter estimation
scenario and present the structured channel estimation (SCE)
problem in SC-FDE of DS-UWB systems. Then, the signal
model of the frequency domain receiver design for DS-UWB
systems that represents the interference suppression scenario,

is presented. The proposed GSE scheme and its adaptive
implementations for the parameter estimation scenario and the
interference suppression scenario are developed in Section III
and Section IV, respectively. The MSE analysis is shown in
Section V. The simulation results are shown in Section VI.
Section VII draws the conclusions.

II. SYSTEM MODEL

In this section, we introduce the channel estimation and
receiver design tasks in the frequency-domain of DS-UWB
systems with SC-FDE that represent the parameter estimation
scenario and the interference suppression scenario, respec-
tively.

A. Problem statement for the parameter estimation scenario

The linear model for the parameter estimation scenario can
be expressed as:

y = Xh+ n, (1)

where the training data matrix X ∈ CM×L and the received
signal y ∈ CM×1 are given, n is AWGN with zero mean and
variance σ2. In this scenario, the typical target is to estimate
the parameter vector h ∈ CL×1 that leads to the minimum
MSE. The MSE consists of the estimation variance and the
squared bias and is given by

E{∥h−ĥ∥2} = E{(ĥ−E{ĥ})H(ĥ−E{ĥ})}+[∥E{ĥ}−h∥2],

where E{·} represents expectation of a random variable.
The conventional LS algorithm estimates the parameter by

minimizing

JLS(h) = ∥y −Xh∥2. (2)

Assuming that the matrix XHX is a full rank matrix, the LS
solution is given by

ĥLS = (XHX)−1XHy. (3)

Under the assumption of AWGN with zero mean and variance
σ2, the LS estimator is a MVUE that leads to a minimum MSE

E{∥h− ĥLS∥2} = E{(ĥLS−h)H(ĥLS−h)} = var(h, ĥLS).

we define v = var(h, ĥLS) = tr{σ2(XHX)−1}, where tr{·}
represents the trace operator [6].

The objective of introducing the biased estimator in the
parameter estimation scenario is to achieve a lower MSE than
the unbiased estimator, which can be expressed as

E{∥h− ĥb∥2} ≤ E{∥h− ĥLS∥2}. (4)

Although the objective shown here is similar to MMSE
algorithms that is to achieve an MSE as small as possible.
It should be noted that the biased algorithm developed in this
work adopts a different strategy from MMSE algorithms.
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Fig. 1. Block diagram of SC-FDE schemes in DS-UWB systems: (a) Parameter estimation scenario,(b) Interference suppression scenario.

B. System model for the SCE: parameter estimation scenario

Here, we consider the channel estimation problem of a
synchronous downlink block-by-block transmission DS-UWB
system based on SC-FDE with K users. The block diagram
of the parameter estimation scenario is shown as branch (a)
in Fig. 1. For notational simplicity, we assume that a Nc-by-
1 Walsh spreading code sk is assigned to the k-th user. The
spreading gain is Nc = Ts/Tc, where Ts and Tc denote the
symbol duration and chip duration, respectively. At each time
instant i, a data vector bk(i) ∈ CN×1 is transmitted by the k-th
user. We define the signal after spreading as xk(i) = Dkbk(i),
where the block diagonal matrix Dk ∈ CM×N (M = N ·Nc)
performs the spreading of the data block and its first column is
constructed by the spreading code sk zero-padded to the length
of M . In order to prevent inter block interference (IBI), a
cyclic-prefix (CP) is added and the length of the CP is assumed
to be larger than the length of the channel impulse response
(CIR). With the insertion of the CP at the transmitter and its
removal at the receiver, the equivalent channel is denoted as a
circulant Toeplitz matrix Hequ ∈ CM×M , whose first column
is composed of a vector hequ zero-padded to length M , where
hequ = [h(0), h(1), . . . , h(L − 1)] is the equivalent CIR. At
the receiver, a chip matched-filter (CMF) is applied and the
received sequence is then sampled at chip-rate and organized
in an M -dimensional vector. This signal then goes through
the discrete Fourier transform (DFT). The frequency-domain
received signal is given by

y(i) = FHequ

K∑
k=1

xk(i)+Fn(i) = ΛHF
K∑

k=1

xk(i)+Fn(i),

(5)
where n(i) represents the AWGN, ΛH = FHequF

H is a
diagonal matrix whose diagonal vector is defined as h̃ and its
a-th entry is given by h̃a =

∑L−1
l=0 hl · exp{−j(2π/M)a l},

where a ∈ {0, 1, 2, . . . ,M − 1}. F ∈ CM×M repre-
sents the DFT matrix and its (a, b)-th entry is F a,b=
(1/

√
M)exp{−j(2π/M)a b}, where a, b ∈ {0, 1, 2, . . . ,M −

1}. By defining a matrix FM,L ∈ CM×L that contains the
first L columns of the DFT matrix F , we obtain the following
relationship

h̃ =
√
MFM,Lhequ, (6)

In unstructured channel estimation (UCE), the vector h̃ ∈
CM×1 is directly estimated, while in the structured channel
estimation (SCE), the fact that L < M is taken into account
and the vector hequ ∈ CL×1 is the parameter vector to be
estimated. The concept of SCE was proposed in [20], where
the SCE shows a better performance than the UCE. In [21],
adaptive MMSE detection schemes for SC-FDE in multi-
user DS-UWB systems based on SCE are developed, where
the estimated hequ is adaptively calculated based on RLS,
least-mean squares (LMS) and the conjugate gradient (CG)
algorithm for the detection and the RLS version performs
the best. The purpose of developing biased estimation in this
scenario is to further improve the performance of the RLS
algorithm in terms of the MSE.

We consider user 1 as the desired user and omit the subscript
of this user for simplicity. Note that the frequency domain
received signal can be expressed as

y(i) =
√
M∆(i)FM,Lhequ + ne(i), (7)

where we define a diagonal matrix ∆(i) = diag[Fx(i)], the
noise and interference vector ne(i) consists of the MAI and
the noise and is assumed to be AWGN. As shown in (7), the
SCE problem is an implementation example of the parameter
estimation problem where a given matrix X(i) ∈ CM×L is
defined as X(i) =

√
M∆(i)FM,L. The LS solution of hequ

is given by
hequ,LS(i) = R−1

h (i)ph(i) (8)

where Rh(i) =
∑i

j=1 λ
i−jFH

M,L∆
H(j)∆(j)FM,L, ph(i) =∑i

j=1 λ
i−jFH

M,L∆
H(j)z(j) and λ is the forgetting factor.

