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Abstract—This paper presents and analyzes a novel low-
complexity reduced-rank linear interference suppression
technique for direct-sequence code-division multiple access
(DS-CDMA) systems based on the set-membership joint
iterative optimization of receive parameters. Set-membership
filtering is applied to the design and adaptation of the
dimensionality-reducing projection matrix and the reduced-rank
interference suppression filter. The specification of error bounds
on the projection matrix and reduced-rank filter lead to the
formation of two constraint sets from which estimates of the
adaptive structures are selected at each time instant. The result
is a low-complexity sparsely updating reduced-rank technique
that does not require eigendecomposition or subspace tracking
procedures. We develop least squares and stochastic gradient-type
algorithms and a low-complexity rank-selection algorithm and
also devise a time-varying adaptive error bound implementation.
We present a stability and mean-square-error convergence
analysis of the proposed algorithms along with a study of their
complexity. The proposed schemes are applied to interference
suppression in the uplink of a multiuser spread-spectrum
DS-CDMA system, and the results confirm the validity of the
analysis and the effective operation of the schemes. Performance
comparisons are given against existing reduced-rank and full-rank
algorithms, which act to highlight the improvements obtained by
the proposed technique and algorithms.

Index Terms—Adaptive techniques, direct-sequence code-
division multiple access (DS-CDMA), interference suppression,
reduced-rank methods, set-membership (SM) filtering.

I. INTRODUCTION

R EDUCED-RANK signal processing has been promoted
in the last decade as a viable and attractive solution to a

range of applications where the number of elements in adaptive
filters has become prohibitively high [1]–[22]. Due to their
performance in the presence of multiuser interference (MUI),
narrowband interference, and fading channels, a resurgence
of interest has also occurred in spread-spectrum systems such
as direct-sequence code-division multiple access (DS-CDMA)
and direct-sequence ultrawideband (DS-UWB). One key fea-
ture of these systems is their use of extended spreading
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codes, which act to suppress MUI and intercell interference.
However, due to the problem of chip synchronization in the
uplink of DS-CDMA systems, the use of orthogonal codes to
suppress MUI is restricted to the downlink. Consequently, in
the uplink, pseudorandom codes are utilized to randomize each
user’s signal to cosystem and cospectrum users; however, this
approach leads to increased MUI compared to the downlink.
Therefore, interference suppression techniques are required.
Linear and nonlinear approaches, including direct equalization,
successive interference cancellation, and decision feedback,
have been proposed as interference suppression and reception
techniques for DS-CDMA systems [23]–[26]. However, the
significant dimensionality of the structures necessary for both
linear and nonlinear reception and interference suppression of
these spread signals result in a tradeoff between complexity,
convergence, training sequence length, and tracking perfor-
mance [27], whether optimally or iteratively implemented.
These factors also have an impact on the power consumption
and robustness of a system, both of which are critical in mobile
systems and wireless sensor networks.

Reduced-rank signal processing offers an alternative to con-
ventional interference suppression techniques and has the abil-
ity to combat a number of the aforementioned drawbacks.
By introducing a layer of preliminary signal processing that
reduces the dimensionality of the input signal, smaller receive
and interference suppression filters can be used. However, this
extra layer of processing comes at the cost of increased com-
plexity, and consequently, there is a quest for low-complexity
reduced-rank methods. In the communications theory, reduced-
rank techniques originated in the eigendecomposition of the
received signal’s covariance matrix. Following decomposition,
the largest eigenvalues and corresponding eigenvectors are then
selected to form the reduced-rank signal subspace and the
dimensionality/rank-reducing projection matrix, which trans-
forms the full-rank signal [15], [16]. The principal components
and cross-spectral metric are two early techniques based on
the singular value decomposition (SVD) of an estimate of the
covariance matrix. These schemes operate through optimization
functions based on the optimum reduced-rank representation
and secondary error criteria [28], [29], respectively. However,
the inherent complexity of SVD fuelled the search for alterna-
tive reduced-rank methods. This condition led to the emergence
of the following two approaches: 1) the multistage Wiener
filter (MSWF) [13], [30] and 2) the auxiliary vector filter
(AVF) [10], [11]. Both of these techniques possess the desirable
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characteristic of the subspace rank or the number of auxil-
iary vectors not scaling with full-rank system dimensionality.
However, complexity remained a major issue. The most recent
method, reduced-rank signal processing based on the joint
iterative optimization (JIO) of adaptive filters [15], [16], [31],
combats the issue of complexity by interpreting the projection
or transformation matrix as a bank of adaptive filters. These
filters are then jointly adapted with the reduced-rank filter to
arrive at an effective rank-reduction matrix and interference
suppression filter [31]. The majority of existing reduced-rank
algorithms for communications performs the dimensionality-
reduction process and interference suppression as independent
tasks and uses a conventional algorithm such as the least mean
squares (LMS) only to perform the adaptation of the reduced-
rank interference suppression filter. In contrast, JIO uses con-
ventional algorithms to adapt both structures and introduces an
exchange of information between the two processes, a com-
bination which results in performance benefits. However, this
method has a complexity that still exceeds the full-rank LMS
by up to an order of magnitude.1 Consequently, the formulation
of a technique for reducing this complexity is of great interest
and central to this paper.

