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Adaptive Reduced-Rank Equalization Algorithms
Based on Alternating Optimization Design

Techniques for MIMO Systems
Rodrigo C. de Lamare, Senior Member, IEEE, and Raimundo Sampaio-Neto

Abstract—This paper presents a novel adaptive reduced-rank
multiple-input–multiple-output (MIMO) equalization scheme and
algorithms based on alternating optimization design tech-
niques for MIMO spatial multiplexing systems. The proposed
reduced-rank equalization structure consists of a joint iterative
optimization of the following two equalization stages: 1) a trans-
formation matrix that performs dimensionality reduction and
2) a reduced-rank estimator that retrieves the desired transmitted
symbol. The proposed reduced-rank architecture is incorporated
into an equalization structure that allows both decision feedback
and linear schemes to mitigate the interantenna (IAI) and inter-
symbol interference (ISI). We develop alternating least squares
(LS) expressions for the design of the transformation matrix and
the reduced-rank estimator along with computationally efficient
alternating recursive least squares (RLS) adaptive estimation al-
gorithms. We then present an algorithm that automatically adjusts
the model order of the proposed scheme. An analysis of the LS al-
gorithms is carried out along with sufficient conditions for conver-
gence and a proof of convergence of the proposed algorithms to the
reduced-rank Wiener filter. Simulations show that the proposed
equalization algorithms outperform the existing reduced- and full-
algorithms while requiring a comparable computational cost.

Index Terms—Equalization structures, multiple-input–
multiple-output (MIMO) systems, parameter estimation, reduced-
rank schemes.

I. INTRODUCTION

THE HIGH demand for performance and capacity in wire-
less networks has led to the development of numerous sig-

nal processing and communications techniques for efficiently
employing the resources. Recent results on information theory
have shown that it is possible to achieve high spectral efficiency
[1] and make wireless links more reliable [2], [3] through
the deployment of multiple antennas at both the transmitter
and the receiver. In multiple-input–multiple-output (MIMO)
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communications systems, the received signal is composed of
the sum of several transmitted signals that share the propagation
environment and are subject to multipath propagation effects
and noise at the receiver. The multipath channel results in inter-
symbol interference (ISI), whereas the nonorthogonality among
the signals transmitted gives rise to interantenna interference
(IAI) at the receiver.

To mitigate the effects of ISI and IAI that reduce the per-
formance and the capacity of MIMO systems, the designer
has to construct a MIMO equalizer. The optimal MIMO
equalizer known as the maximum-likelihood sequence estima-
tion (MLSE) receiver was originally developed in the con-
text of multiuser detection in [4]. However, the exponential
complexity of the optimal MIMO equalizer makes its imple-
mentation costly for multipath channels with severe ISI and
MIMO systems with several antennas. In practice, designers
often prefer the deployment of low-complexity MIMO re-
ceivers, e.g., the linear method [5], [6], the successive inter-
ference cancellation-based vertical-Bell Laboratories layered
space–time [7], and decision feedback equalizers (DFEs) [8]–
[14]. The DFE schemes [8]–[14] can achieve significantly
better performance than linear methods due to the interference
cancellation capabilities of the feedback section. These re-
ceivers require the estimation of the coefficients used for com-
bining the received data and extracting the desired transmitted
symbols. A challenging problem in MIMO systems [15] is
encountered when the length of the equalizer or the number
of antenna pairs is large, which is key to future applications
[16]–[18]. In these situations, an estimation algorithm requires
substantial training for the MIMO equalizer and a large number
of received symbols to reach its steady-state behavior.

There are several algorithms for designing MIMO equal-
izers, which possess different tradeoffs between performance
and complexity [19]. In this regard, least squares (LS)-based
algorithms are often the preferred choice with respect to con-
vergence performance. However, when the number of filter
elements in the equalizer is large, an adaptive LS-type algo-
rithm requires a large number of samples to reach its steady-
state behavior and may encounter problems in tracking the
desired signal. Reduced-rank techniques [20]–[34] are power-
ful and effective approaches in low-sample support situations
and in problems with large filters. These algorithms can ex-
ploit the low-rank nature of signals that are found in MIMO
communications [36] to achieve faster convergence speed,
increased robustness to interference, and better tracking
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Fig. 1. MIMO system model.

performance than full-rank techniques. By projecting the input
data onto a low-rank subspace associated with the signals of
interest, reduced-rank methods can eliminate the interference
that lies in the noise subspace and perform denoising [20]–[34].
Prior work on reduced-rank estimators for MIMO systems is
extremely limited and relatively unexplored, with the work of
Sun et al. [25] being one of the few existing studies in this re-
search area. A comprehensive study of reduced-rank equaliza-
tion algorithms for MIMO systems has not been considered. It
is well known that the optimal reduced-rank approach is based
on the eigenvalue decomposition (EVD) of the known input
data covariance matrix R [20]. However, this covariance matrix
must be estimated. The approach that is taken to estimate R and
perform dimensionality reduction is of central importance and
plays a key role in the performance of the system. Numerous
reduced-rank strategies have been proposed over the last two
decades. The first methods were based on the EVD of the
time-averaged estimates of R [20], in which the dimensionality
reduction is carried out by a transformation matrix formed by
appropriately selected eigenvectors computed with the EVD.
A more recent and elegant approach to the problem was taken
with the advent of the multistage Wiener filter (MSWF) [22],
which was later extended to adaptive versions in [23] and [24],
and MIMO applications [25]. Another related method is the
auxiliary vector filtering (AVF) algorithm [26]–[28], which can
outperform MSWF. One key limitation with prior art is the
deficient exchange of information between the dimensionality
reduction task and the subsequent reduced-rank estimation.

In this paper, we propose adaptive reduced-rank MIMO
equalization algorithms based on alternating optimization de-
sign techniques for MIMO spatial multiplexing systems. The
proposed reduced-rank equalization structure and algorithms
consist of a joint iterative optimization that alternates be-
tween the following two equalization stages: 1) a transfor-
mation matrix that performs dimensionality reduction and
2) a reduced-rank estimator that suppresses the IAI caused by
the associated data streams and retrieves the desired transmitted
symbol. The essence of the proposed scheme is to change
the role of the equalization filters and promote the exchange
of information between the dimensionality reduction and the
reduced-rank estimation tasks in an alternated way. To estimate
the coefficients of the proposed MIMO reduced-rank equal-
izers, we develop alternating least squares (LS) optimization
algorithms and expressions for the joint design of the transfor-
mation matrix and the reduced-rank filter. We derive alternating
recursive least squares (RLS) adaptive algorithms for their com-
putationally efficient implementation and present a complexity
study of the proposed and existing algorithms. We also describe
an algorithm for automatically adjusting the model order of
the proposed reduced-rank MIMO equalization schemes. An

analysis of the proposed LS optimization is conducted, in
which sufficient conditions and proofs for the convergence of
the proposed algorithms are derived. The performance of the
proposed scheme is assessed through simulations for MIMO
equalization applications. The main contributions of this paper
are summarized as follows:

1) a reduced-rank MIMO equalization scheme and a design
approach for both decision feedback (DF) and linear
structures;

2) reduced-rank LS expressions and recursive algorithms for
parameter estimation;

3) an algorithm for automatically adjusting the model order;
4) analysis and convergence proofs of the proposed

algorithms;
5) a study of MIMO reduced-rank equalization algorithms.
This paper is structured as follows. The MIMO system and

signal model is described in Section II. The proposed adaptive
MIMO reduced-rank equalization structure is introduced, along
with the problem statement, in Section III. Section IV is devoted
to the development of the LS estimators, the computationally
efficient RLS algorithms, and the model-order selection algo-
rithms. Section V presents an analysis and proofs of conver-
gence of the proposed algorithms. Section VI discusses the
simulation results, and Section VII gives the conclusions of this
paper.

