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Reduced-Rank Space–Time Adaptive Interference
Suppression With Joint Iterative Least Squares

Algorithms for Spread-Spectrum Systems
Rodrigo C. de Lamare, Member, IEEE, and Raimundo Sampaio-Neto

Abstract—This paper presents novel adaptive space–time
reduced-rank interference-suppression least squares (LS) algo-
rithms based on a joint iterative optimization of parameter vec-
tors. The proposed space–time reduced-rank scheme consists of
a joint iterative optimization of a projection matrix that per-
forms dimensionality reduction and an adaptive reduced-rank
parameter vector that yields the symbol estimates. The proposed
techniques do not require singular value decomposition (SVD) and
automatically find the best set of basis for reduced-rank process-
ing. We present LS expressions for the design of the projection
matrix and the reduced-rank parameter vector, and we conduct
an analysis of the convergence properties of the LS algorithms.
We then develop recursive LS (RLS) adaptive algorithms for their
computationally efficient estimation and an algorithm that auto-
matically adjusts the rank of the proposed scheme. A convexity
analysis of the LS algorithms is carried out along with the de-
velopment of a proof of convergence for the proposed algorithms.
Simulations for a space–time interference suppression application
with a direct-sequence code-division multiple-access (DS-CDMA)
system show that the proposed scheme outperforms in conver-
gence and tracking the state-of-the-art reduced-rank schemes at
a comparable complexity.

Index Terms—Interference suppression, iterative methods, least
squares (LS) algorithms, space–time adaptive processing (STAP),
spread-spectrum systems.

I. INTRODUCTION

S PACE–TIME adaptive processing (STAP) techniques have
become a fundamental enabling technology of modern

systems encountered in communications [1], radar and sonar
[2], [3], and navigation [4]. The basic idea is to gather data
samples from an antenna array and process them both spatially
and temporally via a linear combination of adaptive weights.
In particular, STAP algorithms have found numerous appli-
cations in modern wireless communications based on spread-
spectrum systems and code-division multiple access (CDMA)
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[5], [6]. These systems implemented with direct-sequence (DS)
signaling are found in third-generation cellular telephony
[7]–[9], indoor wireless networks [10], satellite communica-
tions, and ultrawideband technology [11] and are being con-
sidered for future systems with multicarrier (MC) versions
such as MC-CDMA and MC-DS-CDMA [12] and in conjunc-
tion with multiple antennas [13]. The advantages of spread-
spectrum systems include good performance in multipath
channels, flexibility in the allocation of channels, increased
capacity in bursty and fading environments, and the ability
to share bandwidth with narrow-band communication systems
without performance degradation [5].

There are numerous algorithms with different tradeoffs be-
tween performance and complexity for designing STAP tech-
niques [14]. Among them, least squares (LS)-based algorithms
are often the preferred choice with respect to convergence
performance. However, when the number of filter elements in
the STAP algorithm is large, they require a large number of
samples to reach its steady-state behavior and may encounter
problems in tracking the desired signal. Reduced-rank STAP
techniques [15]–[40] are powerful and effective approaches
in low-sample support situations and in problems with large
filters. These algorithms can effectively exploit the low-rank
nature of signals that are found in spread-spectrum commu-
nications. Their advantages are faster convergence speed and
better tracking performance than full-rank techniques when
dealing with a large number of weights. It is well known that
the optimal reduced-rank approach is based on the singular
value decomposition (SVD) of the known input data covari-
ance matrix R [15]. However, this covariance matrix must
be estimated. The approach taken to estimate R and perform
dimensionality reduction is of central importance and plays a
key role in the performance of the system. Numerous reduced-
rank strategies have been proposed in the last two decades.
Among the first methods are those based on the SVD of time-
averaged estimates of R [15]–[20], in which the dimension-
ality reduction is carried out by a projection matrix formed
by appropriately selected eigenvectors that are computed with
the SVD. An effective approach to address the problem of
selection of eigenvectors, which is known as the cross-spectral
method and results in improved performance, was considered
in [21]. Iterative algorithms that avoid the SVD but do not fully
exploit the structure of the data for reduced-rank processing
were reported in [22] and [23]. A more recent and elegant
approach to the problem was taken with the advent of the mul-
tistage Wiener filter (MSWF) [24], which was later extended
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to adaptive versions by Honig and Goldstein [25], STAP ap-
plications [26], and other related techniques [27]. Another
method that was reported about the same time as the MSWF
is the auxiliary vector filtering (AVF) algorithm [28]–[32]. A
reduced-rank method based on interpolated filters with time-
varying interpolators was reported in [34]–[36] for temporal
processing, and an associated STAP version was considered
in [37]; however, this approach shows significant performance
degradation with small ranks. A key limitation with the existing
reduced-rank STAP techniques is the lack or a deficiency with
the exchange of information between the projection matrix
that carries out dimensionality reduction and the subsequent
reduced-rank filtering.

In this paper, we propose reduced-rank STAP LS algorithms
for interference suppression in spread-spectrum systems. The
proposed algorithms require neither SVD nor prior knowledge
of the reduced model order. The proposed reduced-rank STAP
scheme consists of a joint iterative optimization of a projection
matrix that performs dimensionality reduction and is followed
by an adaptive reduced-rank filter. The key aspect of the pro-
posed approach is to exchange information between the tasks
of dimensionality reduction and reduced-rank processing. The
proposed STAP scheme builds on the temporal scheme first
reported in [38] with stochastic gradient algorithms and extends
it to the case of spatiotemporal processing and to a deterministic
exponentially weighted LS design criterion. We develop LS
optimization algorithms and expressions for the joint design
of the projection matrix and the reduced-rank filter. We derive
recursive LS (RLS) adaptive algorithms for their computation-
ally efficient implementation along with a complexity study
of the proposed and existing algorithms. We also devise an
algorithm that automatically adjusts the rank of the filters
utilized in the proposed STAP scheme. A convexity analysis
of the proposed LS optimization of the filters is conducted, and
an analysis of the convergence of the proposed RLS algorithms
is also carried out. The performance of the proposed scheme is
assessed via simulations for a space–time interference suppres-
sion application in DS-CDMA systems. The main contributions
of this paper are summarized as follows: 1) a reduced-rank
STAP scheme for spatiotemporal processing of signals; 2) LS
expressions and recursive algorithms for STAP parameter esti-
mation; 3) an algorithm for automatically adjusting the rank of
the filters; and 4) convexity analysis and convergence proof of
the proposed LS-based algorithms.