Set-membership (SM) techniques are a low-complexity ap-
proach to established adaptive filtering and have been applied
to linear receivers in code-division multiple access (CDMA)
and channel estimation with promising results [32]–[34]. Con-
sequently, the combination of these approaches and reduced-
rank techniques for CDMA interference suppression form an
attractive proposition with the potential to achieve the gains of
reduced-ranks signal processing without the associated com-
plexity. The basis of SM filtering lies in the set theory and
the generation of a set of solutions to a bounded optimization
problem instead of a single solution. First proposed for systems
where a bound could be placed on the noise variance, it was
later reformulated for a bounded error specification, which
allowed it to be applied to channel equalization and interference
suppression. The following two predominant error bounded SM
implementations exist: 1) the normalized least mean square
(NLMS) and 2) recursive least squares (RLS) algorithms. The
latter approach is, in fact, rooted in optimal bounding ellip-
soids (OBE) techniques but conveniently lends itself to a least
squares (LS) interpretation [35]. Performance and complexity
improvements over conventional adaptive methods result from
SM filtering, because an “optimized” step size is utilized, and
an element of the redundancy in the adaptation process is
eliminated. This redundancy removal stems from the definition
of a bounded set of valid estimates as opposed to a point
estimate at each time instant such that it is possible that a
previous solution to the optimization problem lies within the
current set of solutions, thus removing the need to update the
solution (filter coefficients) while not sacrificing performance.
Further improvements in performance and complexity can be
obtained by implementing a variable error bound that adapts the
solution sets to suit the environment and assists in preventing

1Depending on the rank of the scheme.

the overbounding and underbounding [34], [36] of the solution
set. However, compared to the complexity savings brought
about by the removal of redundancy, the improvements in con-
vergence brought about by SM techniques are less significant,
and the overriding limiting factor remains the length of the
filter. This shortfall of SM techniques can be addressed by intro-
ducing reduced-rank methods to alter the dimensionality of the
signals under consideration. Consequently, investigation into a
combination of SM and reduced-rank schemes has the potential
to bear significant advances in low-complexity reduced-rank
interference suppression [14], [18], [21].

This paper proposes the integration of SM filtering with
the JIO reduced-rank method for linear MUI suppression in
DS-CDMA systems [21]. A framework for the integration is
set out, and the unique properties of JIO, which allow SM
techniques to elegantly be applied to reduced-rank methods,
where previously not possible, are highlighted. The generation
of sets of solutions from which the subspace and the filter are
chosen allows the selective updating capabilities and step-size
optimization of SM schemes to be applied to the adaptation of
these structures. This condition gives the JIO reduced-rank pro-
cedure an added element of adaptivity, which not only enables
it to more reliably operate but also improves its convergence
and steady-state performance. The overall result is a sparsely
updating implementation of the JIO, whose complexity and
performance can be controlled by manipulating the SM error
bound and, hence, the bounded set of solutions. This condition
makes the schemes particularly suited to mobile communica-
tions and wireless sensor networks, where battery life is a major
consideration, and demands on the system are dynamic [37].
The derivation and implementation of two SM reduced-rank
algorithms based on the SM-NLMS and bounding-ellipsoid
adaptive constrained least squares (BEACON) algorithms are
presented. An analysis that unifies and extends the currently
available theory is then given for its stability, convergence prop-
erties, and steady-state error performance. In addition, a novel
automatic SM rank-selection algorithm is presented, along with
a variable error bound implementation, where the error bound is
adaptively determined to arrive at an optimized bound, prevent
overbounding and underbounding, and address the problem of
bound selection when limited system knowledge is available.
The performance of the proposed algorithms is evaluated and
compared to existing methods for interference suppression in
the uplink of a DS-CDMA system [37], [38].