Notation: In this paper, bold uppercase and lowercase letters
represent matrices and vectors, respectively. (.)∗, (.)∗H , (.)−1,
and (.)T will represent the complex conjugate, complex conju-
gate transpose (Hermitian), inverse, and transpose, respectively.
tr(.) is the trace operator of a matrix. Reduced-rank vectors and
matrices are given with the addition of a bar (̄.), and estimated
symbols are denoted by the addition of a hat (̂.).

II. MULTIPLE-INPUT–MULTIPLE-OUTPUT

SYSTEM AND SIGNAL MODEL

In this section, we present the MIMO communications
system and signal model and describe its main components.
The model in this section is intended to describe a general
MIMO system in multipath channels. However, it can also
serve as a model for broadband MIMO communications
systems with guard intervals, including methods based on
orthogonal frequency-division multiplexing (OFDM) [37], [38]
and single-carried (SC) modulation with frequency-domain
equalization [39].

Consider a MIMO system with NT antennas at the transmit-
ter and NR antennas at the receiver in a spatial multiplexing
configuration, as shown in Fig. 1. The system is mathematically
equivalent to the approach in [9]. The signals are modulated and
transmitted from NT antennas over multipath channels whose
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Fig. 2. Proposed MIMO reduced-rank DFE structure.

propagation effects are modeled by finite impulse response
(FIR) filters with Lp coefficients and are received by NR an-
tennas. We assume that the channel can vary during each packet
transmission and the receiver is perfectly synchronized with the
main propagation path. At the receiver, a MIMO equalizer is
used to mitigate IAI and ISI and retrieve the transmitted signals.

The signals that are transmitted by the system at time in-
stant i can be described by x[i] = [x1[i], . . . , xNT

[i]]T , where
xj [i], j = 1, . . . , NT are independent and identically distrib-
uted symbols of unit variance. The demodulated signal received
at the kth antenna and time instant i after applying a filter
matched to the signal waveform and sampling at symbol rate is
expressed by

yk[i]=
NT∑
j=1

Lp−1∑
l=0

hj,k,l[i]xj [i − l] + nk[i], for k=1, . . . , NR

(1)

where hj,k,l[i] is the sampled impulse response between trans-
mit antenna j and receive antenna k for path l, and nk[i] are
samples of white Gaussian complex noise with zero mean and
variance σ2. By collecting the samples of the received signal
and organizing them in a window of L symbols (L ≥ Lp)
for each antenna element, we obtain the LNR × 1 received
vector as

y[i] = H[i]xT [i] + n[i] (2)

where y[i] = [yT
1 [i], . . . ,yT

NR
[i]]T contains the signals that are

collected by the NR antennas, and the L × 1 vector yk[i] =
[yk[i], . . . , yk[i − L + 1]]T , for k = 1, . . . , NR, contains the
signals that are collected by the kth antenna and are organized
into a vector. The window size L must be chosen according
to the prior knowledge about the delay spread of the multipath
channel [45]. The LNR × LNT MIMO channel matrix H[i] is

H[i] =

⎡
⎢⎢⎣

H1,1[i] H1,2[i] . . . H1,NT
[i]

H2,1[i] H2,2[i] . . . H2,NT
[i]

...
...

. . .
...

HNR,1[i] HNR,2[i] . . . HNR,NT
[i]

⎤
⎥⎥⎦ (3)

where the L × L matrix Hj,k[i] are Toeplitz matrices, with the
channel gains organized in a channel vector hj,k[i] = [hj,k,1[i],
. . . , hj,k,Lp−1]T that is shifted down by one position from left

to right for each column and describes the multipath channel
from antenna j to antenna k. The elements hj,k,l[i], for l = 0,
. . . , Lp, of hj,k[i] are modeled as random variables and follow
a specific propagation channel model [45], as will be detailed in
Section VI. The LNT × 1 vector xT [i] = [xT

1 [i], . . . ,xT
NT

[i]]T

is composed of the data symbols that are transmitted from the
NT antennas at the transmitter, with xj [i] = [xj [i], . . . , xj [i −
L + 1]]T being the ith transmitted block with dimensions L ×
1. The LNR × 1 vector n[i] is a complex Gaussian noise vector
with zero mean, and E[n[i]nH [i]] = σ2I , where (·)T and (·)H

denote the transpose and the Hermitian transpose, respectively,
and E[·] stands for the expected value.

III. PROPOSED ADAPTIVE REDUCED-RANK

MULTIPLE-INPUT–MULTIPLE-OUTPUT DECISION

FEEDBACK EQUALIZER AND PROBLEM FORMULATION

We present the proposed reduced-rank MIMO equalization
structure and state the main design problem of reduced-rank
MIMO equalization structures. Both DF and linear equalization
structures can be devised by adjusting the dimensions of the
filters and the use of feedback. We will start with the description
of the DF structure and then obtain the linear scheme as a
particular case. In the proposed MIMO reduced-rank DFE,
the signal-processing tasks are carried out in two stages, as
illustrated in Fig. 2. The proposed scheme employs two sets
of filters and stacks the decision and the input data vectors for
joint processing. The DF strategy that is adopted in this paper is
the parallel scheme reported in [9] and [13], which first obtains
the decision vector x̂T,j [i] with linear equalization and then
employs x̂T,j [i] to cancel the interference that is caused by the
interfering streams. A decision delay δdec is assumed between
the symbols that are transmitted and the x̂T,j [i] that is obtained
after the decision block. The parallel strategy outperforms
the successive approach that uses a sequential procedure of
equalization and interference cancellation [7], [8].