This paper is organized as follows. Section II presents
the space–time system model, and Section III states the
reduced-rank estimation problem. Section IV presents the novel
reduced-rank scheme, the joint iterative optimization, and the
LS design of the filters. Section V derives the RLS and the
rank adaptation algorithms for implementing the proposed
scheme. Section VI develops the analysis of the proposed algo-
rithms. Section VII shows and discusses the simulations,
whereas Section VIII gives the conclusions.

II. SPACE–TIME SYSTEM MODEL

We consider the uplink of the DS-CDMA system with sym-
bol interval T , chip period Tc, spreading gain N = T/Tc,

K users, multipath channels with L propagation paths, and
L < N . The system is equipped with an antenna that con-
sists of a uniform linear array (ULA) and J sensor elements
[2], [3]. In the model adopted, the intersymbol interference span
and contribution are functions of the processing gain N and
L [6]. For instance, we assume that L ≤ N , which results in
the interference between three symbols in total—the current
one, the previous, and the successive symbols. The spacing
between the ULA elements is d = λc/2, where λc is the carrier
wavelength. We assume that the channel is constant during each
symbol, the base station receiver is perfectly synchronized, and
the delays of the propagation paths are multiples of the chip
rate. The received signal after filtering by a chip-pulse matched
filter and sampled at the chip period yields the JM × 1 received
vector at time i, i.e.,

r[i] =
K∑

k=1

Akbk[i − 1]p̄k[i − 1] + Akbk[i]pk[i]

+Akbk[i + 1]p̃k[i + 1] + n[i] (1)

where M = N + L − 1, the complex Gaussian noise vector
is n[i] = [n1[i] . . . nJM [i]]T with E[n[i]nH [i]] = σ2I , (·)T

and (·)H denote the transpose and the Hermitian transpose,
respectively, and E[·] stands for the expected value. The spatial
signatures for previous, current, and future data symbols are

p̄k[i − 1] = F̄kHk[i − 1]
pk[i] =FkHk[i]

p̃k[i + 1] = F̃kHk[i + 1] (2)

where F̄k, Fk, and F̃k are block diagonal matrices with
versions of segments of the signature sequence sk = [ak(1) . . .
ak(N)]T of user k shifted down by one position (one chip)
and given by F̄k = diag(C̄k, C̄k, . . . , C̄k), Fk = diag(Ck,
Ck, . . . ,Ck), and F̃k = diag(C̃k, C̃k, . . . , C̃k). The structure
of the M × L matrices C̄k, Ck, and C̃k is detailed in [9]. The
JL × 1 space–time channel vector is given by

Hk[i] =
[
hT

k,0[i]| hT
k,1[i]| . . . |hT

k,J−1[i]
]T

(3)

where hk,l[i] = [h(l)
k,0[i] . . . h

(l)
k,L−1[i]]

T is the L × 1 channel
vector of user k at antenna element l with their associated
directions of arrival (DoAs) φk,m. The DoAs are assumed
different for each user and path [24].

III. REDUCED-RANK SPACE–TIME ADAPTIVE

PROCESSING FOR INTERFERENCE SUPPRESSION

AND PROBLEM STATEMENT

Here, we outline the main problem of the STAP design for
interference suppression in spread-spectrum systems, and we
consider the design of reduced-rank STAP algorithms using an
LS approach. The main goal of the STAP algorithms is to jointly
perform temporal filtering with spatial filtering (beamforming)
through adaptive combination of filter coefficients.

Let us consider the space–time received signals of Section II
and the data organized in JM × 1 vectors r[i]. To process this
data vector, one can design a STAP algorithm that consists of a
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JM × 1 filter w[i] = [w[i]
1 w

[i]
2 . . . w

[i]
JM ]T , which adaptively

and linearly combines its coefficients with the received data
samples to yield an estimate x[i] = wH [i]r[i]. The design of
w[i] can be performed via the minimization of the exponen-
tially weighted LS cost function

C (w[i]) =
i∑

l=1

λi−l
∣∣d[l] − wH [i]r[l]

∣∣2 (4)

where d[l] is the desired signal, and λ stands for the forgetting
factor. Solving for w[i], we obtain

w[i] = R−1[i]p[i] (5)

where R[i] =
∑i

l=1 λi−lr[l]rH [l] is the time-averaged cor-
relation matrix, and p[i] =

∑i
l=1 λi−ld∗[l]r[l]] is the cross-

correlation vector.
A problem with STAP algorithms is that the laws that govern

their convergence and tracking behavior imply that the perfor-
mance is a function of JM , which is the number of elements
in the filter. Thus, large JM implies slow convergence and
poor tracking performance. A reduced-rank STAP algorithm
attempts to circumvent this limitation by exploiting the low-
rank nature of spread-spectrum systems and performing dimen-
sionality reduction. This dimensionality reduction reduces the
number of adaptive coefficients and extracts the key features
of the processed data. It is accomplished by projecting the re-
ceived vectors onto a lower dimensional subspace. Specifically,
consider a JM × D projection matrix T D[i] that carries out a
dimensionality reduction on the received data as given by

r̄[i] = T H
D [i]r[i] (6)

where, in what follows, all D-dimensional quantities are de-
noted with a “bar.” The resulting projected received vector r̄[i]
is the input to a tapped-delay line represented by the D vector
w̄[i] = [w̄[i]

1 w̄
[i]
2 . . . w̄

[i]
D ]T . The reduced-rank STAP output is

x[i] = w̄H [i]r̄[i]. (7)

If we consider the LS design in (4) with the reduced-rank
parameters, we obtain

w̄[i] = R̄
−1[i]p̄[i] (8)

where R̄[i] =
∑i

l=1 λi−lr̄[l]r̄H [l] = T H
D [i]R[i]T D[i] is the

reduced-rank correlation matrix, and p̄[i] =∑i
l=1 λi−ld∗[l]r̄[l]=T H

D [i]p[i] is the cross-correlation vector
of the reduced-rank model. The associated sum of error squares
(SES) for a rank-D STAP is expressed by

SES = σ2
d − p̄H [i]R̄−1[i]p̄[i]

= σ2
d − pH [i]T D[i]

(
T H

D [i]R[i]T D[i]
)−1

T H
D [i]p[i] (9)

where σ2
d =

∑i
l=1 λi−l|d(l)|2. The development above shows

us that the key aspect for constructing reduced-rank STAP
schemes is the design of T D[i] since the SES in (9) depends on
p[i], R[i], and T D[i]. The quantities p[i] and R[i] are common
to both reduced-rank and full-rank STAP designs; however, the

Fig. 1. Proposed reduced-rank STAP scheme.

projection matrix T D[i] plays a key role in the dimensionality
reduction and in the performance. The strategy is to find the
most appropriate tradeoff between the model bias and variance
[15] by adjusting the rank D and exchanging information
between T D[i] and w[i]. For instance, numerically evaluating
the SES expression in (9), one can verify the convergence and
steady-state performance of reduced-rank STAP algorithms.
Next, we present the proposed reduced-rank STAP approach.