This paper is organized as follows. Section II introduces the
system model and linear reception of DS-CDMA signals, and
Section III gives the integration of SM filtering with the JIO
of adaptive filters and the formulation of a JIO-SM framework.
Section IV derives and presents two algorithms based on the
minimum-mean-square-error (MMSE) and LS error criteria,
followed by an analysis of their complexity, automatic rank-
selection, and adaptive error bound variants of the proposed
algorithms. Section V presents the stability and mean-square-
error (MSE) analysis of the proposed algorithms along with
limitations of the analysis that result from the complex in-
terdependent relationship between the adaptive structures of
the schemes, followed in Section VI by the application and
simulation of the proposed and existing algorithms to the
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Fig. 1. DS-CDMA uplink system model.

DS-CDMA system and the evaluation of their performance.
Finally, Section VII gives the conclusions.

Notation: Throughout this paper, bold uppercase and low-
ercase letters represent matrices and vectors, respectively. The
complex conjugate, complex conjugate transpose (Hermitian),
inverse, and transpose operations are denoted by (.)∗, (.)H ,
(.)−1, and (.)T , respectively. The trace of a matrix is repre-
sented by tr(.), and Im represents an m × m identity matrix.
Block structures made up of 1s and 0s will be represented
by 1M×D and 0M×D, respectively, where M and D specify
the dimensions of the structures. Reduced-rank vectors and
matrices are given with the addition of a tilde (̃.), and estimated
values are denoted by the addition of a hat (̂.).

II. DS-CDMA SYSTEM MODEL AND LINEAR RECEIVERS

In this paper, we consider a discrete-time model of the uplink
of a symbol synchronous Universal Mobile Telecommunica-
tions System (UMTS) DS-CDMA system, as given in Fig. 1,
where there are K users and N chips per symbol [39]. The
system has a chip rate of 3.84 Mchips/s and an assumed band-
width of 5 MHz and uses quaternary phase-shift keying (QPSK)
modulation. The multipath channel of each user is modeled in
accordance with the UMTS Vehicular A channel model [40],
and each path delay is assumed to be a multiple of the chip
rate. For every user in the uplink, an independent L-path time-
varying channel is generated. Each user’s channel realization
is assumed to be constant over each symbol period and has a
maximum delay spread of TDmax

= (L − 1)Tc, where Tc =
(1/3.84 × 106)s is the chip duration. The channel for user k
is given by

hk[i] = [hk,1[i] hk,2[i] · · · hk,L[i]]

= [αk,1[i]pk,1 αk,2[i]pk,2 · · · αk,L[i]pk,L] (1)

where pk = [pk,1 pk,2 · · · pk,L] is the average power profile
of the channel, and αk[i] = [αk,1[i] αk,2[i] · · · αk,L[i]] are
independent Raleigh-distributed intersymbol complex-fading
coefficients generated in accordance with the Clarke model,
where 20 scatters are assumed. These complex coefficients
include the Doppler effect, where the Doppler shift and symbol
period are denoted by fd and Ts = NTc, respectively [41] and
are specified for each simulation.

Pseudorandom spreading codes are repeated from symbol to
symbol, and the M -dimensional received signal r[i] at the base
station after chip-pulse matched filtering and sampling at the
chip rate is given by

r[i] = A1b1[i]H1[i]c1[i] +
K∑

k=2

Akbk[i]Hk[i]ck[i]

︸ ︷︷ ︸
MUI

+η[i] + n[i]

(2)

where M = N + L − 1, and n[i] = [n1[i] . . . nM [i]]T is the
complex Gaussian noise vector with zero mean and covariance
matrix E[n[i]nH [i]] = σ2

nI. The notation E[·] stands for ex-
pected value, and the kth user’s symbol is bk[i] and assumed
to have been drawn from a general QPSK constellation normal-
ized to unit power. The amplitude of user k is Ak, and η[i] is
the intersymbol interference (ISI) that results from the multi-
path channel. The M × N convolution channel matrix Hk[i]
contains one-chip shifted versions of the zero-padded channel
vector hk[i], and the N × 1 vector ck[i] is the spreading code
of user k. The structures can be described by

Hk[i] =




hk,1[i] 0
...