Let us consider the design of the proposed MIMO reduced-
rank equalizer using the structure shown in Fig. 2. The
M × 1 input data vector r[i] to the proposed equalizer is
obtained by stacking the LNR × 1 received vector y[i] and the
B(NT − 1) × 1 vector of decisions x̂T,j [i] for stream j and is
described by

rj [i] =
[

y[i]
x̂T,j [i]

]
(4)



DE LAMARE AND SAMPAIO-NETO: EQUALIZATION BASED ON ALTERNATING OPTIMIZATION FOR MIMO SYSTEMS 2485

where M = LNR + B(NT − 1) represents the number of
samples for processing. The B(NT − 1) × 1 vector of deci-
sions x̂T,j [i] = [x̂j [i], . . . , x̂j [i − B + 1]]T for the jth stream
takes into account B decision instants for the feedback and
excludes the jth detected symbol to avoid canceling the desired
symbol. The NT × 1 vector of decisions is given by x̂[i] =
[x̂1[i], . . . , x̂NT

[i]]T , whereas the NT − 1 × 1 vector of deci-
sions that excludes stream j and is employed to build x̂T,j [i] is
given by x̂j [i] = [x̂1[i], . . . , x̂j−1[i]x̂j+1[i], . . . , x̂NT

[i]]T .
Let us now consider an M × D transformation matrix

SD,j [i] that carries out a dimensionality reduction on the
received data rj [i] and exploit the low-rank nature of the data
transmitted over stream j as follows:

r̄j [i] = SH
D,j [i]rj [i], j = 1, . . . , NT (5)

where D is the rank of the resulting equalization system.
The resulting projected received vector r̄j [i] is the input

to an estimator represented by the D × 1 vector w̄j [i] =
[w̄j,1[i], w̄j,2[i], . . . , w̄j,D[i]]T . According to the schematic
shown in Fig. 2, the output of the proposed MIMO reduced-
rank DFE is obtained by linearly combining the coefficients
of SD,j [i] and w̄j [i] to extract the symbol transmitted from
antenna j. Note that all D-dimensional quantities have a “bar.”
The proposed MIMO reduced-rank DFE output is

z̃j [i] = w̄H
j [i]SH

D,j [i]rj [i] = w̄H
j [i]r̄j [i]. (6)

Based on the outputs zj [i] for j = 1, 2, . . . , NT , we construct
the vector z[i] = [z1[i], . . . , zj [i], . . . , zNT

[i]]T . The initial de-
cisions for each data stream are obtained without resorting to
the feedback and are computed as follows:

x̂j [i] = Q

(
w̄H

j [i]SH
D,j [i]

[
y[i]
0

])
(7)

where Q(·) represents a decision device that is suitable for
the constellation of interest [binary phase-shift keying (BPSK),
quaternary phase-shift keying (QPSK), or quadratic-amplitude
modulation (QAM)], and the vector of decisions is constructed
as x̂[i] = [x̂1[i], . . . x̂j [i], . . . , x̂NT

[i]]T and is used to construct
x̂T,j [i] and rj [i], as shown in (4). The detected symbols x̂(f)[i]
of the proposed reduced-rank MIMO DFE after the IAI and ISI
cancellation are obtained by

x̂(f)[i] = Q (z[i]) = Q

⎛
⎜⎝
⎡
⎢⎣

w̄H
1 [i]SH

D,1[i]r1[i]
...

w̄H
NT

[i]SH
D,NT

[i]rNT
[i]

⎤
⎥⎦
⎞
⎟⎠ . (8)

The feedback employs B(NT − 1) connections to cancel the
IAI, the other NT − 1 data streams, and the ISI from the
adjacent symbols. A reduced-rank MIMO linear equalizer is
obtained by neglecting the feedback with the decision process-
ing of the structure in Fig. 2.

The previous development suggests that the key aspect
and problem to be solved in the design of reduced-rank
MIMO equalization schemes is the cost-effective computation
of the estimators SD,j [i] and w̄j [i]. The transformation matrix
SD,j [i] plays the most important role, because it carries out the

dimensionality reduction, which profoundly affects the perfor-
mance of the remaining estimators and the MIMO equalizers.
Methods based on EVD [20], MSWF [23], and AVF [26]–[28]
were reported for the design of SD,j [i]; however, they did not
jointly consider the design of SD,j [i] and w̄j [i] through alter-
nating optimization recursions. In the next section, we present
the reduced-rank LS algorithms and their recursive versions for
the design of SD,j [i] and w̄j [i] used in the proposed MIMO
equalization structure.

IV. PROPOSED REDUCED-RANK LEAST SQUARES

DESIGN AND ADAPTIVE ALGORITHMS

In this section, we present a joint iterative exponentially
weighted reduced-rank LS estimator design of the parameters
SD,j [i] and w̄j [i] of the proposed MIMO reduced-rank DFE.
We then derive computationally efficient algorithms for com-
puting the proposed LS estimator in a recursive way and au-
tomatically adjusting the model order. The deficient exchange
of information between the dimensionality reduction task and
the reduced-rank estimation verified in previously reported
algorithms [22]–[28] is addressed by the alternated procedure
that updates SD,j [i] and w̄j [i]. In particular, the expression of
SD,j [i] is a function of w̄j [i], and vice versa, and this condition
allows the coefficients to be computed through an alternating
procedure with exchange of information in both ways (from
SD,j [i] to w̄j [i], and vice versa). Our studies and numerical
results indicate that this approach is more effective than the
MSWF [23] and AVF [28] algorithms. In addition, the rank
reduction is based on the joint and iterative LS minimization,
which has been found superior to the Krylov subspace, as evi-
denced in the numerical results. This case allows the proposed
method to outperform MSWF and AVF. We have opted for
the use of one cycle (or iteration) per time instant to keep the
complexity low. We also detail the computational complexity
of the proposed and existing algorithms in terms of arithmetic
operations.

A. Reduced-Rank LS Estimator Design

To design SD,j [i] and w̄j [i], we describe a joint iterative
reduced-rank LS optimization algorithm. Consider the expo-
nentially weighted LS expressions for the estimators SD,j [i]
and w̄j [i] through the cost function

Cj(SD,j [i], w̄j [i]) =
i∑

l=1

λi−l
∣∣xj [l] − w̄H

j [i]SH
D,j [i]rj [l]

∣∣2
(9)

where 0 < λ ≤ 1 is the forgetting factor.
The proposed exponentially weighted LS design corresponds

to solving the following optimization problem:{
Sopt

D,j , w̄
opt
j

}
= arg min

¯SD,j [i],wj [i]
Cj (SD,j [i], w̄j [i]) . (10)

To solve the problem in (10), the proposed strategy is to fix a
set of parameters, find the other set of parameters that minimize
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(9), and alternate this procedure between the two sets SD,j [i]
and w̄j [i]. By minimizing (9) with respect to SD,j [i], we obtain

SD,j [i] = R−1
j [i]P D,j [i]R

†
w̄j

[i − 1] (11)

where the M × D matrix P D,j [i] =
∑i

l=1 λi−lx∗
j [l]rj

[l]w̄H
j [i − 1], Rj [i] =

∑i
l=1 λi−lrj [l]rH

j [l], (·)† denotes
the Moore–Penrose pseudoinverse and the D × D matrix
Rw̄j

[i − 1] = w̄j [i − 1]w̄H
j [i − 1]. Because Rw̄j

[i − 1]
is a rank-1 matrix, we need to either compute the
pseudoinverse or introduce a regularization term in the
recursion Rw̄j

[i − 1] =
∑i−1

l=1 λi−lw̄j [l]w̄H
j [l]. We have opted

to use the latter approach with the initial regularization factor
Rw̄j

[0] = δI for numerical and simplicity reasons.
By minimizing (9) with respect to w̄j [i], the reduced-rank

estimator becomes

w̄j [i] = R̄
−1
j [i]p̄j [i] (12)

where p̄j [i] = SH
D,j [i]

∑i
l=1 λi−lx∗

j [l] rj [l] =
∑i

l=1 λi−lx∗
j

[l]r̄j [l]], and the D × D reduced-rank correlation matrix is
described by R̄j [i] = SH

D,j [i]
∑i

l=1 λi−lrj [l]rH
j [l]SD,j [i].