Then the LS solution can be computed recursively by the
following RLS algorithm [20]

ĥRLS(i+ 1) = ĥRLS(i) +R−1
h (i)FH

M,L∆
H(i)eh(i), (9)

where eh(i) = z(i) − ∆(i)FM,LĥRLS(i) is the M -
dimensional error vector.

In Section III, a novel biased estimation algorithm called
group-based shrinkage estimator (GSE) is incorporated into
the unbiased LS estimator that is able to improve the estima-
tion performance in terms of the MSE.
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C. System model for the frequency domain receiver design:
interference suppression scenario

The block diagram of the interference suppression scenario
is shown as branch (b) in Fig. 1. For each time instant i,
an N -dimensional data vector bk(i) = [b

(1)
k (i), . . . , b

(N)
k (i)]T

is transmitted by the k-th user. After the spreading, the M -
dimensional transmit signal is given by

xk(i) = Skbk,e(i), (10)

where the spreading matrix Sk ∈ CM×M , M = N × Nc, is
a circulant Toeplitz matrix and its first column consists of the
spreading codes and zero-padding [26]. The equivalent M -
dimensional expanded data vector is

bk,e(i) = [b
(1)
k (i),0Nc−1, b

(2)
k (i),0Nc−1, · · · , b(N)

k (i),0Nc−1]
T ,

where (·)T is the transpose. Using this signal expression we
can obtain a simplified frequency domain receiver design. At
the receiver, a CMF is applied and the received sequence is
then sampled at chip-rate and organized in an M -dimensional
vector. After the DFT, the received signal is given by

z(i) = Fy(i) =
K∑

k=1

FHequSkbk,e(i) + Fn(i), (11)

where n(i) is the AWGN and F ∈ CM×M represents the
DFT matrix. Since both Hequ and Sk are circulant Toeplitz
matrices, their product also has the circulant Toeplitz form.
This feature makes Λk = FHequSkF

H a diagonal matrix.
Hence, we have

z(i) =
K∑

k=1

ΛkFbk,e(i) + Fn(i). (12)

We can further expand Fbk,e(i) as [26]

Fbk,e(i) = (1/
√
Nc)IeFNbk(i), (13)

where FN ∈ CN×N denotes the DFT matrix and Ie ∈ CM×N

is structured as

Ie = [IN , · · · , IN︸ ︷︷ ︸
Nc

]T . (14)

where IN denotes the N -by-N identity matrix. Finally, the
frequency domain received signal z(i) is given by

z(i) =
K∑

k=1

(1/
√

Nc)ΛkIeFNbk(i) + Fn(i). (15)

Note that the expression in (15) is an implementation ex-
ample of the interference suppression scenario where the
unknown matrix for each time instant is given by H(i) =
(1/

√
Nc)ΛkIeFN . To fulfill the interference suppression task,

an MMSE filter W (i) ∈ CM×N can be developed via the
following cost function:

JMSE(i) = E
{∥∥∥b(i)− FH

NWH(i)z(i)
∥∥∥2 }. (16)

The MMSE solution is given by [21]

WMMSE = V Ie, (17)

where the matrix V ∈ CM×M is

V =
1√
Nc

(
1

Nc

K∑
k=1

ΛkIeI
H
e ΛH

k + σ2IM

)−1

Λk, (18)

where IM ∈ CM×M denotes the identity matrix. Note that the
matrix V consists of Nc times Nc diagonal matrices V ij ∈
CN×N , where i, j ∈ {1, Nc}. Hence, we take a closer look at
the product of V and Ie:

V Ie =


V 1,1 V 1,2 . . . V 1,Nc

V 2,1 V 2,2 . . . V 2,Nc

...
...

...
...

V Nc,1 V Nc,2 . . . V Nc,Nc



IN

IN

...
IN



=


∑Nc

j=1 V 1,j∑Nc

j=1 V 2,j

...∑Nc

j=1 V Nc,j

 =


Ŵ 1

Ŵ 2

. . .
ŴNc



IN

IN

...
IN

 = Ŵ Ie,

where Ŵ i =
∑Nc

j=1 V i,j , i = 1, . . . , Nc, are diagonal matri-
ces. Hence, the product of V and Ie can be converted into a
product of a diagonal matrix Ŵ ∈ CM×M (M = N×Nc) and
Ie, where the diagonal entries of Ŵ are ŵl, l = 1, . . . ,M ,
and equal the sum of all entries in the l-th row of matrix V .
Finally, we express the MMSE design as

WMMSE = Ŵ Ie = diag(ŵe)Ie, (19)

where ŵe = (ŵ1, ŵ2, . . . , ŵM ) is an equivalent filter with M
taps.

The expression shown in (19) enables us to design an M -
dimensional receive filter rather than an M -by-N matrix form
receive filter. The estimated data vector can be expressed as

b̂(i) = FH
NIH

e Ŵ
H
(i)z(i) = FH

NIH
e Ẑ(i)ŵ(i), (20)

where Ẑ(i) = diag(z(i)) and ŵ(i) = ŵ∗
e(i) is the weight

vector of the adaptive receiver. Since FN and Ie are fixed,
we consider the equivalent N -by-M received data matrix as
Y (i) = FH

NIH
e Ẑ(i), and express the estimated data vector as

b̂(i) = Y (i)ŵ(i).

D. LS solution and adaptive RLS algorithm for the interfer-
ence suppression scenario

Here, we detail the LS and RLS designs for the frequency
domain multiuser receiver ŵ. The cost function for the devel-
opment of the LS estimation is given by

JLS = ∥b− Y w∥2. (21)

The LS design of the linear receiver can be expressed as

ŵLS = (Y HY )−1Y Hb = R−1
LSpLS, (22)

where the matrix RLS is defined as Y HY and pLS represents
the vector Y Hb. Note that, the data vector can be expressed
as

b = Y wo + ϵo, (23)

where ϵo is the measurement error vector and wo is the
optimum tap-weight vector of the receiver (optimum in the
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MSE sense). Assuming that ϵo is white and Gaussian with
zero mean and covariance of σ2

eIN , then the LS solution in
(22) is a MVUE [27]. Now, let us have a look at the following
MSE:

E{∥wo−ŵLS∥2} = E{(wo−ŵLS)
H(wo−ŵLS)} = var(wo, ŵLS).

(24)
Defining vw = var(wo, ŵLS), we have [6]

vw = tr{σ2
e(Y

HY )−1}, (25)

where σ2
e is the variance of the measurement error.