. . . hk,1[i]

hk,L[i]
...

0
. . . hk,L[i]


 , ck[i] =


 c1

k[i]
...

cN
k [i]


 . (3)

In this model, the ISI span and contribution ηk[i] are functions
of the processing gain N and channel length L. If 1 < L ≤ N ,
the following three symbols would interfere in total: 1) the
current symbol; 2) the previous symbol; and 3) the succes-
sive symbol. In the case of N < L ≤ 2N , the five symbols
would interfere: the current symbol, the two previous symbols,
and the two successive symbols. In most practical DS-CDMA
systems, 1 < L ≤ N ; therefore, only three symbols are usually
affected [40].

Training-based adaptive multiuser linear receivers of the sort
considered in this paper are tasked with the suppression of the
interference in (2). The design of such receivers corresponds
to determining a finite impulse response (FIR) filter wk[i] =
[wk,1[i] wk,2[i] . . . wk,M ]T with M coefficients, which pro-
vides an estimate of the desired symbol as given by

b̂k[i] = Q (zk[i])

=
1√
2
sgn (� [zk[i]]) +

1√
2
sgn (� [zk[i]]) j

=
1√
2
sgn

(
�

[
wH

k [i]r[i]
])

+
1√
2
sgn

(
�

[
wH

k [i]r[i]
])

j

(4)

where �(·) and �(·) denote the real and imaginary parts,
respectively, sgn(·) is the signum function, and the system of
interest uses unity-normalized QPSK modulation. The quantity
zk[i] = wH

k [i]r[i] is the output of the adaptive receiver wk[i] for
user k at the ith time instant, where wk is optimized according
to a chosen criterion. However, the M × 1 dimensionality of
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w[i] can become large in large systems, leading to computa-
tionally intensive implementations and slow convergence when
full-rank adaptive algorithms are used. Reduced-rank and SM
techniques offer solutions to these problems.

III. SM REDUCED-RANK FRAMEWORK

Reduced-rank techniques for communications achieve di-
mensionality reduction by projecting the M × 1 received vector
r[i] onto a reduced-rank signal subspace, for example, the
Krylov subspace for the MSWF [13], [30] and the AVF [10],
[11] with orthogonal auxiliary vectors. The tasks of interference
suppression, symbol estimation, and detection can then be
performed in the lower dimensionality signal subspace with a
standard reduced-length adaptive filter. For user k in a multiuser
system, this approach is mathematically expressed as

b̂k[i] = Q
([

w̃H
k [i]SH

Dk
[i]r[i]

])
= Q

([
w̃H

k [i]R̃k[i]
])

(5)

where r̃k[i] = SH
Dk

[i]r[i], and the M × D projection matrix
SDk

performs the dimensionality reduction. The D × 1 vector
w̃[i] performs the linear interference suppression, where D is
the rank of signal subspace and, therefore, the dimensionality of
the filter, where D � M . However, the majority of techniques
prior to the proposition of JIO of adaptive filters relied, in
some part, on SVD or a similarly complex task to generate the
projection matrix SDk

[7], [31].
Reduced-rank adaptive filtering based on JIO circumvents

these complex tasks by considering the projection matrix and
reduced-rank filter as adaptive structures and placing them in
a joint optimization function. These two structures are then
jointly and iteratively adapted to reach a solution. Expressing
this condition as a conventional optimization problem, we
arrive at

[SD,opt[i], w̃opt[i]] = arg min
SD,w̃

E
[∣∣b[i] − w̃H [i]SH

D [i]r[i]
∣∣2]