The equation with the associated sum of error squares (SES)
is obtained by substituting the expressions in (11) and (12) into
the cost function (9) and is given by

SES = σ2
xj

− w̄H
j [i]SH

D,j [i]p[i] − pH [i]SD,j [i]w̄j [i]

+ w̄H [i]SH
D,j [i]Rj [i]SD,j [i]w̄j [i] (13)

where σ2
xj

=
∑i

l=1 λi−l|xj [l]|2. Note that the expressions in
(11) and (12) are not closed-form solutions for w̄j [i] and
SD,j [i], because they depend on each other, and thus, they
have to be alternated with an initial guess to obtain a solution.
The key strategy lies in the joint optimization of the estimators.
The rank D must be set by the designer to ensure appropriate
performance. The computational complexity of calculating (11)
and (12) is cubic with the number of elements in the estimators,
i.e., M and D, respectively. In the following discussion, we in-
troduce efficient RLS algorithms for computing the estimators
with a quadratic cost.

B. Reduced-Rank RLS Algorithms

In this section, we present a recursive approach for efficiently
computing the aforementioned LS expressions. In particular,
we develop reduced-rank RLS algorithms for computing w̄j [i]
and SD,j [i]. Unlike conventional (full-rank) RLS algorithms
that require the calculation of one estimator for the MIMO
DFE, the proposed reduced-rank RLS technique jointly and
iteratively computes the transformation matrix SD,j [i] and the
reduced-rank estimator w̄j [i]. To start the derivation of the
proposed algorithms, let us define

P j [i]
Δ=R−1

j [i],

Qw̄j
[i − 1] Δ=R−1

w̄j
[i − 1],

P D,j [i]
Δ=λP D,j [i − 1]+x∗

j [i]rj [i]w̄H [i−1]. (14)

Rewriting the expression in (11), we arrive at

SD,j [i] =R−1
j [i]P D,j [i]R−1

w̄j
[i − 1]

=P j [i]P D,j [i]Qw̄j
[i − 1]

=SD,j [i − 1] + kj [i]
×

(
x∗

j [i]t
H
j [i − 1] − rH

j [i]SD,j [i − 1]
)

(15)

where the D × 1 vector tj [i − 1] = Qw̄j
[i − 1]w̄j [i − 1], and

the M × 1 Kalman gain vector is

kj [i] =
λ−1P j [i − 1]rj [i]

1 + λ−1rH
j [i]P j [i − 1]rj [i]

. (16)

In addition, the update for the M × M matrix P j [i] employs
the matrix inversion lemma [19]

P j [i] = λ−1P j [i − 1] − λ−1kj [i]rH
j [i]P j [i − 1] (17)

and the D × 1 vector tj [i − 1] is updated as

tj [i − 1] =
λ−1Qw̄j

[i − 1]w̄j [i − 1]

1 + λ−1w̄H
j [i − 1]Qw̄j

[i − 1]w̄j [i − 1]
. (18)

The matrix inversion lemma is then used to update the D × D
matrix Qw̄j

[i − 1], as described by

Qw̄j
[i−1]=λ−1Qw̄j

[i − 2]−λ−1tj [i − 1]w̄H
j [i−2]Qw̄j

[i−2].
(19)

Equations (14)–(19) constitute the part of the proposed
reduced-rank RLS algorithms for computing SD,j [i].

To develop the second part of the algorithm that estimates
w̄j [i], let us consider the expression in (12) with its associated
quantities, i.e., the D × D matrix R̄j [i] =

∑i
l=1 λi−lr̄j [l]r̄H

j [l]
and the D × 1 vector p̄j [i] =

∑i
l=1 λi−lx∗

j [l]r̄j [l].
Let us now define Φ̄j [i] = R−1

j [i] and rewrite p̄j [i] as
p̄j [i] = λp̄j [i − 1] + x∗

j [i]r̄j [i]. We can then rewrite (12) as
follows:

w̄j [i] = Φ̄j [i]p̄j [i]

= w̄j [i − 1] − k̄j [i]r̄H
j [i]w̄j [i − 1] + k̄j [i]x∗

j [i]

= w̄j [i − 1]+k̄j [i]
(
x∗

j [i]−r̄H
j [i]w̄j [i−1]

)
. (20)

By defining ξj [i] = xj [i] − w̄H
j [i − 1]r̄j [i], we arrive at the

proposed RLS algorithm for computing w̄j [i] as

w̄j [i] = w̄j [i − 1] + k̄j [i]ξ∗j [i] (21)

where the D × 1 Kalman gain vector is given by

k̄j [i] =
λ−1Φ̄j [i − 1]r̄j [i]

1 + λ−1r̄H
j [i]Φ̄j [i − 1]r̄j [i]

(22)

and the update for the matrix inverse Φ̄[i] employs the matrix
inversion lemma [19]

Φ̄j [i] = λ−1Φ̄j [i − 1] − λ−1k̄j [i]r̄H
j [i]Φ̄j [i − 1]. (23)

Equations (21)–(23) constitute the second part of the proposed
algorithm that computes w̄j [i]. The computational complexity
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of the proposed RLS algorithms is O(D2) for the estimation
of w̄j [i] and O(M2) for the estimation of SD,j [i]. Because
D � M for moderate to large L, NR, NT , and B, as will
be explained in the next section, the overall complexity is in
the same order of the conventional full-rank RLS algorithm
(O(M2)) [19].

C. Model-Order Selection Algorithm

The performance of the aforementioned LS and RLS
algorithms depends on the model order or the rank D. This
condition motivates the development of methods to automat-
ically adjust D using an LS cost function as a mechanism
of controlling the selection. Prior methods for model-order
selection that use MSWF-based algorithms [23] or AVF-based
recursions [28] have considered projection techniques [23]
and cross-validation [28] approaches. Here, we focus on an
approach that jointly determines D based on an LS criterion
that is computed by the estimators SD,j [i] and w̄j [i], where
the superscript D denotes the rank that is used for the adapta-
tion. The methods considered here (the proposed and existing
approaches [23], [28]) are the most suitable for model-order
adaptation in time-varying channels. Other techniques, e.g., the
Akaike information criterion-based and the minimum descrip-
tion length, do not lend themselves to time-varying situations
and are computationally complex [19].