IV. PROPOSED REDUCED-RANK STAP
AND LEAST SQUARES DESIGN

Here, we detail the principles of the proposed reduced-rank
STAP scheme and present an LS design approach for the filters.
The proposed reduced-rank STAP scheme is depicted in Fig. 1
and is formed by a projection matrix T D[i] with dimensions
JM × D that is responsible for the dimensionality reduction
and a D × 1 reduced-rank filter w̄[i]. The JM × 1 received
data vector r[i] is mapped by T D[i] into a D × 1 reduced-rank
data vector r̄[i]. The reduced-rank filter w̄[i] linearly combines
r̄[i] to yield a scalar estimate x[i]. The key strategy of the
proposed framework lies in the joint design of the projection
matrix T D[i] and the reduced-rank filter w̄[i] according to
the LS criterion. The exchange of information between T D[i]
and w̄[i] is different from the MSWF [24]–[26] and the AVF
techniques [28]–[32]. In particular, the expressions of the filters
that are obtained for the proposed reduced-rank STAP scheme
allow a more efficient introduction of the bias than that of the
MSWF and the AVF by alternating the recursions for T D[i]
and w̄[i]. In addition, the proposed STAP scheme is based on a
subspace projection designed according to a joint and iterative
minimization of the LS cost function and achieves better per-
formance than the Krylov subspace of the MSWF and the AVF.

Let us now detail the quantities that are involved in the pro-
posed reduced-rank STAP scheme. Specifically, the projection
matrix T D[i] is structured as a bank of D full-rank filters with
dimensions JM × 1, which are described by

td[i] =
[
t
[i]
1,d t

[i]
2,d . . . t

[i]
JM,d

]T

, d = 1, . . . , D. (10)

The filters td[i] are then gathered and organized, yielding

T D[i] =
[
t
[i]
1 | t[i]2 | . . . |t[i]D

]
. (11)

The output estimate x[i] of the reduced-rank STAP scheme
can be expressed as a function of the received data r[i], the
projection matrix T D[i], and the reduced-rank filter w̄[i] as
given by

x[i] = w̄H [i]T H
D [i]r[i] = w̄H [i]r̄[i]. (12)
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Interestingly, for D = 1, the proposed STAP scheme becomes
a conventional full-rank STAP algorithm with an additional
weight parameter wD that can be seen as a gain. For D > 1,
the signal processing tasks are changed; moreover, the full-rank
filters td[i] perform dimensionality reduction, and the reduced-
rank filter estimates the desired signal.

To design the projection matrix T D[i] and the reduced-rank
filter w̄[i], we need to adopt an appropriate design criterion.
We will resort to an exponentially weighted LS approach since
it is mathematically tractable and results in joint optimization
algorithms that can track time-varying signals by adjusting the
forgetting factor λ. The design of the proposed scheme amounts
to solving the following optimization problem:[
T D,opt[i], w̄H

opt[i]
]

= arg min
T D[i],w̄H [i]

i∑
l=1

λi−l
∣∣d[l] − w̄H [i]T H

D [i]r[l]
∣∣2] . (13)

To solve the above minimization problem, let us then consider
the cost function

C
(
T D[i], w̄H [i]

)
=

i∑
l=1

λi−l
∣∣d[l] − w̄H [i]T H

D [i]r[l]
∣∣2] .

(14)

Minimizing (14) with respect to T D[i], we obtain

T D,opt[i] = R−1[i]P D[i]R−1
w̄ [i] (15)

where P D[i] =
∑i

l=1 λi−ld∗[l]r[l]w̄H [i], the time-averaged
correlation matrix is R[i] =

∑i
l=1 λi−lr[l]rH [l], and Rw̄[i] =

w̄[i]w̄H [i]. Note that we have opted for computing Rw̄[i] as
Rw̄[i] =

∑i
l=1 λi−lw̄[l]w̄H [l] with a regularization term intro-

duced at the beginning of the iterations to allow the computation
of its inverse. For this reason, the latter approach will be
adopted for the derivation of adaptive algorithms. Minimizing
(14) with respect to w̄[i], the reduced-rank filter becomes

w̄opt[i] = R̄
−1[i]p̄[i] (16)

where p̄[i]=T H
D,opt[i]

∑i
l=1 λi−ld∗[l]r[l]=

∑i
l=1 λi−ld∗[l]r̄[l]],

R̄[i] = T H
D,opt[i]

∑i
l=1 λi−lr[l]rH [l]T D,opt[i]. The associated

SES for the proposed reduced-rank STAP scheme is

SES = σ2
d − p̄H [i]R̄−1[i]p̄[i] (17)

where σ2
d =

∑i
l=1 λi−l|d[l]|2. Note that the expressions in (15)

and (16) are not closed-form solutions for w̄opt[i] and T D,opt[i]
since (15) is a function of w̄opt[i], and (16) depends on
T D,opt[i]. Therefore, they have to be iterated with an initial
guess to obtain a solution. The expressions in (15) and (16)
require the inversion of matrices, which entails cubic complex-
ity with JM and D. Computing the SES in (17), it can nu-
merically verify the convergence and steady-state performance
of reduced-rank STAP algorithms, namely, the proposed, the
MSWF [25], and the AVF [32]. To reduce the complexity,
we will derive RLS algorithms in Section V. The rank D
must be set by the designer to ensure appropriate performance,

or a mechanism for automatically adjusting the rank should
be adopted. We will also present an automatic rank-selection
algorithm in what follows.

V. PROPOSED RECURSIVE LEAST SQUARES AND

RANK-SELECTION ALGORITHMS

Here, we propose RLS algorithms that efficiently implement
the LS design of Section IV and estimate the filters T D,opt[i]
and w̄opt[i] with the filters T D[i] and w̄[i], respectively. We
also develop rank-selection algorithms that automatically adjust
the rank D of the proposed STAP algorithm. An analysis of
the computational requirements of the proposed and analyzed
algorithms is also included.