In the interference suppression scenario, it is possible to
introduce the biased estimation to reduce the MSE between
the optimal receive filter wo and the LS estimator ŵLS. Note
that, for the interference suppression scenario, the typical
objective is to minimize the overall performance criterion
which is determined as E{∥b− b̂∥2}, rather than to minimize
E{∥wo − ŵ∥2}. The main motivation to introduce the bias in
the interference suppression scenario is to provide an initial
improvement for the overall performance when the adaptive
filtering techniques are employed and the training data are
limited. This can also help with tracking problems and with
robustness against interference.

The LS solution of the receiver can be computed recursively
by the RLS adaptive algorithm. We employ the RLS update
equation that is proposed in [21]

ŵRLS(i+ 1) = ŵRLS(i) +R−1
w (i)Y H(i)eaw(i), (26)

where Rw(i) =
∑i

j=1 λ
i−j
w Y H(j)Y (j) and eaw(i) = b(i)−

Y (i)ŵ(i). Note that Rw(i) is an M -by-M symmetric sparse
matrix in which the number of nonzero elements equals
MNc. Hence, the complexity of each adaptation by using this
algorithm is O(MN2

c ).

III. PROPOSED GSE FOR PARAMETER ESTIMATION
SCENARIO

A. Proposed GSE: Optimal Solution

It is known that the biased estimator with a shrinkage factor
can be expressed as

ĥb = (1 + α)ĥLS, (27)

where ĥLS ∈ CL×1 is the LS estimator of the parameter vector
and ĥb ∈ CL×1 is the biased estimator with a shrinkage factor,
α is a real-valued variable and (1 + α) is defined as the real-
valued shrinkage factor that is larger than 0 but smaller than
1 (i.e., −1 < α < 0).

Actually, for the parameter estimation scenario, the MMSE
estimators with the following expression can also be consid-
ered as a biased estimator,

ĥMMSE = AĥLS, (28)

where ĥMMSE ∈ CL×1 and A ∈ CL×L is a full-rank
matrix. As in [22] and [23], such MMSE channel estimators
are developed for MIMO and OFDM systems, respectively.
Although these MMSE estimators can achieve a much lower
MSE than the LS estimator especially in low SNR regime, they
experience much higher complexity than the biased estimator

with only one shrinkage factor. In [22], the proposed scaled LS
channel estimator can be considered as a biased estimator with
only one shrinkage factor, which outperforms the conventional
LS estimator while it requires a much lower complexity
than the MMSE estimator. The basic idea of the following
proposed group-based shrinkage estimator (GSE) is to find a
solution with a better tradeoff between the complexity and
the performance than the MMSE estimator and the biased
estimator with only one shrinkage factor.

The proposed GSE can be expressed as follows:

ĥb =



(1 + α1)ĥLS(1)
...

(1 + α1)ĥLS(
L
S )

(1 + α2)ĥLS(
L
S + 1)

...
(1 + α2)ĥLS(

2L
S )

...
(1 + αS)ĥLS(

(S−1)L
S + 1)

...
(1 + αS)ĥLS(L)



= ĤLS(1S +α) (29)

where ĤLS ∈ CL×S is a block diagonal matrix that is
constructed from the elements of ĥLS as well as zeros, S is
the number of groups, we define the S-dimensional column
vectors 1S = [1, 1, . . . , 1]T and α = [α1, α2, . . . , αS ]

T . The
scalar αs is a real-valued variable and (1 + αs) is defined as
the shrinkage factor for the s-th group of coefficients that is
larger than 0 but smaller than 1, where s = 1, 2, . . . , S. Here
we propose to use a uniform group size for the L-dimensional
parameter vector, hence the size of each group is L/S. If the
length of the parameter vector divided by the group size is
not an integer, we can perform zero-padding in the parameter
estimation vector to fulfill this requirement. If any statistical
knowledge of the parameter vector is given, the group size
could be different from each other. But this approach will
introduce a higher complexity because we need to select the
size of each group and choose a suitable one. In this work,
for notational simplicity, we will focus on the low complexity
uniform group size approach.

The goal is to minimize the MSE defined by

E{∥h−ĥb∥2} = E{(ĥb−E{ĥb})H(ĥb−E{ĥb})}+∥E{ĥb}−h∥2.
(30)

Note that

ĥb − E{ĥb} = (ĤLS −H)(1S +α) (31)

and we have ĤLS = H +N where

N =


ñ1 0 . . . 0
... ñ2

. . .
...

...
. . . . . .

...
0 . . . . . . ñS

 (32)

and ñ = (XHX)−1XHn = [ñ1, ñ2, . . . , ñS ]
T ∈ CL×1,

assuming that all the elements in this equivalent noise vector
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are independent and identically distributed (i.i.d.) random
variables. Hence, we have

E{
(
ĥb −E{ĥb}

)H(
ĥb −E{ĥb}

)
} = σ̃2(1S +α)H(1S +α)

(33)
Note that σ̃2 equals the variance of the equivalent noise ñ
times the length of the group. We also have

∥E{ĥb} − h∥2 = αHHHHα (34)

Finally, the optimal solution of the vector α that minimizes
(30) is given by

αopt = −σ̃2
(
σ̃2IS +HHH

)−1
1S . (35)

and we have

ĥb,opt = ĤLS(1S +αopt) (36)

Note that this equation is a general expression for different
numbers of groups. The complexity of this algorithm is very
low because the inverse matrix required to calculate the αopt

is a diagonal matrix. Hence, this estimator combined with the
conventional RLS algorithm will only introduce an additional
complexity that is linear in the length of the parameter vector
L and the number of groups S. If the group size equals L,
then the GSE converges to the biased estimator with only one
shrinkage factor. In the following section, adaptive algorithms
will be developed to compute the best GSE with a given group
size.