The key quantities to be updated are the transformation ma-
trix SD,j [i], the reduced-rank estimator w̄j [i], and the inverse
of the reduced-rank covariance matrix P̄ j [i] (for the proposed
RLS algorithm). In particular, we allow the dimensions of
SD,j [i] and w̄j [i] to vary from Dmin and Dmax, which are
the minimum and maximum ranks allowed, respectively. Note
that only one recursion to obtain P̄ j [i] is computed with Dmax

to keep the complexity low. Once P̄ j [i] has been obtained,
we perform a search for the best D for SD,j [i] and w̄j [i],
which require submatrices of P̄ j [i] for their computation. The
transformation matrix SD,j [i] and the reduced-rank estimator
w̄j [i] employed with this algorithm are illustrated by

SD,j [i]=

⎡
⎢⎣ s1,1,j [i] . . . s1,Dmin,j [i] . . . s1,Dmax,j [i]

...
...

...
. . .

...
sM,1,j [i] . . . sM,Dmin,j [i] . . . sM,Dmax,j [i]

⎤
⎥⎦

w̄D,j [i]= [w1,j [i] w2,j [i] . . . wDmin,j [i] . . . wDmax,j [i]]
T . (24)

The method for automatically selecting D of the algorithm is
based on the exponentially weighted a posteriori LS-type cost
function

Cj(SD,j [i], w̄d,j [i]) =
i∑

l=1

λi−l
∣∣xj [l] − w̄H

d,j [i]S
H
D,j [i]rj [l]

∣∣2 .

(25)

For each time interval i, we select the rank Dopt[i] that mini-
mizes Cj(SD,j [i], w̄D,j [i]), and the exponential weighting fac-
tor λ is required, because the optimal rank varies as a function
of the data record. The transformation matrix SD,j [i] and the
reduced-rank estimator w̄d,j [i] are updated along with P̄ [i] for

TABLE I
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

the maximum allowed rank Dmax, and then, the proposed rank
adaptation algorithm determines the best model order for each
time instant i using the cost function in (25). The proposed
model-order selection algorithm is given by

Dj,opt[i] = arg min
Dmin≤d≤Dmax

Cj (Sd,j [i], w̄d,j [i]) (26)

where d is an integer, and Dmin and Dmax are the minimum
and maximum ranks allowed for the estimators, respectively.
A small rank may provide faster adaptation during the initial
stages of the estimation procedure, whereas a large rank usually
yields a better steady-state performance. Our studies indicate
that the range for which the rank D of the proposed algorithms
have a positive impact on the performance of the algorithms is
limited. In particular, we have found that, even for large systems
(NR = NT = 20, 30, 40, 50, 60), the rank does not scale with
the system size and remains small. The typical range of values
remains between Dmin = 3 and Dmax = 8 for the system sizes
examined (NR = NT = 20, 30, 40, 50, 60). This case is an im-
portant aspect of the proposed algorithms, because it keeps the
complexity low (comparable with a standard RLS algorithm).
For the scenarios considered in the following discussion, we set
Dmin = 3 and Dmax = 8. In the simulations section, we will
illustrate how the proposed model-order selection algorithm
performs.

D. Computational Complexity

In this section, we illustrate the computational complexity re-
quirements of the proposed RLS algorithms and compare them
with the existing algorithms. We also provide the computation
complexity of the proposed and existing model-order selection
algorithms. The computational complexity of the algorithms is
expressed in terms of additions and multiplications, as depicted
in Table I. For the proposed reduced-rank RLS algorithm, the
complexity is quadratic, with M = LNR + B(NT − 1) and
D. This case amounts to a complexity that is slightly higher
than the complexity observed for the full-rank RLS algorithm,
provided that D is significantly smaller than M and signif-
icantly less than the cost of the MSWF-RLS [23] and AVF
[28] algorithms. The complexity of the proposed model-order
selection algorithm is given in Table II.
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TABLE II
COMPUTATIONAL COMPLEXITY OF THE MODEL-ORDER

SELECTION ALGORITHMS

Fig. 3. Complexity in terms of multiplications against the number of input
samples M , with D = 5, NT = NR, L = 8, and B = 2.

To illustrate the main trends and requirements in terms of the
complexity of the proposed and existing algorithms, we show in
Fig. 3 the complexity against the number of input samples M
for the parameters D = 5, NT = NR, L = 8, and B = 2. The
curves indicate that the proposed reduced-rank RLS algorithm
has a complexity that is significantly lower than the MSWF-
RLS [23] and AVF [28] algorithms, whereas it remains at the
same level of the full-rank RLS algorithm.

The computational complexity of the model-order selection
algorithms, including the proposed and the existing techniques,
is shown in Table II. Note that the proposed model-order se-
lection algorithm is significantly less complex than the existing
methods based on projection with stopping rule [23] and the
CV approach [28]. In particular, the proposed algorithm that
uses extended filters only requires 2(Dmax − Dmin) additions,
as depicted in the first row of Table II. To this cost, we must
add the operations required by the proposed RLS algorithm,
whose complexity is shown in the second row of Table I, using
Dmax. The complexities of the MSWF and AVF algorithms
are detailed in the third and fourth rows of Table I. For the
operations with model-order selection algorithms, a designer
must add the complexities in Table I to the complexity of the
model-order selection algorithms of interest in Table II.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, we conduct an analysis of the proposed
algorithms that compute the estimators SD,j [i] and w̄j [i] of the
proposed scheme. We first highlight the alternating optimiza-

tion nature of the proposed algorithms and make use of recent
convergence results for this class of algorithms [40], [41]. In
particular, we present a set of sufficient conditions under which
the proposed algorithms converge to the optimal estimators.
This approach is corroborated by our numerical studies, which
verify that the method is insensitive to different initializations
(except for the case when SD,j [i] is a null matrix, which
annihilates the received signal) and that it converges to the same
point of minimum. We establish the global convergence of the
proposed algorithm through induction and show that that the
sequence of estimators SD,j [i] and w̄j [i] produces a sequence
of outputs that is bounded and converges to the reduced-rank
Wiener filter [20], [21].

A. Sufficient Conditions for Convergence

To develop the analysis and proofs, we need to define a
metric space and the Hausdorff distance that will extensively
be used. A metric space is an ordered pair (M, d), where M
is a nonempty set, and d is a metric on M, i.e., a function d :
M×M → R such that, for any x, y, z, and M, the following
conditions hold.

1) d(x, y) ≥ 0.
2) d(x, y) = 0 iff x = y.
3) d(x, y) = d(y, x).
4) d(x, z) ≤ d(x, y) + d(y, z(triangle inequality).

The Hausdorff distance measures how far two subsets of a
metric space are from each other and is defined by

dH(X,Y ) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

.