A. Proposed RLS Algorithm

To derive an RLS algorithm for the proposed scheme, we
consider (15) and derive a recursive procedure for computing
the parameters of T D[i]. Let us define

P [i] =R−1[i]
Qw̄[i] =R−1

w̄ [i − 1]
P D[i] =λP D[i − 1] + d∗[i]r[i]w̄H [i] (18)

and rewrite the expression in (15) as follows:

T D[i] =P [i]P D[i]Qw̄[i]

=λP [i]P D[i − 1]Qw̄[i] + d∗[i]P [i]r[i]w̄H [i]Qw̄[i]

=T D[i − 1] − k[i]P [i − 1]P D[i − 1]Qw̄[i]

+ d∗[i]P [i]r[i]w̄H [i]Qw̄[i]

=T D[i − 1] − k[i]P [i − 1]P D[i − 1]Qw̄[i]

+ d∗[i]k[i]w̄H [i]Qw̄[i]. (19)

By defining the vector t[i] = Qw̄[i]w̄[i] and using the fact that
r̄H [i − 1] = rH [i − 1]T D[i − 1], we arrive at

T D[i] = T D[i − 1] + k[i]
(
d∗[i]tH [i] − r̄H [i]

)
(20)

where the Kalman gain vector for the computation of T D[i] is

k[i] =
λ−1P [i − 1]r[i]

1 + λ−1rH [i]P [i − 1]r[i]
(21)

and the update for the matrix P [i] employs the matrix inversion
lemma [14]

P [i] = λ−1P [i − 1] − λ−1k[i]rH [i]P [i − 1]. (22)

The vector t[i] is updated as follows:

t[i] =
λ−1Qw̄[i − 1]w̄[i − 1]

1 + λ−1w̄H [i − 1]Qw̄[i − 1]w̄[i − 1]
(23)

and the matrix inversion lemma is used to update Qw̄[i] as
described by

Qw̄[i] = λ−1Qw̄[i − 1] − λ−1t[i]w̄H [i − 1]Qw̄[i − 1]. (24)
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Equations (20)–(24) constitute the first part of the proposed
RLS algorithm and are responsible for calculating the projec-
tion matrix T D[i].

To derive a recursive update equation for the reduced-rank
filter w̄[i], we consider the expression in (16) with its associated
quantities, i.e., the matrix R̄[i] =

∑i
l=1 λi−lr̄[l]r̄H [l] and the

vector p̄[i] =
∑i

l=1 λi−ld∗[l]r̄[l]. Let us define

Φ̄[i] =R−1[i]

p̄[i] =λp̄[i − 1] + d∗[i]r̄[i] (25)

and then, we can rewrite (16) in the following alternative form:

w̄[i − 1] + k̄[i]
[
d∗[i] − r̄H [i]w̄[i − 1]

]
. (26)

By defining ξ[i] = d[i] − w̄H [i − 1]r̄H [i], we arrive at the
proposed RLS algorithm for obtaining w̄[i], i.e.,

w̄[i] = w̄[i − 1] + k̄[i]ξ∗[i] (27)

where the so-called Kalman gain vector is given by

k̄[i] =
λ−1Φ̄[i − 1]r̄[i]

1 + λ−1r̄H [i]Φ̄[i − 1]r̄[i]
(28)

and the update for the matrix inverse Φ̄[i] employs the matrix-
inversion lemma [14]

Φ̄[i] = λ−1Φ̄[i − 1] − λ−1k̄[i]r̄H [i]Φ̄[i − 1]. (29)

It should be noted that the proposed RLS algorithm given in
(27)–(29) is similar to the conventional RLS algorithm [14],
except that it works in a reduced-rank model with a D × 1 input
r̄[i] = T H

D [i]r[i], where the JM × D matrix T D is the projec-
tion matrix that is responsible for dimensionality reduction.

B. Rank-Selection Algorithm

The performance of the RLS algorithm described in
Section V-A depends on the rank D. This motivates the devel-
opment of methods to automatically adjust D on the basis of the
cost function. Unlike prior methods for rank selection that uti-
lize MSWF-based algorithms [25] or the cross-validation (CV)
approach used with AVF-based recursions [32], we focus on an
approach that determines D based on the LS criterion computed
by the filters T D[i] and w̄(D)[i], where the superscript (D)

denotes the rank that is used for the adaptation. Although there
are similarities between the algorithm described here and the
one reported in [25], the algorithm presented here differs from
[25] in that it clearly details the strategy for updating T D[i] and
w̄(D)[i], defines the maximum (Dmax) and minimum (Dmin)
values for the rank D allowed, and works with extended filters
for reduced complexity. The method for automatically selecting
the rank of the algorithm is based on the exponentially weighted
a posteriori LS-type cost function described by

Cap

(
T D[i], w̄(D)[i]

)
=

i∑
l=1

αi−l
∣∣∣d[l] − w̄H,(D)[i]T D[i]r[l]

∣∣∣2
(30)

where α is the forgetting factor, and w̄(D)[i] is the reduced-
rank filter with rank D. For each time interval i, we can
select D that minimizes C(T D[i], w̄(D)[i]), and the exponential
weighting factor α is required as the optimal rank varies as
a function of the data record. The dimensions of T D[i] and
w̄(D)[i] are extended to M × Dmax and Dmax, respectively,

and the associated matrices ˆ̄R[i], P D[i], and Qw̄[i] should
be compatible for adaptation. Our strategy is to consider the
adaptation with the maximum allowed rank Dmax and then
perform a search with the aim of finding the best rank within the
range Dmin to Dmax. To this end, we define T D[i] and w̄(D)[i]
as follows:

T D[i] = [ t1[i] . . . tImin [i] . . . tImax [i] ]
T

w̄(D)[i] = [ w̄1[i] . . . w̄Dmin [i] . . . w̄Dmax [i] ]
T . (31)

The proposed rank-selection algorithm is given by

Dopt[i] = arg min
Dmin≤d≤Dmax

Cap

(
T D[i], w̄(D)[i]

)
(32)

where d is an integer, and Dmin and Dmax are the minimum
and maximum ranks that are allowed for the reduced-rank filter,
respectively. Note that a smaller rank may provide faster adap-
tation during the initial stages of the estimation procedure, and
a greater rank usually yields better steady-state performance.
Our studies reveal that the range for which the rank D of the
proposed algorithms has a positive impact on the performance
of the algorithms is limited, being from Dmin = 3 to Dmax = 8
for the reduced-rank filter recursions. These values are rather
insensitive to the system load (the number of users) and to the
number of array elements and work very well for all scenarios
and algorithms examined. The computational complexity of
the proposed rank-selection algorithm with extended filters is
equivalent to the computation of the cost function in (30) and
requires 3(Dmax − Dmin) + 1 additions and a sorting algo-
rithm to find the best rank according to (32). An alternative
strategy to using extended filters is the deployment of multiple
filters with the rank-selection algorithm in (32) that determines
the best set of filters for each time interval. Specifically, this
approach employs Dmax − Dmin + 1 pairs of filters and has a
very high complexity.