B. Proposed GSE: Adaptive Algorithms

It should be noted that the optimal solution of the biased
estimator requires some prior knowledge of the system, which
is the matrix HHH and the scalar term σ̃2 for calculation
of the vector α. In addition, the LS channel estimator is
also required. The LS channel estimator can be recursively
calculated by the RLS adaptive algorithm that is detailed in
Section II-B. In this work, we propose LMS-based adaptive
algorithms that enable us to estimate the vector α without prior
knowledge of the channel and the noise variance. Substituting
(34) and (33) into (30) and considering the MSE cost function
as a function of α, we can obtain a new cost function

f(α) = σ̃2(1S +α)H(1S +α) +αHHHHα. (37)

The gradient of f(α) with respect to α is given by

gα = σ̃2(1S +α) +HHHα. (38)

Note that, because α is a real-valued vector, there is a factor
of 2 for this gradient. In what follows, this factor is absorbed
into the step size of gradient-type recursions. Hence, the LMS-
based update equation of the vector α for the (i+ 1)-th time
slot can be expressed as

α̂(i+ 1) = α̂(i)− µĝα(i), (39)

where µ is the step size of the LMS algorithm and the
estimated gradient vector is given by

ĝα(i) = ˆ̃σ2(i)
(
1S + α̂(i)

)
+ P̂m(i)α̂(i). (40)

Here, ˆ̃σ2(i) is the estimated equivalent noise variance and
the diagonal matrix P̂m(i) is defined as the estimator of
the matrix HHH , the main diagonal vector of this matrix
is defined as diag[P̂m(i)] = [P̂m,1(i), . . . , P̂m,S(i)] . In
this work, we adopt the instantaneous estimator as ˆ̃σ2(i) =
∥ĥRLS(i) − ĥ(i)∥2/S, where ĥRLS(i) is the RLS channel
estimator and ĥ(i) = 1

i

∑i
j=1 ĥRLS(j) represent the time

averaged channel estimator. Note that HHH ∈ CS×S is a
diagonal matrix with its s-th diagonal element equals hΣ,s =∑sL/S

l=(s−1)L/S+1 |h(l)|
2.

Hence, the elements in the optimal solution can be expressed
as αopt,s = −(1 + hΣ,s/σ̃

2)−1. If we use the matrix P̂m(i)
to replace the matrix HHH , the estimated optimal solution
becomes

α̂opt,s = − σ̃2

σ̃2 + P̂m,s(i)
. (41)

Recall that we assume that the shrinkage factors for each group
are larger than zero but smaller than one. It can be found that
if P̂m,s(i) < 0, this assumption no longer holds. In addition, if
P̂m,s(i) → ∞, the shrinkage factor converges to zero, and the
biased estimator actually converges to the unbiased estimator.
So we should constrain the values of P̂m,s(i) into the range
(0,+∞).

In order to determine the diagonal matrices P̂m(i) for each
time instant, two approaches are developed in this work. In
the first approach, which is named estimator based (GSE-EB)
method, the matrices P̂m(i) are replaced by the diagonal ma-
trices Ĥ

H

RLS(i)ĤRLS(i), where ĤRLS(i) is the RLS estimator
of H . Note that, when the number of groups is only one, the
GSE-EB method will lead to an optimal shrinkage factor α
that has the same expression as the SBME that is proposed
in [16]. However, the knowledge of the noise variance is not
required in our work. In the second approach, which is named
automatic tuning (GSE-AT) method, an LMS-based algorithm
is proposed to update the diagonal matrices P̂m(i).

For the GSE-EB method, the estimation of P̂m(i) is only
determined by the RLS estimator. If the effective spreading
codes and the channel information is known, the RLS al-
gorithm can be initialized efficiently. Here, we consider a
general scenario where all these quantities are unknown and
the initialization of the RLS algorithm is an all zero vector,
which means the beginning stage of the RLS algorithm is not
very accurate. In order to improve the convergence rate of
the proposed GSE schemes, we develop the following GSE-
AT algorithm. For each time instant, P̂m(i) is firstly set
to Ĥ

H

RLS(i)ĤRLS(i) as in the GSE-EB algorithm, then we
consider P̂m,s(i) as the variables of the MSE cost function,
where P̂m,s(i) are the diagonal elements of the diagonal
matrix P̂m(i) and s = 1, 2, . . . , S. Then we develop an LMS
adaptive recursion to further adapt these values and improve
the estimation accuracy for each time instant. Let us reexpress
the MSE cost function as shown in (30) as follows. Here, we
omit the time index i for simplicity

f(P̂m) = σ̃2
(
1S +α

)H(
1S +α

)
+αHP̂mα, (42)

where α = −σ̃2
(
σ̃2IS+ P̂m

)−1
1S is also a function of P̂m.
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Expanding this cost function, we have

f([P̂m,1, . . . , P̂m,S ]) = σ̃2
S∑

s=1

(
1+αs

)2
+

S∑
s=1

α2
sP̂m,s. (43)

Hence, for each group, the corresponding P̂m,s can be obtained
by the following equation

P̂m,s(c+ 1) = P̂m,s(c)− µpĝs, (44)

where c is the iteration index and ĝs is the estimator of the
gradient of the function (43) with respect to P̂m,s, which is
given by

ĝs = 2ˆ̃σ2
(
1+α̂s

) ˆ̃σ2(
ˆ̃σ2 + P̂m,s

)2+2α̂sP̂m,s

ˆ̃σ2(
ˆ̃σ2 + P̂m,s

)2+α̂2
s.

(45)

In order to obtain a low complexity solution, for the GSE-
AT algorithm, we set the iteration index c to 1, which means
for each time instant we only update the values of P̂m,s once.
As pointed out previously, the values of P̂m(i) should be
constrained in the range (0,+∞). Hence, for the GSE-AT
algorithm, if the updated values are negative, then we set these
values to the same values of GSE-EB algorithm. In Table I, the
proposed biased estimators using two approaches to calculate
P̂m(i) are summarized.

Note that the GSE-EB approach (where P̂m(i) =

Ĥ
H

RLS(i)ĤRLS(i)) requires 2L + 3S + 2 complex multipli-
cations and 3L + S complex additions for one update of the
shrinkage factors. For the GSE-AT approach, in which P̂m(i)
is updated by using equation (44), the number of complex
multiplications required to update the shrinkage factor is
2L+ 13S + 2 and the number of complex additions required
is 3L + 7S. It will be demonstrated by the simulations that
the performance of the GSE-AT approach is better than the
GSE-EB approach, while the GSE-EB approach has a lower
complexity.

IV. PROPOSED GSE FOR INTERFERENCE SUPPRESSION
SCENARIO

A. Proposed GSE: Optimal Solution

For the interference suppression scenario, the biased esti-
mator with a shrinkage factor is given by [13]

ŵb = (1 + α)ŵLS. (46)

where ŵLS ∈ CM×1 is the LS estimator of the receive filter.
The proposed GSE can be expressed as follows:

ŵb =



(1 + αw,1)ŵLS(1)
...

(1 + αw,1)ŵLS(
L
S )

(1 + αw,2)ŵLS(
L
S + 1)

...
(1 + αw,2)ŵLS(

2L
S )

...
(1 + αw,S)ŵLS(

(S−1)L
S + 1)

...
(1 + αw,S)ŵLS(L)



= Ŵ LS(1S +αw)

(47)
where Ŵ LS ∈ CM×S is a block diagonal matrix that is con-
structed by the elements from ŵLS and zeros, S is the number
of groups. Moreover, we define the S-dimensional column vec-
tors 1S = [1, 1, . . . , 1]T and αw = [αw,1, αw,2, . . . , αw,S ]

T .
The quantities αw,s are real-valued variables and (1 + αw,s)
is defined as the shrinkage factor for the s-th group of
coefficients that is larger than zero but smaller than one, where
s = 1, 2, . . . , S.