(27)

The proposed LS and RLS algorithms can be stated as an
alternating minimization strategy based on the SES defined in
(13) and expressed as

SD,j [i] ∈ arg min
Sopt

D,j
∈SD,j [i]

SES
(
Sopt

D,j , w̄j [i]
)

(28)

w̄j [i] ∈ arg min
w̄opt

j
∈w̄

j
[i]

SES
(
SD,j [i], w̄

opt
j

)
(29)

where Sopt
D,j and w̄opt

j correspond to the optimal values of
SD,j [i] and w̄j [i], respectively, and the sequences of compact
sets {SD,j [i]}i≥0 and {w̄j [i]}i≥0 converge to the sets SD,opt

and w̄j,opt, respectively.
Although we are not directly given the sets SD,opt and

w̄j,opt, we observe the sequence of compact sets {SD,j [i]}i≥0

and {w̄j [i]}i≥0. The goal of the proposed algorithms is to find
a sequence of SD,j [i] and w̄j [i] such that

lim
i→∞

SES (SD,j [i], w̄j [i]) = SES
(
Sopt

D,j , w̄
opt
j

)
. (30)

To present a set of sufficient conditions under which the pro-
posed algorithms converge, we need the so-called three- and
four-point properties [40], [41]. Let us assume that there is a
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function f : M×M → R such that the following conditions
are satisfied.

1) Three-point property (Sopt
D,j , S̃D,j , w̄

opt
j ). For all i ≥ 1,

Sopt
D,j in SD,j [i], w̄opt

j ∈ w̄j [i], and S̃D,j ∈
arg minw̄opt

j
∈ w̄

j
[i] SES(Sopt

D,j , w̄
opt
j ), we have

f
(
Sopt

D,j , S̃D,j

)
+ SES

(
S̃D,j , w̄

opt
j

)
≤ SES

(
Sopt

D,j , w̄
opt
j

)
.

(31)

2) Four-point property (Sopt
D,j , w̄

opt
j , S̃D,j , ˜̄wopt

j ). For all

i ≥ 1, Sopt
D,j , S̃D,j ∈ SD,j [i], w̄opt

j ∈ w̄j [i], and ˜̄wD,j ∈
arg minw̄opt

j
∈w̄

j
[i] SES(S̃D,j , w̄

opt
j ), we have

SES
(
Sopt

D,j , ˜̄wj

)
≤ SES

(
Sopt

D,j , w̄
opt
j

)
+ f

(
Sopt

D,j , S̃D,j

)
.

(32)

Theorem: Let {(SD,j [i], w̄j [i])}i≥0, Sopt
D,j , w̄opt

j be com-
pact subsets of the compact metric space (M, d) such that

SD,j [i]
dH→ Sopt

D,j w̄j [i]
dH→ w̄opt

j (33)

and let SES : M×M → R be a continuous function.
Now, let conditions 1) and 2) hold. Then, for the proposed

algorithms, we have

lim
i→∞

SES (SD,j [i], w̄j [i]) = SES
(
Sopt

D,j , w̄
opt
j

)
(34)

A general proof of this theorem is detailed in [40] and [41].

B. Convergence to the Optimal Reduced-Rank Estimator

In this section, we show that the proposed reduced-rank
algorithm globally and exponentially converges to the optimal
reduced-rank estimator [20], [21]. We assume that 1 ≥ λ 	 0
(equal or close to one) and that the desired product of the
optimal solutions, i.e., wopt

j = Sopt
D,jw̄

opt
j , is known and given

by R
−1/2
j [i](R−1/2

j [i]pj [i])1:D [19], [21], where R
−1/2
j [i] is

the square root of the input data covariance matrix, and the
subscript 1 : D denotes truncation of the subspace.

To proceed with our proof, let us rewrite the expressions in
(11) and (12) for time instant 0 as follows:

Rj [0]SD,j [0]Rw̄j
[0] =P D,j [0] = pj [0]w̄H

j [0] (35)

R̄j [0]w̄j [1] =SH
D,j [0]Rj [0]SD,j [0]w̄j [1] = p̄j [0].

(36)

Using (35), we can obtain the following relation:

Rw̄j
[0]=

(
SH

D,j [0]R2
j [0]SD,j [0]

)−1
SH

D,j [0]Rj [0]pj [0]w̄H
j [0].
(37)

Substituting the aforementioned result for Rwj
[0] into the

expression in (35), we get a recursive expression for
SD,j [0] as

SD,j [0]=Rj [0]−1pj [0]w̄H
j [0]

(
SH

D,j [0]Rj [0]pj [0]w̄H
j [0]

)−1

·
(
SH

D,j [0]R2
j [0]SD,j [0]

)−1
. (38)

Using (36), we can express w̄j [1] as

w̄j [1] =
(
SH

D,j [0]Rj [0]SD,j [0]
)−1

SH
D,j [0]pj [0]. (39)

Employing the relation wj [1] = SD,j [1]w̄j [1], we obtain

wj [1] = Rj [1]−1p[1]w̄H
j [1]

(
SH

D,j [1]Rj [1]pj [1]w̄H
j [1]

)−1

·
(
SH

D,j [1]R2
j [1]SD,j [1]

)−1

×
(
SH

D,j [0]Rj [0]SD,j [0]
)−1

SH
D,j [0]pj [0]. (40)

More generally, we can express the proposed reduced-rank LS
algorithm by the following recursion:

wj [i] = SD,j [i]w̄j [i]

= Rj [i]−1pj [i]w̄
H
j [i]

(
SH

D,j [i]Rj [i]pj [i]w̄
H
j [i]

)−1

·
(
SH

D,j [i]R
2[i]SD,j [i]

)−1

·
(
SH

D,j [i − 1]Rj [i − 1]SD,j [i − 1]
)−1

× SH
D,j [i − 1]pj [i − 1]. (41)

Because the optimal reduced-rank filter can be described by the
EVD of R

−1/2
j [i]pj [i] [20], [21], where R

−1/2
j [i] is the square

root of the covariance matrix Rj [i], and pj [i] is the cross-
correlation vector, we have

R
−1/2
j [i]pj [i] = ΦjΛjΦH

j pj [i] (42)

where Λj is a M × M diagonal matrix with the eigenvalues of
Rj , and Φj is a M × M unitary matrix with the eigenvectors
of Rj . Let us assume that there exists some wj [0] such that the
randomly selected SD,j [0] can be written as [21]

SD,j [0] = R
−1/2
j [i]Φjwj [0]. (43)

Using (42) and (43) in (41) and manipulating the algebraic
expressions, we can express (41) in a more compact way that
is suitable for analysis, as given by

wj [i] = Λ2
jwj [i − 1]

(
wH

j [i − 1]Λ2
jwj [i − 1]

)−1

× wH
j [i − 1]wj [i − 1]. (44)

The aforementioned expression can be decomposed as
follows:

wj [i] = Qj [i]Qj [i − 1] . . . Qj [1]wj [0] (45)

where

Qj [i] = Λ2i
j wj [0]

(
wH

j [0]Λ4i−2
j wj [0]

)−1
wH

j [0]Λ2i−2
j .