A second approach that can be used is a mechanism based
on the observation of the columns of T D[i] and a stopping
rule, as reported in [25]. The method performs the following
optimization:

Dopt[i] = arg max
d

‖PT d
(td[i])‖

‖td[i]‖
> δ (33)

where PT d
(x) is the orthogonal projection of the vector x onto

the subspace T d, and δ is a small positive constant. In [25], the
use of a range of values for allowing the selection has not been
discussed; however, we found that it is beneficial in terms of
complexity to restrict the optimization to an appropriate range
of values Dmax to Dmin, as with the previous method.

Another possibility for rank selection is the use of the CV
method reported in [32]. This approach selects the filters’
lengths that minimize a cost function that is estimated based



1222 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 3, MARCH 2010

TABLE I
COMPUTATIONAL COMPLEXITY OF RLS ALGORITHMS

TABLE II
COMPUTATIONAL COMPLEXITY OF THE PROPOSED RANK-SELECTION

ALGORITHM WITH MULTIPLE FILTERS

on observations (training data) that have not been used in the
process of building the filters themselves as described by

CCV

(
T D[i], w̄(D)[i]

)

=
i∑

l=1

αi−l
∣∣∣d(l) − w̄

H,(D)
(i/l) [i]T D,(i/l)[i]r[l]

∣∣∣2 . (34)

We consider here the same “leave-one-out” approach as in [32].
For a given data record of size i, the CV approach chooses the
filter w̄H,(D)[i] that performs the following optimization:

Dopt[i] = arg min
d∈{1,2,...}

CCV

(
T d[i], w̄(d)[i]

)
. (35)

The main difference between this and the other algorithms
presented lies in the use of CV, which leaves one sample out
in the process, and the use of the constraint on the allowed filter
lengths. In the simulations, we will compare the rank-selection
algorithms and discuss their advantages and disadvantages.

C. Computational Complexity

Here, we detail the computational complexity requirements
of the proposed RLS algorithms and compare them with those
of existing algorithms. We also provide the computational com-
plexity of the proposed and existing rank-selection algorithms.
The computational complexity expressed in terms of additions
and multiplications is depicted in Table I for the RLS algo-
rithms, the complexity of the proposed rank-selection algorithm
with multiple filters, including the proposed RLS algorithm, is
illustrated in Table II, and that of the remaining rank-selection
techniques is given in Table III.

In the case of the proposed reduced-rank RLS algorithm, the
complexity is quadratic with (JM)2 and D2. This corresponds
to a complexity that is slightly higher than the one observed for
the full-rank RLS algorithm, provided D is significantly smaller

TABLE III
COMPUTATIONAL COMPLEXITY OF THE REMAINING

RANK-SELECTION ALGORITHMS

Fig. 2. Complexity in terms of additions and multiplications against the
number of input samples JM and D = 4.

than JM , and comparable with the cost of the MSWF-RLS [25]
and the AVF [32]. To illustrate the main trends in what concerns
the complexity of the proposed and analyzed algorithms, we
show in Fig. 2 the complexity against the number of input
samples JM . The curves indicate that the proposed reduced-
rank RLS algorithm has a complexity that is lower than the
MSWF-RLS algorithm [25] and the AVF [32], whereas it
remains at the same level of the full-rank RLS algorithm.

The proposed rank-selection algorithm with multiple filters
has a number of arithmetic operations that are substantially
higher than the other compared methods since it requires the
computation of Dmax − Dmin + 1 pairs of filters with the
proposed RLS algorithms simultaneously. We separately show
the overall cost of this algorithm in Table II. The computa-
tional complexity of the remaining rank-selection algorithms,
including the proposed and existing rank-selection algorithms,
is shown in Table III. From Table III, we can notice that
the proposed rank-selection algorithm with extended filters is
significantly less complex than the existing methods based on
projection with stopping rule [25] and the CV approach [32].
Specifically, the proposed rank-selection algorithm with ex-
tended filters only requires 2(Dmax − Dmin) additions, as de-
picted in the first row of Table III. To this cost, we must add the
operations that are required by the proposed RLS algorithm,
whose complexity is shown in the second row of Table I using
Dmax according to the procedure outlined in Section V-B. The
complexities of the MSWF and AVF algorithms are detailed in
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the third and fourth rows of Table I. For their operation with
rank-selection algorithms, a designer must add their complexi-
ties in Table I to the complexity of the rank-selection algorithm
of interest, as shown in Table III.

VI. ANALYSIS

Here, we conduct a convexity analysis of the proposed op-
timization that is responsible for designing the filters T D[i]
and w̄[i] of the proposed scheme. We show that the proposed
optimization leads to a problem with multiple solutions, and
we discuss the properties of the method. In particular, we
conjecture that it leads to a problem with multiple and possibly
identical minimum points. This is corroborated by numerous
studies that verify that the method is insensitive to different
initializations (except for the case when T D[i] is a null matrix
and annihilates the received signal) and that it always converges
to the same point of minimum. We also establish the conver-
gence of the proposed optimization algorithm, showing that
the sequence of filters T D[i] and w̄[i] produces a sequence of
outputs that is bounded.

A. Convexity Analysis of the Proposed Method

Here, we carry out a convexity analysis of the proposed
reduced-rank scheme and LS optimization algorithm. Our ap-
proach is based on expressing the output of the proposed
scheme in a convenient form that renders itself to analysis.
Let us consider the proposed optimization method in (13) and
express it by an expanded cost function

C
(
T D[i], w̄H [i]

)
=

i∑
l=1

λi−l
∣∣d[l] − w̄H [i]T H

D [i]r[l]
∣∣2]

=
i∑

l=1

λi−l |d[l]|2 −
i∑

l=1

λi−lw̄H [i]T H
D [i]d∗[l]r[l]

−
i∑

l=1

λi−ld[l]rH [l]T D[i]w̄[i]

+
i∑

l=1

λi−lw̄H [i]T H
D [i]r[l]rH [l]T D[i]w̄[i]. (36)

To proceed, let us express x[i] in an alternative and more
convenient form as

x[i] = w̄H [i]T H
D [i]r[i] = w̄H [i]

D∑
d=1

T H
D [i]r[i]vd

= w̄H [i]

⎡
⎢⎢⎢⎢⎣

r[i] 0 . . . 0

0 r[i]
. . . 0

...
...