The objective of the GSE is to achieve a smaller MSE than
the LS algorithm, which can be expressed as

E[∥wo − ŵb∥2] ≤ E[∥wo − ŵLS∥2]. (48)

It should be noted that the problem that we want to solve
for both parameter estimation and interference suppression
scenarios has a similar form. Hence, we can follow the
derivation as shown in Section III-A, and the optimal solution
of the parameter vector αw is given by

αw,opt = −σ̃2
w

(
σ̃2
wIS +WHW

)−1
1S . (49)

where W = E[Ŵ LS], σ̃2
w = vw/S and we have

ŵb,opt = Ŵ LS(1S +αw,opt) (50)

B. Proposed GSE: Adaptive Algorithms

In this section, the LMS-based adaptive algorithms are
proposed to estimate the vector αw. First, we consider the
MSE cost function as a function of αw, i.e.,

f(αw) = σ̃2
w(1S+αw)

H(1S+αw)+αw
HWHWαw. (51)

The gradient of f(αw) with respect to α∗
w is given by gw =

σ̃2
w(1S + αw) + WHWαw. Hence, the LMS-based update

equation of the vector αw for the (i+ 1)-th time slot can be
expressed as

α̂w(i+ 1) = α̂w(i)− µwĝw(i), (52)

where µw is the step size of the LMS algorithm and the
estimated gradient vector is given by

ĝw(i) = ˆ̃σ2
w(i)(1S + α̂w(i)) + P̂w(i)α̂w(i), (53)

where ˆ̃σ2
w(i) is the estimated equivalent noise variance and the

diagonal matrix P̂w(i) ∈ CS×S is defined as the estimator of
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TABLE I
GSE FOR SCE-RLS IN SC-FDE DS-UWB SYSTEMS

Proposed GSE-EB Proposed GSE-AT
1. Initialization: 1. Initialization:
α̂(1) = 0 ∈ CS×1 α̂(1) = 0 ∈ CS×1

Set value of µ Set values of µ and µp

2. Calculate the biased estimator: 2. Calculate the biased estimator:
For i = 1, 2, . . . For i = 1, 2, . . .

ĥb(i) = ĤRLS(i)(1S + α̂(i)) ĥb(i) = ĤRLS(i)(1S + α̂(i))

3. Calculate the shrinkage factor: 3. Calculate the shrinkage factor:
ĥ(i) = 1

i

∑i
j=1 ĥRLS(j) ĥ(i) = 1

i

∑i
j=1 ĥRLS(j)

ˆ̃σ2(i) = ∥ĥRLS(i)− ĥ(i)∥2/S ˆ̃σ2(i) = ∥ĥRLS(i)− ĥ(i)∥2/S
P̂m(i) = Ĥ

H
RLS(i)ĤRLS(i) P̂m(i) = Ĥ

H
RLS(i)ĤRLS(i)

For s = 1, 2, . . . , S

ĝα(i) = ˆ̃σ2(i)(1S + α̂(i)) + P̂m(i)α̂(i), P̂m,s(i) = P̂m,s(i)− µpĝs(i), where ĝs(i) is given in (45).
If P̂m,s(i) < 0, set P̂m(i) = Ĥ

H
RLS(i)ĤRLS(i) break;

End For.
α̂(i+ 1) = α̂(i)− µĝα(i). ĝα(i) = ˆ̃σ2(i)(1S + α̂(i)) + P̂m(i)α̂(i),

α̂(i+ 1) = α̂(i)− µĝα(i).

the matrix WHW , the main diagonal vector of this matrix is
defined as diag[P̂w(i)] = [P̂w,1(i), . . . , P̂w,S(i)]. The instan-
taneous estimator of ˆ̃σ2

w(i) is given by ˆ̃σ2
w(i) =

(
ŵRLS(i) −

wo(i)
)H(

ŵRLS(i)−wo(i)
)
, where wo is replaced by the time

averaged RLS estimator, that is wo(i) =
1
i

∑i
j=1 ŵRLS(j).

In order to determine the diagonal matrices P̂w(i) for each
time instant, the GSE-EB method and the GSE-AT method
are developed in the interference suppression scenario. In the
GSE-EB approach, the matrices P̂w(i) are replaced by the
diagonal matrices Ŵ

H

RLS(i)ŴRLS(i). However, because we
assume that the initialization of the RLS algorithm is an all
zero vector, the beginning stage of the RLS algorithm is not
very accurate. Hence, in order to improve the convergence
rate of the proposed GSE schemes, we develop the GSE-
AT algorithm. For each time instant, the matrix P̂w(i) is
firstly set to Ŵ

H

RLS(i)ŴRLS(i) as in the GSE-EB algorithm,
then we consider P̂w,s(i) as the variables of the MSE cost
function, where P̂w,s(i) are the diagonal elements of the
diagonal matrix P̂w(i) and s = 1, 2, . . . , S. Then we develop
an LMS adaptive equation to further adapt these values and
improve the estimation accuracy for each time instant. Here,
we omit the time index i for simplicity and have

f([P̂w,1, . . . , P̂w,S ]) = σ̃2
w

S∑
s=1

(
1 + αw,s

)2
+

S∑
s=1

α2
w,sP̂w,s.

(54)
Hence, for each group, the corresponding P̂w,s can be updated
by the following equation

P̂w,s(c+ 1) = P̂w,s(c)− µsĝw,s, (55)

where c is the iteration index and ĝw,s is the estimator of the
gradient of the cost function with respect to P̂m,s, which is
given by

ĝw,s = 2ˆ̃σ2
(
1+α̂s

) ˆ̃σ2(
ˆ̃σ2 + P̂m,s

)2+2α̂sP̂m,s

ˆ̃σ2(
ˆ̃σ2 + P̂m,s

)2+α̂2
s.

(56)

In order to obtain a low complexity solution, we set the
iteration index c to 1 for the GSE-AT algorithm. Note that if
the updated values in the GSE-AT algorithm become negative,
then we set these values to the same as obtained in the GSE-
EB algorithm. In Table II, the proposed biased estimators with
two approaches to calculate P̂w(i) are summarized.