(6)

where the user index k has been omitted, and user 1 is
assumed—a feature that will continue for the remainder of this
paper. The MMSE expressions for these structures are then
derived by fixing w̃[i] and SD[i], in turn, and minimizing with
respect to the other, resulting in the following expressions:

w̃opt[i] = R̃−1[i]p̃[i] (7)

SD,opt[i] =R−1[i]PD[i]R−1
w [i] (8)

where R̃[i] = E[r̃opt[i]r̃H
opt[i]], p̃[i] = E[b∗[i]r̃opt[i]], R[i] =

E[r[i]rH [i]], and Rw[i] = E[w̃opt[i]w̃H
opt[i]] are the reduced-

and full-rank input signal autocorrelation matrices and reduced-
rank filter autocorrelation matrix, respectively. In addition,
PD[i] = E[b∗[i]r[i]w̃H

opt[i]] is the reduced-rank cross correla-
tion matrix. The interdependency between w̃opt[i] and SD,opt[i]
prohibits a closed-form solution; however, solutions can be
reached by iterating (7) and (8) after suitable initialization,
which does not annihilate the signal or destabilize the iterative
process. The MMSE can then be obtained, as given by

MMSE = σ2
b − p̃H [i]R̃−1[i]p̃[i] (9)

where σ2
b = E[|b[i]|2]. The joint optimization structure of the

MMSE function given by (6) opens up the possibility of a
nonconvex error surface. However, this case is considered in
[31], and although multiple solutions exist, there are no lo-
cal minima when iteratively implemented, and therefore, the
adaptive process is not sensitive to initialization.2 The purely
adaptive nature of JIO and its previous implementation with
NLMS and RLS algorithms suits it well to integration with SM
techniques—one step that is far less involved and problematic
but also more complete than previous methods, which use
alternative reduced-rank techniques [18]. This condition is due
to the well-defined SM framework, which already exists for the
algorithms used to implement the JIO schemes.

The generation of the JIO-SM framework resembles a stan-
dard SM scheme; however, two solution sets are required at
each iteration. To create the JIO-SM framework, first, an ex-
pression for the soft symbol estimate and the two error bounds
has to be defined as

z[i] = w̃H [i − 1]SH
D [i − 1]r[i] (10)

and ∣∣b[i] − w̃H [i]SH
D [i − 1]r[i]

∣∣2 ≤ γ2
w̃∣∣b[i] − w̃H [i − 1]SH

D [i]r[i]
∣∣2 ≤ γ2

S (11)

where γS and γw̃ are the error bounds for the projection matrix
and reduced-rank filter, respectively. The structures w̃[i − 1]
and SD[i − 1] refer to the previous estimate of the reduced-
rank filter and projection matrix, respectively, in an iterative
estimation procedure.

Then, we define a sample space χ that contains all possible
data pairs b and r. We can then define the feasibility sets Θw̃

and ΘSD
as subsets of χ that contain the values that fulfill each

error bound in (11). These sets for the reduced-rank filter and
the projection matrix are, respectively, expressed as

Θw̃
∆=

⋂
(b,r)∈χ

w̃ ∈ C
D :

∣∣b − w̃HSH
Dr

∣∣2 ≤ γ2
w̃

ΘS
∆=

⋂
(b,r)∈χ

SD ∈ C
M×D :

∣∣b − w̃HSH
Dr

∣∣2 ≤ γ2
S (12)

where the alternative adaptive structure is assumed fixed
in each.

The final step in the development requires us to apply the fea-
sibility sets to a time-varying scenario; therefore, they contain
all estimates that fulfill the respective error criteria at the ith
time instant. These sets are termed the constraint sets and are
given by

Hw̃[i] =
{
w̃[i] ∈ C

D :
∣∣b[i]−w̃H [i]SH

D [i−1]r[i]
∣∣≤γw̃

}
HS [i] =

{
SD[i]∈C

M×D :
∣∣b[i]−w̃H [i−1]SH

D [i]r[i]
∣∣≤γS

}
.

(13)

2Provided that the signal is not annihilated.
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Presuming that the error bounds are chosen to ensure that the
constraint sets are nonempty (Hw̃[i],HS [i] �= ∅), every point
within each set is a valid estimate of the structure. The objective
of the SM algorithm is to then select a point that lies in the
appropriate constraint set at each time instant.