. . .
...

0 . . . . . . r[i]

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎣

s∗
1[i]

s∗
2[i]
...

s∗
D[i]

⎤
⎥⎥⎦

= w̄H [i]�T [i]s∗
v[i] (37)

where �[i] is a DJM × D block diagonal matrix with the input
data vector r[i], s∗

v[i] is a DJM × 1 vector with the columns

of T D[i] stacked on top of each other, and the D × 1 vector vd

contains a 1 in the dth position and zeros elsewhere.
To analyze the proposed joint-optimization procedure, we

can rearrange the terms in x[i] and define a single D(JM +
1) × 1 parameter vector q[i] = [w̄T [i] sT

v [i]]T . We can, there-
fore, further express x[i] as

x[i] = qH [i]
[
0D×1 0D×DJM

�[i] 0DJM×DJM

]
q[i]

= qH [i]U [i]q[i] (38)

where U [i] is a D(JM + 1) × D(JM + 1) matrix that con-
tains �[i]. At this stage, we can alternatively express the cost
function in (36) as

C (q[i]) =
i∑

l=1

∣∣d[l] − qH [i]U [l]q[i]
∣∣2 . (39)

We can examine the convexity of the above by computing the
Hessian (H) with respect to q[i] using the expression [42]

H =
∂

∂qH [i]
∂(C (q[i])

∂q[i]
(40)

and testing if the terms are positive semidefinite. Specifically,
H is positive semidefinite if aHHa ≥ 0 for all nonzero a ∈
CD(JM+1)×D(JM+1) [41], [42]. Therefore, the optimization
problem is convex if the Hessian H is positive semidefinite.

Evaluating the partial differentiation in the expression given
in (40) yields

H =
i∑

l=1

(
qH [i]U [l]q[i] − d∗[l]

)
U [l]

+
i∑

l=1

UH [l]q[i]q[i]HU [l]

+
i∑

l=1

(
qH [i]U [l]q[i] − d[l]

)
UH [l]

+
i∑

l=1

U [l]q[i]q[i]HUH [l]. (41)

By examining H , we verify that the second and fourth terms
are positive semidefinite, whereas the first and third terms
are indefinite. Therefore, the optimization problem cannot be
classified as convex. It is, however, important to remark that
our studies indicate that there are no local minima, and there
exist multiple solutions (that are conjectured to be identical).

To support this claim, we have checked the impact on
the proposed algorithms of different initializations. This study
confirmed that the algorithms are not subject to performance
degradation due to the initialization, although we have to bear
in mind that the initialization T D(0) = 0JM×D annihilates the
signal and must be avoided. We have also studied a particular
case of the proposed scheme when JM = 1 and D = 1, which
yields the cost function

C(T D, w̄) = E
[
|d − w̄TDr|2

]]
. (42)
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By choosing TD (the “scalar” projection) fixed with D equal to
1, it is evident that the resulting function C(w̄, TD = 1, r) =
|d − w∗r|2] is a convex one. In contrast to that, for a time-
varying projection TD, the plots of the function indicate that
the function is no longer convex, but it also does not exhibit
local minima. The problem at hand can be generalized to the
vector case; however, we can no longer verify the existence of
local minima due to the multidimensional surface. This remains
as an interesting open problem to be studied.

B. Proof of Convergence of the Method

Here, we show that the proposed reduced-rank algorithm
converges globally and exponentially to the optimal reduced-
rank estimator [15], [22], [23]. An issue that remains an
open problem to be investigated is the transient behavior of
the proposed method, which corresponds to the fact that the
most significant difference between the proposed and existing
(MSWF and AVF) methods is on the transient performance. To
our knowledge, there exists no result for the transient analysis
of the MSWF and AVF methods, although it has been reported
(and verified in our studies) that the AVF [32] has superior
convergence performance over the MSWF.

As discussed in Section VI-A, the optimal solutions T D,opt

and w̄opt are not unique. However, the desired product of
the optimal solutions, i.e., wopt = T D,optw̄opt, is known
and given by R−1/2(R−1/2p)1:D [14], [22], [23], where
R−1/2 is the square root of the input data covariance
matrix, and the subscript 1 : D denotes truncation of the
subspace.

To proceed with our proof, let us rewrite the expressions in
(15) and (16) for time instant 0 as follows:

R[0]T D[0]Rw[0] = P D[0] = p[0]w̄H [0] (43)

R̄[0]w̄[1] = T H
D [0]R[0]T D[0]w̄[1] = p̄[0]. (44)

Using (43), we can obtain the following relation:

Rw[0] =
(
T H

D [0]R2[0]T D[0]
)−1

T H
D [0]R[0]p[0]w̄H [0].

(45)

Substituting the above result for Rw[0] into the expression in
(43), we get a recursive expression for T D[0], i.e.,

T D[0] = R[0]−1p[0]w̄H [0]
(
T H

D [0]R[0]p[0]w̄H [0]
)−1

×
(
T H

D [0]R2[0]T D[0]
)−1

. (46)

Using (44), we can express w̄[1] as

w̄[1] =
(
T H

D [0]R[0]T D[0]
)−1

T H
D [0]p[0]. (47)

Taking into account the relation w[1] = T D[1]w̄[1], we obtain

w[1] = R[1]−1p[1]w̄H [1]
(
T H

D [1]R[1]p[1]w̄H [1]
)−1

·
(
T H

D [1]R2[1]T D[1]
)−1 (

T H
D [0]R[0]T D[0]

)−1
T H

D [0]p[0].

(48)

More generally, we can express the proposed reduced-rank LS
algorithm by the following recursion:

w[i] = T D[i]w̄[i]

= R[i]−1p[i]w̄H [i]
(
T H

D [i]R[i]p[i]w̄H [i]
)−1

·
(
T H

D [i]R2[i]T D[i]
)−1

·
(
T H

D [i − 1]R[i − 1]T D[i − 1]
)−1

T H
D [i − 1]p[i − 1].