Note that the GSE-EB approach (where P̂w(i) =

Ŵ
H

RLS(i)ŴRLS(i)), requires 2M +3S+2 complex multipli-
cations and 3M + S complex additions for one update of the
shrinkage factors. For the GSE-AT approach, in which P̂w(i)
is updated by using equation (55), the number of complex
multiplications required to update the shrinkage factor is
2M +13S+2 and the number of complex additions required
is 3M + 7S. It will be demonstrated by the simulations that
the performance of the GSE-AT approach is better than the
GSE-EB approach, while the GSE-EB approach has a lower
complexity.

V. MSE ANALYSIS

In this section, we will analyze the MSE performance
of the proposed GSE. Since the proposed GSE has similar
forms in the parameter estimation scenario and the interference
suppression scenario, we carried out the following derivations
based on the parameter estimation scenario. Firstly, we will
prove that the minimum MSE obtained by the GSE schemes
will always be smaller or equal to the MSE that can be
achieved by minimum variance unbiased estimator (MVUE)
such as the LS estimator. Then the MSE lower bounds of the
GSE schemes will be derived. In addition, we will prove that
when the numbers of groups is larger than or equal to two,
the MSE lower bound will always be lower than the biased
estimator with only one shrinkage factor (when the number of
groups S equals one).

A. MMSE Comparison
Assuming AWGN with zero mean and variance σ2

n, the LS
estimator is a minimum variance unbiased estimator. The MSE
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TABLE II
GSE FOR FREQUENCY DOMAIN RECEIVER IN SC-FDE DS-UWB SYSTEMS

Proposed GSE-EB Proposed GSE-AT
1. Initialization: 1. Initialization:
α̂w(1) = 0 ∈ CS×1 α̂w(1) = 0 ∈ CS×1

Set value of µw Set values of µw and µs

2. Calculate the biased estimator: 2. Calculate the biased estimator:
For i = 1, 2, . . . For i = 1, 2, . . .

ŵb(i) = ŴRLS(i)(1S + α̂w(i)) ŵb(i) = ŴRLS(i)(1S + α̂w(i))

3. Calculate the shrinkage factor: 3. Calculate the shrinkage factor:
ŵ(i) = 1

i

∑i
j=1 ŵRLS(j) ŵ(i) = 1

i

∑i
j=1 ŵRLS(j)

ˆ̃σ2
w(i) = ∥ŵRLS(i)− ŵ(i)∥2/S ˆ̃σ2

w(i) = ∥ŵRLS(i)− ŵ(i)∥2/S
P̂w(i) = Ŵ

H
RLS(i)ŴRLS(i) P̂w(i) = Ŵ

H
RLS(i)ŴRLS(i)

For s = 1, 2, . . . , S

ĝw(i) = ˆ̃σ2
w(i)(1S + α̂w(i)) + P̂w(i)α̂w(i), P̂w,s(i) = P̂w,s(i)− µsĝw,s(i), where ĝw,s(i) is given in (56).

If P̂w,s(i) < 0, set P̂w(i) = Ŵ
H
RLS(i)ŴRLS(i) break;

End For.
α̂w(i+ 1) = α̂w(i)− µwĝw(i). ĝw(i) = ˆ̃σ2

w(i)(1S + α̂w(i)) + P̂w(i)α̂w(i),
α̂w(i+ 1) = α̂w(i)− µwĝw(i).

for the LS estimator is

E{∥h− ĥLS∥2} = E{(ĥLS−h)H(ĥLS−h)} = var(h, ĥLS).
(57)

Defining v = var(h, ĥLS), we have

v = tr{σ2
n(X

HX)−1} (58)

It should be noted that we can also express the LS estimator
as ĥLS = h + ñ, hence, we have that the variance of the
elements in the equivalent noise ñ is σ̃2

n = v/L.
Recall that the target of the biased estimation that is to

reduce the MSE introduced by ĥLS. The objective is to obtain
a biased estimator that results in

E{∥h− ĥb∥2} ≤ E{∥h− ĥLS∥2}. (59)

Recall the equations (33) and (34), the objective becomes

σ̃2(1S +α)H(1S +α) +αHHHHα ≤ v. (60)

Since σ̃2
n = v/L, we have σ̃2 = (L/S)σ̃2

n = v/S. In appendix
A, we prove that this objective is always fulfilled with the
optimal solution αopt as shown in (35).

B. MSE Lower Bound and the Effect of the Number of Groups

It should be noted that a lower bound of the MSE perfor-
mance of the proposed GSE schemes that corresponds to the
optimal α can be obtained as

E{∥h− ĥb∥2} ≥ (S +
S∑

s=1

αopt,s)
v

S
= v −

∑S
s=1(

v2

v+hΣ,sS
)

S

= v −
S∑

s=1

v2

Sv + hΣ,sS2
.

(61)

Since the second term on the right hand-side is non-negative,
it can be concluded that the MSE lower bound will always
be smaller than or equal to the unbiased Cramér-Rao Lower

Bound (CRLB), which is expressed as v in this equation.
Note that this expression can be considered as the relationship
between the MSE lower bound of the GSE and the unbiased
CRLB. In the case where the number of groups equals 1, we
have S = 1, σ̃2 = v and αopt = −v/(v + ∥h∥2). The lower
bound becomes

E{∥h− ĥb∥2} ≥ 1

1 + v/∥h∥2
v. (62)

In this case, the one-group GSE scheme converges to our
previously proposed shrinkage factor biased estimator [13],
[14].

For the proposed GSE schemes, we prove the following
statements:
Statement 1: The MSE lower bound as shown in (61) with
S > 1 will always be lower than or equal to the lower
bound for S = 1. This statement indicates that our proposed
GSE outperforms the biased estimator with only one shrinkage
factor. The proof is detailed in appendix B.
Statement 2: The lowest MSE lower bound as shown in (61)
can be obtained in S = L case, where L is the length of
the parameter vector to be estimated. This statement indicates
that the optimal performance can be obtained with the largest
possible group number. The proof is detailed in Appendix B.