(46)

At this point, we need to establish that the norm of SD,j [i],
for all i, is both lower and upper bounded, i.e., 0 <
‖SD,j [i]‖ < ∞, for all i, and that wj [i] = SD,j [i]w̄j [i]
exponentially approaches wj,opt[i] as i increases. Due to
the linear mapping, the boundedness of SD,j [i] is equivalent
to the boundedness of wj [i]. Therefore, we have, upon
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convergence, wH
j [i]wj [i − 1] = wH

j [i − 1]wj [i − 1]. Because
‖wH

j [i]wj [i − 1]‖ ≤ ‖wj [i − 1]‖‖wj [i]‖ and ‖wH
j [i − 1]

wj [i − 1]‖ = ‖wj [i − 1]‖2, the relation wH
j [i]wj [i − 1] =

wH
j [i − 1]wj [i − 1] implies that ‖wj [i]‖ > ‖wj [i − 1]‖, and

hence

‖wj [∞]‖ ≥ ‖wj [i]‖ ≥ ‖wj [0]‖ (47)

To show that the upper bound ‖wj [∞]‖ is finite, let us ex-
press the M × M matrix Qj [i] as a function of the M ×

1 vector wj [i] =
[

wj,1[i]
wj,2[i]

]
and the M × M matrix Λ =[

Λj,1

Λj,2

]
. Substituting the previous expressions of wj [i]

and Λj into Qj [i] as given in (46), we obtain

Qj [i] =
[
Λ2i

j,1wj,1[0]
Λ2i

j,2wj,2[0]

]

×
(
wH

j,1[0]Λ4i−2
j,1 wj,1[0] + wH

j,2[0]Λ4i−2
2 wj,2[0]

)−1

×
[

wH
j,1[0]Λ2i−2

j,1

wH
j,2[0]Λ2i−2

j,2

]
. (48)

Using the matrix identity (A + B)−1 = A−1 − A−1B(I +
A−1B)−1A−1 to the decomposed Qj [i] in (48) and making
i large, we get

Qj [i] = diag(1 . . . 1︸ ︷︷ ︸
D

0 . . . 0︸ ︷︷ ︸
M−D

) + O (ε[i]) . (49)

where ε[i] = (λr+1/λr)2i, in which λr+1 and λr are the
(r + 1)th and the rth largest singular values of R

−1/2
j [i]pj [i],

respectively, and O(·) denotes the order of the argument. Based
on (49), it follows that, for some positive constant k, we have
‖wj [i]‖ ≤ 1 + kε[i]. Based on (45), we obtain

‖wj [∞]‖ ≤
∥∥Qj [∞]

∥∥ . . .
∥∥Qj [2]

∥∥ ∥∥Qj [1]
∥∥ ∥∥Qj [0]

∥∥
≤ ‖wj [0]‖

∞∏
i=1

(1 + kε[i])

= ‖wj [0]‖ exp

( ∞∑
i=1

log (1 + kε[i])

)

≤ ‖wj [0]‖ exp

( ∞∑
i=1

kε[i]

)

= ‖wj [0]‖ exp
(

k

1 − (λr+1/λr)2

)
. (50)

With the aforementioned development, the norm of wj [i] is
proven to be both lower and upper bounded. Once this case
has been established, the expression in (41) converges for
a sufficiently large i to the reduced-rank Wiener filter. This
condition is verified by equating the terms of (44), which yields

wj [i] = Rj [i]−1pj [i]w̄
H
j [i]

(
SH

D,j [i]Rj [i]pj [i]w̄
H
j [i]

)−1

·
(
SH

D,j [i]R
2
j [i]SD,j [i]

)−1

·
(
SH

D,j [i − 1]Rj [i − 1]SD,j [i − 1]
)−1

Fig. 4. BER performance versus rank D for linear MIMO equalizers.

× SH
D,j [i − 1]pj [i − 1]

=R
−1/2
j [i]Φj,1Λj,1ΦH

j,1pj [i] + O (ε[i]) (51)

where Φ1 is a M × D matrix with the D largest eigenvectors of
Rj [i], and Λj,1 is a D × D matrix with the largest eigenvalues
of Rj [i].

VI. SIMULATION RESULTS

In this section, we evaluate the bit error rate (BER) per-
formance of the proposed MIMO equalization structure, al-
gorithms, and existing techniques, i.e., the full-rank [9], the
reduced-rank MSWF [23], and AVF [28] techniques, for the
design of the receivers. For all simulations and the pro-
posed reduced-rank RLS algorithm, we use the initial values
w̄j [0] = [1, 0, . . . , 0] and SD,j [0] = [ID 0D×(M−D)]T . For
the next experiments, we adopt an observation window of
L = 8, the multipath channels (the channel vectors hj,k[i] =
[hj,k,1[i], . . . , hj,k,Lp−1]T ) are modeled by FIR filters, with
the Lp coefficients spaced by one symbol, and the system
employs QPSK modulation. The channel is time varying
over the transmitted packets, the profile follows the Univer-
sal Mobile Telecommunications System (UMTS) Vehicular
A channel model [44] with Lp = 5, and the fading is given
by Clarke’s model [45]. We average the experiments over
1000 runs and define the signal-to-noise ratio (SNR) as SNR =
10 log10(NT σ2

x/σ2), where σ2
x is the variance of the trans-

mitted symbols, and σ2 is the noise variance. The adaptive
MIMO equalizers employ NT = 4, B = 4, L = 8, and NR = 8
in a spatial-multiplexing configuration, leading to estimators at
the receiver with M = LNR + B(NT − 1) = 72 coefficients.
The adaptive RLS estimators of all methods are trained with
250 symbols, employ λ = 0.998, unless otherwise specified,
and are then switched to the decision-directed mode.

A. Convergence Performance and Impact of Model Order

In the first experiment, we consider the BER performance
versus the rank D with optimized parameters (forgetting factor
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Fig. 5. BER performance versus the number of received symbols.

λ = 0.998) for linear MIMO equalizers. The curves in Fig. 4
show that the best rank for the proposed scheme is D = 4,
which is the closest among the analyzed algorithms to the
optimal linear MMSE, which assumes knowledge of the chan-
nel and the noise variance. In addition, note that our studies with
systems with different sizes show that the optimal rank D does
not significantly vary with the system size. It remains in a small
range of values, which brings considerably faster convergence
speed. However, note that the optimal rank D depends on the
data record size and other parameters of the systems.