(49)

Since the optimal reduced-rank filter can be described by the
SVD of R−1/2p [15], [22], [23], where R−1/2 is the square
root of the covariance matrix R, and p is the cross-correlation
vector, we then have

R−1/2p = ΦΛΦHp. (50)

Considering that there exists some w[0] such that the randomly
selected T D[0] can be written as [22], [23]

T D[0] = R−1/2Φw[0]. (51)

Substituting (51) and using (50) in (49) and manipulating the
algebraic expressions, we can express (49) in a more compact
way that is suitable for analysis, as given by

w[i]=Λ2w[i−1]
(
wH [i− v1]Λ2w[i−1]

)−1
wH [i−1]w[i−1].

(52)

The above expression can be decomposed as follows:

w[i] = Q[i] Q[i − 1] . . . Q[1] w[0] (53)

where

Q[i] = Λ2iw[0]
(
wH [0]Λ4i−2w[0]

)−1
wH [0]Λ2i−2. (54)

At this point, we need to establish that the norm of T D[i] for
all i is both lower and upper bounded, i.e., 0 < ‖T D[i]‖ <
∞ for all i and that w[i] = T D[i]w̄[i] exponentially ap-
proaches wopt[i] as i increases. Due to the linear mapping,
the boundedness of T D[i] is equivalent to that of w[i]. There-
fore, we have, upon convergence, wH [i]w[i − 1] = wH [i −
1]w[i − 1]. Since ‖wH [i]w[i − 1]‖ ≤ ‖w[i − 1]‖‖w[i]‖ and
‖wH [i − 1]w[i − 1]‖ = ‖w[i − 1]‖2, the relation wH [i]w[i −
1] = wH [i − 1]w[i − 1] implies ‖w[i]‖ > ‖w[i − 1]‖, and
hence

‖w[∞]‖ ≥ ‖w[i]‖ ≥ ‖w[0]‖ . (55)

To show that the upper bound ‖w[∞]‖ is finite, let us express
the JM × JM matrix Q[i] as a function of the JM × 1 vector

w[i] =
[
w1[i]
w2[i]

]
and the JM × JM matrix Λ =

[
Λ1

Λ2

]
.

Substituting the previous expressions of w[i] and Λ into Q[i]
given in (54), we obtain

Q[i]=
[
Λ2i

1 w1[0]
Λ2i

2 w2[0]

](
wH

1 [0]Λ4i−2
1 w1[0]+wH

2 [0]Λ4i−2
2 w2[0]

)−1

×
[
wH

1 [0]Λ2i−2
1

wH
2 [0]Λ2i−2

2

]
. (56)
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Applying the matrix identity (A+B)−1 =A−1−A−1B(I +
A−1B)−1A−1 to the decomposed Q[i] in (56) and making i
large, we get

Q[i] = diag(1 . . . 1︸ ︷︷ ︸
D

0 . . . 0︸ ︷︷ ︸
JM−D

) + O (ε[i]) (57)

where ε[i] = (λr+1/λr)2i, with λr+1 and λr the (r + 1)th and
rth largest singular values of R−1/2p, respectively. From (57),
it follows that for some positive constant k, we have ‖w[i]‖ ≤
1 + kε[i]. From (53), we obtain

‖w[∞]‖ ≤ ‖Q[∞]‖ . . . ‖Q[2]‖ ‖Q[1]‖ ‖Q[0]‖

≤ ‖w[0]‖
∞∏

i=1

(1 + kε[i])

= ‖w[0]‖ exp

( ∞∑
i=1

log (1 + kε[i])

)

≤ ‖w[0]‖ exp

( ∞∑
i=1

kε[i]

)

= ‖w[0]‖ exp
(

k

1 − (λr+1/λr)2

)
. (58)

With the development above, the norm of w[i] is proven to
be both lower and upper bounded. Once this is established, the
expression in (49) converges for large i to the reduced-rank
Wiener filter. This can be verified by equating the terms of (52),
which yields

w[i] = R[i]−1p[i]w̄H [i]
(
T H

D [i]R[i]p[i]w̄H [i]
)−1

×
(
T H

D [i]R2[i]T D[i]
)−1

·
(
T H

D [i − 1]R[i − 1]T D[i − 1]
)−1

T H
D [i − 1]p[i − 1]

= R−1/2Φ1Λ1ΦH
1 p + O (ε[i]) (59)

where Φ1 is a JM × D matrix with the D largest eigenvectors
of R, and Λ1 is a D × D matrix with the largest eigenvalues
of R.

VII. SIMULATIONS

The performance of the proposed scheme and algorithms
is assessed in terms of the uncoded bit error rate (BER)
via simulations for space–time interference suppression in a
DS-CDMA system. We consider dynamic fading situations and
perfect synchronization, and the proposed and existing adaptive
algorithms are employed to adjust the filters and track the
channel variations. Specifically, in our proposed reduced-rank
STAP, the output of the receiver x[i] is the input to a slicer that
makes the decision about the transmitted symbol b̂k[i] for user
k as follows:

b̂k[i] = Q (x[i]) = Q
(
ŵH [i]T H

D [i]r[i]
)

(60)

where Q(·) is the function that implements the slicer, and the
kth user is assumed to be user 1.

For all simulations, we use the initial values w̄[0] =
[1 0 . . . 0]T and T D[0] = [ID 0D,JM−D]T . We assume L = 9
to be an upper bound and employ quaternary phase-shift keying

Fig. 3. BER performance versus rank D.

symbols and three-path channels with a power delay profile
[43] given by 0, −3, and −6 dB, where, in each run, the
spacing between paths is obtained from a discrete uniform
random variable between 1 and 2 chips, and the experiments
are averaged over 200 runs. The power and the phase of
each path are time-varying and follow Clarke’s model [43].
This procedure corresponds to the generation of independent
sequences of correlated unit power Rayleigh random variables
for each path. The DoAs of the interferers and the desired
user are uniformly distributed in (0, 2π/3). The system has a
power distribution among the users for each run that follows
a lognormal distribution with an associated standard deviation
equal to 1.5 dB. We compare the proposed scheme with the full-
rank [14], MSWF [25], and AVF [28] techniques for the design
of linear space–time receivers, as well as the rank-selection
algorithms reported in [25] and [32] with the proposed rank-
selection techniques.

In the first scenario, we consider the BER performance
versus the rank D with optimized parameters (forgetting factors
λ = 0.998) for all schemes. The results in Fig. 3 indicate that
the best rank for the proposed scheme is D = 4 for a data record
of 500 symbols, as it is very close to the optimal linear MMSE
estimator. Studies with systems with different processing gains
and loads show that D does not significantly vary with either
the system size or the load. However, it should be remarked
that considerable performance gains can be obtained with an
automatic rank-adaptation algorithm to fine tune the used rank.