The performance of the algorithm depends on the number
of groups and the scenario. If some a priori knowledge of the
parameter vector to be estimated is available, then a possible
extension of the GSE is to develop a method to determine the
size of the groups. For example, the knowledge of the expected
value of the number of clusters of a UWB channel might
enable a more attractive tradeoff between the performance and
the complexity. Moreover, the increase in the number of groups
can improve the MSE performance. However, this comes
with diminishing returns and an increase in the computational
complexity.
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VI. SIMULATIONS

In this section, the proposed GSE estimators are employed
in the SCE and in the design of the frequency domain re-
ceiver of a synchronous downlink block-by-block transmission
binary phase shift keying (BPSK) DS-UWB system that are
detailed in Section II-B and Section II-C, respectively. Their
MSE performances are compared with the conventional RLS
adaptive algorithms. The pulse shape adopted is the root-
raised-cosine (RRC) pulse with the pulse-width Tc = 0.375
ns. The length of the data block is set to N = 32 symbols.
The Walsh spreading code with a spreading gain Nc = 8
is generated for the simulations and we assume that the
maximum number of active users is 7. The channel has been
simulated according to the standard IEEE 802.15.4a channel
model for the NLOS indoor environment as shown in [25].
We assume that the channel is constant during the whole
transmission and the time domain channel impulse response
has 100 taps. The CP guard interval has a length of 35
chips, which has the equivalent length of 105 samples and
it is enough to eliminate the IBI. The uncoded data rate
of the transmission is approximately 293 Mbps. For all the
simulations, the adaptive receivers/estimators are initialized as
null vectors. All the curves are obtained by averaging 200
channel realizations. In Fig. 2 - Fig. 5, the performance of the
proposed GSE in the parameter estimation scenario (SCE as
an example) is shown. In this scenario, the GSE is employed
to improve the MSE performance of the channel estimation.
In Fig. 6 to Fig. 8, the performance of the proposed GSE
in the interference suppression scenario (frequency domain
receiver design as an example) is presented. In this scenario,
the GSE schemes accelerate the convergence speed of the
adaptive algorithm.
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Fig. 2. Surface of the MSE difference in a scenario with S = 2 (SCE). The
MSE difference is defined as δMSE = ∥h− ĥb∥2 − ∥h− ĥRLS∥2.

First, we examine the MSE difference between the unbiased
estimator and the proposed GSE as a function of the shrinkage
factors for each group in a single user system with 0 dB
SNR. In Fig. 2, the surface defined as δMSE = ∥h −
ĥb∥2 − ∥h − ĥRLS∥2 in the range of the shrinkage factors
between 0 to 1 is shown. Note that, when the bias equals
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Fig. 3. MSE lower bounds for the proposed GSE with different numbers of
groups (SCE).
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Fig. 4. MSE performance with different numbers of groups (SCE). Param-
eters used: RLS: λ = 0.998, δ = 10. Proposed GSE EB: µ = 0.075.

zero, which corresponding to the point [1, 1] in the figure, the
MSE difference equals zero. The optimal solution is located
at [1+α1, 1+α2] = [0.15, 0.35]. For this channel realization,
the optimal solution that is obtained by our algorithm after
transmitting 1000 data blocks is reported as [1+α1, 1+α2] =
[0.16, 0.35], which is very close to the optimal solution shown
in this figure.

In Fig. 3, the MSE lower bounds for the proposed GSE
schemes with different numbers of groups are shown as a
function of SNR. The proposed biased estimators show a better
performance than the conventional unbiased estimator. As we
have proved, the best performance can be obtained in case
of S = L. The proposed GSE schemes can maintain the
MSE gain for low and medium SNR regimes. In high SNR
scenarios with a small noise variance, the biased estimator
converges to the unbiased estimator and the gain becomes
smaller. Compared with the biased estimators with only one
shrinkage factor (which is equivalent to the case S = 1), the
GSE schemes with a number of groups can maintain the MSE
gain until higher SNR regime.

In the third experiment, we examine the proposed GSE
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Fig. 5. MSE performance of the proposed GSE-EB and GSE-AT algorithms
with S = 1 and S = L (SCE). Parameters used: Proposed GSE-EB: µ =
0.075. Proposed GSE-AT: µ = 0.075, µp = 0.05.
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Fig. 6. Normalized MSE performance (∥b − b̂∥2/∥b∥2) of the biased
estimator with 5 users in 5 dB SNR.

schemes with different numbers of groups for the SCE in
a single-user system with 0 dB SNR. In Fig. 4, the MSE
performance of the channel estimators are compared as a
function of the number of blocks transmitted. The RLS al-
gorithm approaches the unbiased CRLB while the proposed
biased estimators approach the lower bounds as given in (61).
The biased estimators converge faster than the RLS algorithm
and the steady-state performance is also improved. Note that
the additional complexity to employ the proposed biased
estimation techniques increases linearly with the product of
the number of groups and the length of the channel.

In Fig. 5, the proposed GSE-EB and GSE-AT algorithms
are compared in S = 1 and S = L scenarios in a single
user system with 0 dB SNR. It can be found that the GSE-
AT algorithm can provide a noticeable gain over the GSE-EB
algorithm especially at the beginning stage of transmission.
This is because the GSE-AT algorithm allows us to further
adjust the diagonal matrix P̂m(i) for each time instant. At
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Fig. 7. Normalized MSE performance (∥b − b̂∥2/∥b∥2) of the biased
estimators with 5 users in 3 dB SNR.
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Fig. 8. Coded BER performance of the GSE schemes in interference
suppression scenario with 5 users.

the beginning stage when the RLS algorithm does not very
accurately estimate the channel, the GSE-AT algorithm can
be used to improve the convergence rate.

In Fig. 6, the performance of the proposed GSE is shown
in the interference suppression scenario (frequency domain
receiver design as an example) with a short training sequence.
In this simulation, 50 training blocks are transmitted in a
scenario with 5 users with 5 dB SNR. The proposed GSE-
EB algorithm outperforms the RLS algorithm and the best
performance is obtained by setting S = M . In Fig. 7,
we compare the GSE-EB and GSE-AT algorithms in 5-user
communications and an SNR of 3 dB. In this experiment,
150 training blocks are transmitted. The GSE-AT algorithm
can further accelerate the convergence rate of the GSE-EB
algorithm. At the beginning stage, the GSE-AT algorithm
introduces the best performance.

In Fig. 8, the bit error rate (BER) performance of the
proposed GSE with different numbers of groups are shown
in a scenario with 5 users. The coded BER performance is
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obtained by adopting a convolutional code and an LDPC code
[30] designed according to the PEG approach [30]. For the
convolutional code, the constraint length is 5, the rate is 2/3
and the code polynomial is [7,5,5]. For the LDPC code, the
rate is 1/2 and the code length is 200 bits. The maximum
number of iterations is set to 20. In this experiment, 100
training blocks are transmitted followed by 400 data blocks.
With the convolutional code, the proposed GSEs perform
better than the RLS algorithm and the maximum gains are
obtained in the medium SNR range from 12 dB to 17 dB.
By employing the LDPC code, a BER of around 10−3 is
achieved at 12 dB. The proposed GSEs with LDPC codes
also outperform the RLS algorithm and the maximum gains
are obtained for an SNR around 7 dB.