The BER convergence performance versus the number of re-
ceived symbols for MIMO DFEs with optimized but fixed ranks
is shown in Fig. 5. The results show that the proposed scheme
has a significantly faster convergence performance and obtains
good gains over the best known schemes. The plots show
that the proposed reduced-rank MIMO equalizer extends the
dimensionality reduction and its benefits, e.g., fast convergence
and robustness to errors, to the MIMO equalization task. The
proposed RLS estimation algorithm has the best performance
and is followed by the AVF, MSWF, and full-rank estimators.
Note that the BER of the techniques considered will converge
to the same values if the number of received symbols is very
large and if the channel is static.

B. Performance With Model-Order Selection

As mentioned in Section IV, it is possible to further increase
the convergence speed and enhance the tracking performance
of the reduced-rank algorithms using an automatic model-order
selection algorithm. In the next experiment, we consider the
proposed reduced-rank structures and algorithms with linear
and DFEs and compare their performance with fixed ranks
and the proposed automatic model-order selection algorithm
developed in Section IV-C. The results illustrated in Fig. 6 show
that the proposed model-order selection algorithm can effec-
tively speed up the convergence of the proposed reduced-rank
RLS algorithm and ensure that it obtains an excellent tracking
performance. In the following discussion, we will consider
the proposed model-order selection algorithm in conjunction

Fig. 6. BER performance versus the number of received symbols for the
proposed estimation algorithms and structures. The performance of the pro-
posed reduced-rank algorithms is shown for the proposed model-order selection
algorithm (solid lines), D = 3 (dotted lines), and D = 8 (dashed–dotted lines).

Fig. 7. BER performance versus the SNR.

with the proposed reduced-rank RLS algorithm, and for fair
comparison, we will equip the MSWF and AVF algorithms
with the rank adaptation techniques reported in [23] and [28],
respectively.

C. Performance for Various SNR and fdT Values

The BER performance versus the SNR for MIMO DFEs that
operate with the automatic model-order selection algorithms is
shown in Fig. 7. The curves show a significant advantage of
reduced-rank algorithms over the full-rank RLS algorithm. In
particular, the reduced-rank AVF and MSWF techniques obtain
gains of up to 3 dB in the SNR for the same BER over the
full-rank algorithm, whereas the proposed reduced-rank RLS
algorithm achieves a gain of up to 3 dB over AVF, which
is the second best reduced-rank algorithm. The main reasons
for the differences in diversity order are the speed and the
level of accuracy of the parameter estimation of the proposed
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Fig. 8. BER performance versus the normalized fading rate fdT .

and existing methods. If we increase the number of received
symbols to a very large value, then the diversity order that
is attained by the different algorithms analyzed would be the
same, as verified in our studies.

To assess the performance of the reduced-rank algorithms
for different fading rates, we consider an experiment where
we measure the BER of the proposed and analyzed algorithms
against the normalized fading rate fdT in cycles per symbol,
where fd is the maximum Doppler frequency, and T is the
symbol rate. Note that the forgetting factor λ was optimized
for each value of fdT in this experiment. In practice, a designer
can employ a mechanism to automatically adjust λ. The results
of this experiment are shown in Fig. 8, where the advantages of
the reduced-rank algorithms and their superior performance in
time-varying scenarios is again verified.

D. Performance in MIMO-OFDM Systems

In the previous experiments, we considered the proposed
MIMO equalization structure and algorithms for time-varying
channels that dynamically change within a packet transmission,
thereby requiring the aforementioned adaptive equalization
techniques. At this point, it would be important to address the
following two additional issues: 1) to account for the gains
of the reduced-rank techniques over the full-rank methods when
the order of the estimators changes and 2) the applicability of
the proposed reduced-rank techniques to broadband communi-
cations, e.g., MIMO-OFDM systems [37], [38]. Although, in
MIMO-OFDM systems, the frequency-selective channels are
transformed into frequency-flat channels, there is still the need
to perform spatial equalization. We consider an experiment
with a MIMO-OFDM system in which the data streams per
subcarrier are separated by MIMO linear equalizers that are
equipped with full-rank and reduced-rank algorithms and the
channels change at each OFDM block. The system has N = 64
subcarriers and employs a cyclic prefix that corresponds to
C = 8 symbols. The channel profile is identical to the model
employed for the previous experiments, and the fading is inde-

Fig. 9. BER performance versus the number of antennas.

pendent for each stream. The NR × 1 received data vector for
the nth subcarrier is given by

rn[i] = Hn[i]xn[i] + nn[i], n = 1, 2, . . . , N (52)

where the NR × NT channel matrix Hn[i] contains the channel
frequency response gains at the nth tone, the NT × 1 data
vector xn[i] corresponds to the symbols transmitted by the NT

antennas over the nth subcarrier, and the NR × 1 vector nn[i]
represents the noise vector at the nth tone.

We employ the proposed MIMO linear equalization scheme
for spatial equalization on a per-subcarrier basis [37] for the
OFDM symbols with the proposed and analyzed reduced-rank
estimation algorithms. The BER is plotted against the number
of antennas in a MIMO-OFDM system with NR = NT . The
results in Fig. 9 show that the advantages of reduced-rank
algorithms are more pronounced for larger systems, in which
the training requirements are more demanding in terms of
training data for the full-rank RLS algorithms.

The advantages of the reduced-rank estimators are due to the
reduced amount of training and the relatively short data record
(packet size). Therefore, for packets with a relatively small
size, the faster training of reduced-rank LS estimators will lead
to superior BER to the conventional full-rank LS estimators.
As the length of the packets is increased, the advantages of
the reduced-rank estimators become less pronounced for train-
ing purposes and therefore become the BER advantages over
the full-rank estimators. Compared with the MSWF and AVF
reduced-rank schemes, the proposed scheme exploits the joint
and iterative exchange of information between the transforma-
tion matrix and the reduced-rank estimators, which leads to
better performance. The gains of the reduced-rank techniques
over the full-rank methods for MIMO-OFDM systems are less
pronounced than the gains observed for narrowband MIMO
systems with multipath channels. This case occurs because the
number of coefficients for estimation is significantly reduced. If
we increase the number of antennas in MIMO-OFDM systems
to a large value, then the gains of reduced-rank techniques
become larger.
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VII. CONCLUSION

This paper has presented a study of reduced-rank equal-
ization algorithms for MIMO systems. We have proposed an
adaptive reduced-rank MIMO equalization scheme and algo-
rithms based on the joint iterative optimization of adaptive
estimators. We have developed LS expressions and efficient
RLS algorithms for the design of the proposed reduced-rank
MIMO equalizers. A model-order selection algorithm for au-
tomatically adjusting the model order of the proposed algo-
rithm has also been developed. An analysis of the convergence
of the proposed algorithm has been carried out, and proofs
of global convergence of the algorithms have been estab-
lished. Simulations for MIMO equalization applications have
shown that the proposed schemes outperform the state-of-the-
art reduced-rank and the conventional estimation algorithms
at a comparable computational complexity. Future work and
extensions of the proposed scheme may consider strategies
with iterative processing through convolutional, turbo, and low-
density parity-check (LDPC) codes, detection structures that
attain a higher diversity order, as well as their theoretical
analysis.
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