In a second experiment, the BER convergence performance
in a mobile communication situation is shown in Fig. 4. The
channel coefficients are obtained with Clarke’s model [43],
and the adaptive estimators of all methods are trained with
200 symbols and are then switched to decision-directed mode.
The results show that the proposed scheme has considerably
better performance than the existing approaches and is able to
adequately track the desired signal. In particular, the proposed
reduced-rank algorithm converges in 100 symbols for the case
of J = 1, in about 200 symbols for the case of J = 2, and in
about 400 symbols for J = 3. This is substantially faster than
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Fig. 4. BER performance versus the number of received symbols.

Fig. 5. BER performance versus the number of received symbols with auto-
matic rank adaptation.

the existing reduced-rank schemes, namely, the MSWF and the
AVF (which are known to have the best performance available
in the area), and the full-rank RLS algorithm.

In practice, the rank D can be adapted to obtain fast conver-
gence and ensure good steady-state performance and tracking
after convergence. To this end, we developed the automatic
rank-selection algorithm in Section V. We will assess this
algorithm in a scenario that is identical to the previous experi-
ment. The results in Fig. 5 show that significant gains can be
obtained from the use of the automatic rank-selection algo-
rithm. Specifically, we can notice that the proposed reduced-
rank algorithm has very fast convergence with D = 3, although
it does not provide steady-state performance that is close
to the full-rank optimal linear MMSE estimator. When the
proposed reduced-rank algorithm employs D = 8, the conver-
gence is notably slower, although it is able to approach the
full-rank optimal linear MMSE estimator in steady state, as
shown in Fig. 5 and evidenced in our studies. Interestingly,

Fig. 6. BER performance versus the number of received symbols with dif-
ferent automatic rank adaptation algorithms and the proposed reduced-rank
scheme and algorithm.

when equipped with the proposed automatic rank-selection
algorithm, the proposed reduced-rank RLS algorithm achieves
convergence performance that is as good as with D = 3 and
steady-state performance that is equivalent to that with D = 8.
Another important issue is that the differences in performance
are more pronounced for larger filters when the usefulness of
the automatic rank-selection algorithm becomes clearer.

To assess the performance of the proposed rank-selection
algorithms, we consider the scenario of the previous experiment
with J = 1 and 3 and compare the rank-selection algorithms
based on a stopping criterion [25], the CV method in [32], and
the proposed LS-based method with two variations, namely,
the multiple filters and the extended filter approaches. The
results shown in Fig. 6 indicate that the LS-based methods
are slightly better than the other techniques. The CV approach
has the advantage that it does not require the setting of Dmin

and Dmax; however, it may perform a search over a higher
range of values that leads to higher complexity. The remaining
techniques operate with Dmin = 3 and Dmax = 8. The method
with a stopping rule has performance that is slightly worse
than the remaining schemes, and its complexity is higher than
those of the LS-based techniques due to the computation of the
orthogonal projection.

At this point, we will consider a study of the BER perfor-
mance against the normalized fading rate of the channel fdT
in the experiment shown in Fig. 7. We assess the performance
of the receivers with a data record of 1000 symbols of training.
The proposed algorithm is equipped with the automatic rank-
selection algorithm, and the MSWF and AVF algorithms are
also equipped with the rank-adaptation techniques reported in
[25] and [32], respectively. We observe from the curves in Fig. 7
that the proposed reduced-rank algorithm obtains substantial
gains in BER performance over the existing MSWF and AVF
algorithms and the full-rank RLS algorithm. We can notice
that as the channel becomes more hostile, the performance of
the analyzed algorithms degrades, indicating that the adaptive
techniques are encountering difficulties in dealing with the
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Fig. 7. BER performance versus the number of received symbols.

Fig. 8. BER performance against (a) Eb/N0 (in decibels) and (b) number of
users K for different techniques.

changing environment and interference. This behavior is more
pronounced when the algorithms have to adjust filters with
more coefficients, e.g., for more antenna elements (J = 2, 3).
In this regard, the reduced-rank algorithms obtain significant
gains over the full-rank RLS algorithm, and in particular,
the proposed reduced-rank algorithm achieves the best perfor-
mance among them.

The last experiment shows the BER performance versus the
Eb/N0 and the number of users (K), which is illustrated in
Fig. 8. In this scenario, all algorithms are trained with 200 sym-
bols and are switched to decision-directed mode for processing
another 1500 symbols. The curves are obtained after 5000 runs.
The proposed algorithm is equipped with the automatic rank-
selection algorithm, and the MSWF and AVF techniques are
also equipped with the rank-adaptation methods reported in
[25] and [32], respectively. The results confirm the excellent
performance of the proposed reduced-rank algorithm, which
can approach the performance of the optimal MMSE full-
rank linear estimator (simply denoted as the MMSE) that as-
sumes the knowledge of the channels, the DoAs, and the noise

variance. In particular, the proposed reduced-rank algorithm
can save up to 2 dB in Eb/N0 in comparison with the exist-
ing reduced-rank techniques for the same BER performance,
whereas it can accommodate up to four more users than the
MSWF and the AVF for the same BER performance. Inter-
estingly, the performance of the optimal reduced-rank linear
MMSE estimator [15] that assumes the knowledge of R and
employs SVD is quite similar to that of the optimal full-rank
one. For this reason, we only show the performance of the full-
rank optimal linear MMSE estimator.

VIII. CONCLUSION

We have proposed a reduced-rank scheme based on joint
iterative optimization of parameter vectors. In the proposed
scheme, the full-rank adaptive filters are responsible for esti-
mating the subspace projection rather than the desired signal,
which is estimated by a small reduced-rank filter. We have
developed a computationally efficient RLS algorithm for esti-
mating the parameters of the proposed scheme and an automatic
rank-selection algorithm to compute the rank of the proposed
RLS algorithm. The proposed algorithms require neither an
SVD for dimensionality reduction nor any knowledge about the
order of the reduced-rank model. The results for space–time
interference suppression in a DS-CDMA system show per-
formance that is significantly better than existing schemes
and close to the full-rank optimal linear MMSE estimator in
dynamic and hostile environments. The proposed algorithms
can be employed in a variety of applications, including spread-
spectrum and multiple-input–multiple-output systems, wire-
less networks, cooperative communications, and navigation
receivers.
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