VII. CONCLUSIONS

In this work, a novel biased estimation algorithm called
group-based shrinkage estimator (GSE) is proposed, which
divides the target parameter vector into a number of groups
and calculates one shrinkage factor for each group. Adaptive
algorithms are developed for the GSE scheme in the parameter
estimation and the interference suppression scenarios. The
incorporation of the proposed estimators has been consid-
ered in the frequency-domain of DS-UWB systems, where
structured channel estimation and the receiver designs are
considered as examples of the parameter estimation scenario
and interference suppression scenario, respectively. An MSE
analysis is presented that indicates the lower bound of the
proposed GSE schemes. The relationship between the lower
bound and the number of groups are also established. It
has been proved that the GSE provides a better performance
than the biased estimators with only one shrinkage factor. In
addition, the lowest MSE lower bound can be obtained in
the S = L case. As for future research directions, the GSE
scheme can be developed in different systems and scenarios.
In addition, if we have some prior knowledge of the target
parameter vector, we can then divide it into groups with
different sizes and find more attractive tradeoffs between the
computational complexity and the performance.

APPENDIX A
MMSE COMPARISON

In order to check if the objective as shown in (60) is
fulfilled with aopt, the equation (35) is rearranged by taking
the expression of the diagonal matrix HHH ∈ CS×S into
account. We have

αopt = [αopt,1, . . . , αopt,S]
T = −σ̃2

(
σ̃2I +HHH

)−1
1S

= −[(1 + hΣ,1/σ̃
2)−1, (1 + hΣ,2/σ̃

2)−1, . . . , (1 + hΣ,S/σ̃
2)−1]T

(63)

where hΣ,s =
∑sL/S

i=(s−1)L/S+1 |h(i)|
2. Hence, we have the

following expressions

σ̃2(1S +α)H(1S +α) = σ̃2
S∑

s=1

(1 + αopt,s)
2, (64)

αHHHHα =
S∑

s=1

α2
opt,shΣ,s. (65)

By substituting (64) and (65) into the MSE expression (60)
and bearing in mind that Sσ̃2 = v, the inequality that we want
to prove becomes

σ̃2
S∑

s=1

(1 + αopt,s)
2 +

S∑
s=1

α2
opt,shΣ,s − Sσ̃2 ≤ 0. (66)

Note that the left hand-side of (66) can be expressed as
S∑

s=1

α2
opt,s +

S∑
s=1

2αopt,s +

S∑
s=1

α2
opt,shΣ,s/σ̃

2

=
S∑

s=1

α2
opt,s(1 + hΣ,s/σ̃

2) +
S∑

s=1

2αopt,s.

(67)

By recalling that αopt,s = −(1 + hΣ,s/σ̃
2)−1 is always a

non-positive scalar value, the left-hand side of the equation
becomes

S∑
s=1

(1 + hΣ,s/σ̃
2)−1 +

S∑
s=1

2αopt,s =

S∑
s=1

αopt,s. (68)

As αopt,s are always non-positive, the summation on the right
hand-side of (68) will always be smaller or equal to zero,
which completes the proof.

APPENDIX B
PROOFS OF THE STATEMENTS

First, we want to prove that the lower bound of MSE as
shown in (61) with S > 1 will always be lower than or equal
to the S = 1 case. Based on the equation (61), we can focus
on the following function

f(S) =
S∑

s=1

1

Sv + hΣ,sS2
=

1

S2

S∑
s=1

1

(v/S) + hΣ,s
, (69)

where hΣ,s =
∑sL/S

i=(s−1)L/S+1 |h(i)|
2 The task now is equiv-

alent to proving that f(S) ≥ f(1) for all the possible values
of S. Note that

∑S
s=1 hΣ,s = ∥h∥2 and

f(1) =
1

v + ∥h∥2
=

1

v +
∑S

s=1 hΣ,s

=
1∑S

s=1(v/S + hΣ,s)
.

(70)
Hence, the relation becomes

S∑
s=1

1

(v/S) + hΣ,s
≥ S2∑S

s=1(v/S + hΣ,s)
. (71)

Actually, we can express this problem as the following math-
ematical problem:

1

a1
+

1

a2
+ · · ·+ 1

aS
≥ S2∑S

s=1 as
, (72)

where S is a positive integer and as = (v/S) + hΣ,s are all
non-negative values. This inequality can be proved by using
the mathematical induction as follows:
For S = 1, the left-hand side and the right-hand side are both
equal to 1

a1
.
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For S = 2, the left-hand side equals 1
a1

+ 1
a2

= a1+a2

a1a2
and

the right-hand side equals 4
a1+a2

. Since (a1+a2)
2−4a1a2 =

(a1 − a2)
2 ≥ 0, the inequality holds.

Assuming the inequality holds for S = n, where n ≥ 2, we
have

1

a1
+

1

a2
+ · · ·+ 1

an
≥ n2∑n

s=1 as
. (73)

For S = n+1, we first consider the left-hand side as follows

1

a1
+

1

a2
+ · · ·+ 1

an
+

1

an+1
≥ n2∑n

s=1 as
+

1

an+1

=
n2an+1 +

∑n
s=1 as

(
∑n

s=1 as) · an+1
.

(74)

and then, the right-hand side is given by

(n+ 1)2∑n
s=1 as + an+1

. (75)

Because( n∑
s=1

as + an+1

)(
n2an+1 +

n∑
s=1

as
)
− (n+ 1)2

( n∑
s=1

as
)
· an+1

=
( n∑
s=1

as − n · an+1

)2 ≥ 0,

the inequality also holds for S = n + 1. This completes the
proof.

Now, we can prove the second statement which points out
that the lowest MSE lower bound as shown in (61) can be
obtained when the numbers of groups is equal to the length
of the parameter vector to be estimated. Following the proof
of of Statement 1, we can express the problem that needs to
be solved as: prove that f(L) ≥ f(S), for any possible values
of number of groups S, and mathematically, we need to prove
that

1

L2

L∑
i=1

1

(v/L) + |h(i)|2
≥ 1

S2

S∑
s=1

1

(v/S) + hΣ,s
, (76)

holds for all the possible values of S. Since the parameter
vector is divided into a number of S groups, this inequality
holds if the following relationship is fulfilled:

1

L2

sL/S∑
i=(s−1)L/S+1

1

(v/L) + |h(i)|2
≥ 1

S2

1

(v/S) + hΣ,s
,

with s = 1, 2, . . . , S

(77)

Actually, the S = L case can be considered as the division of
each group (with length L/S) into a number of L/S length-
one sub-groups, and the inequality of (77) always holds for
each group because of Statement 1. This completes the proof.
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