With the set-theory foundation set out, it is now possible
to construct the optimization functions that form the starting
point of the algorithms’ derivation. For both the NLMS- and
LS-based schemes, their derivation begins with a constrained
optimization problem formed on the principle of minimal dis-
turbance [42]. This approach corresponds to minimizing the
disturbance to the projection matrix and interference suppres-
sion filter at each update instant. Accordingly, the distance that
is traversed across the sample space at each time instant to
reach the current constraint set should be minimized. A natural
progression from this condition is that, if the previous estimate
lies in the current constraint set, it remains a valid estimate, and
therefore, no update is required to satisfy the conditions of the
cost function. The result is a sparsely updating algorithm that
effectively discards data if they will not result in a sufficient
level of innovation.

IV. PROPOSED ALGORITHMS

In this section, the theory that is set out in Section III is
interpreted as two optimization problems, leading to the forma-
tion of MSE and LS cost functions. Solving these optimization
problems results in two algorithms called JIO-SM-NLMS and
JIO-BEACON.

A. SM Reduced-Rank NLMS Algorithm

To derive JIO-SM-NLMS, we consider the following con-
strained optimization problem:

[SD[i], w̃[i]]= arg min
SD,w̃

‖w̃[i]−w̃[i−1]‖2+‖SD[i]−SD[i−1]‖2

subject to b[i]−w̃H [i]SH
D [i−1]r[i]=γw̃

b[i]−w̃H [i−1]SH
D [i]r[i]=γS (14)

where the objective is to minimize the disturbance to the
projection matrix and reduced-rank filter while satisfying the
bounds imposed on the estimation error. To recast (14) as a
more readily solvable unconstrained optimization problem, the
method of Lagrange multipliers is used, yielding

L = ‖w̃[i] − w̃[i − 1]‖2 + ‖SD[i] − SD[i − 1]‖2

+ λ1

(
b[i] − w̃H [i]SH

D [i − 1]r[i] − γw̃

)
+ λ2

(
b[i] − w̃H [i − 1]SH

D [i]r[i] − γS

)
. (15)

Taking the gradient with respect to the two adaptive structures
and equating to zero, the following system of equations is
reached:

∇w̃[i] = 2 (w̃[i] − w̃[i − 1]) − SH
D [i − 1]r[i]λ1 = 0 (16)

∇SD[i] = 2 (SD[i] − SD[i − 1]) − r[i]w̃H [i − 1]λ2 = 0. (17)

Further manipulations then allow us to arrive at expressions
for the reduced-rank filter, projection matrix, and Lagrange
multipliers, given by

λ1 =
2

(
b[i]−w̃H [i−1]SH

D [i−1]r[i] − γw̃

)∗
rH [i]SD[i−1]SH

D [i−1]r[i]
(18)

λ2 =
2

(
b[i]−wH [i−1]SH

D [i−1]r[i]−γS

)∗
rH [i]r[i]w̃H [i−1]w̃[i−1]

(19)

w̃[i] = w̃[i−1]+
(e[i]−γw̃)∗

rH [i]SD[i−1]SH
D [i−1]r[i]︸ ︷︷ ︸

µ̄[i]

SH
D [i−1]r[i]

(20)

SD[i] =SD[i − 1] +
(e[i]−γS)∗

rH [i]r[i]w̃H [i−1]w̃[i−1]︸ ︷︷ ︸
η̄[i]

r[i]w̃H [i−1]

(21)

where the a priori error e[i] is given by

e[i] = b[i] − w̃H [i − 1]SH
D [i − 1]r[i]. (22)

For the reduced-rank interference suppression filter, but equally
applicable to the projection matrix, the update term µ̄ will
attempt to find the shortest path from w̃[i − 1] to the bounding
hyperplane of Hw̃[i] in accordance with the principle of min-
imal disturbance, as shown in Fig. 2. However, if w̃[i − 1] ∈
Hw̃[i], it is clear that the error bound constraint is satisfied;
therefore, no update is necessary, and w̃[i] = w̃[i − 1]. To
assess the need for an update a simple innovation check (IC)
that consists of an “if” statement that compares the a priori
error to the bound is used. The update terms are then set
to zero if the result of the conditional statement is found to
be negative, effectively removing the update procedure. When
placed into the familiar NLMS structure, we reach the following
expressions for the adaptation of the reduced-rank interference
suppression filter:

w̃[i] = w̃[i − 1] + µ[i]e∗[i]SH
D [i − 1]r[i] (23)

where

µ[i]=

{
1

rH [i]SD[i−1]SH
D

[i−1]r[i]

(
1− γw̃

|e∗[i]|

)
, if |e∗[i]|≤γw̃

0, otherwise.
(24)

Similarly, for the projection matrix, we have

SD[i] = SD[i − 1] + η[i]e∗[i]r[i]w̃H [i − 1] (25)

where

η[i]=

{
1

rH [i]r[i]w̃H [i−1]w̃[i−1]

(
1− γS

|e∗[i]|

)
, if |e∗[i]|≤γS

0, otherwise.
(26)

The full algorithm is then formed from the update equations of
(22), (23), and (25), where the variable step sizes utilized are
given by (24) and (26). The adaptation of the two structures
is then mutually exclusive with the projection matrix taking
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Fig. 2. Geometric interpretation of the JIO-SM-NLMS reduced-rank filter
update.

priority; therefore, the reduced-rank filter has the opportunity
to adapt when the projection matrix IC is negative.

B. Reduced-Rank BEACON Algorithm

The BEACON algorithm operates by defining the constraint
set as a degenerate ellipsoid specified by (11) at each time
instant. An additional set that is denoted as the membership set
can then be defined as the intersection of every constraint set up
to the current time instant (∩i

l=1H[i]) [35]. The OBE algorithm
is then used to outerbound the membership set with the centroid
of this ellipsoid, which can be taken as a point estimate, i.e.,
the ith filter value. The definition of the BEACON algorithm
in these terms does not initially lend itself to straightforward
integration with JIO; however, in [35], BEACON is shown
to also be the solution to a constrained LS optimization—an
interpretation that enables easier integration with the JIO.

After some initial manipulation, the constrained optimization
problem is given by

[SD[i], w̃[i]] = arg min
SD,w̃

· · ·

(w̃[i]−w̃[i − 1])H P−1[i] (w̃[i] − w̃[i − 1])

+ (SD[i] − SD[i − 1])H C−1[i]

× (SD[i] − SD[i − 1])

subject to
∣∣b[i] − w̃H [i]SH

D [i − 1]r[i]
∣∣2 ≤ γ2

w̃∣∣b[i] − w̃H [i − 1]SH
D [i]r[i]

∣∣2 ≤ γ2
S

(27)

where

P[i] =P[i − 1]

− λw̃[i]P[i − 1]SH
D [i − 1]r[i]rH [i]SD[i − 1]P[i − 1]

1 + λw̃[i]G[i]
(28)

C[i] =C[i − 1]

− λS [i]C[i − 1]r[i]w̃H [i − 1]w̃[i − 1]rH [i]C[i − 1]
1 + λS [i]F [i]

.

(29)

To continue with the derivation, (27) is recast as an uncon-
strained optimization problem with the use of the method of

Lagrange multipliers, yielding

L = (w̃[i] − w̃[i − 1])H P−1[i] (w̃[i] − w̃[i − 1])

+ (SD[i] − SD[i − 1])H C−1[i] (SD[i] − SD[i − 1])

+ λw̃[i]
(∣∣b[i] − w̃H [i]SH

D [i − 1]r[i]
∣∣2 − γ2

w̃

)
+ λS [i]

(∣∣b[i] − w̃H [i − 1]SH
D [i]r[i]

∣∣2 − γ2
S

)
. (30)

Forming a system of equations by taking the gradient of (30)
with respect to the adaptive structures, we get

∇w̃[i] = (w̃[i] − w[i − 1])P−1[i] − λw̃[i]rH [i]SD[i − 1] . . .(
b[i] − w̃H [i]SH

D [i − 1]r[i]
)
. (31)

∇S [i] = (SD[i] − SD[i − 1])C−1[i] − λS [i]r[i]w̃H [i − 1] . . .(
d[i] − w̃H [i − 1]SH

D [i]r[i]
)
. (32)

Further manipulation then allows us to reach intermediate
expressions for the reduced-rank filter and projection matrix,
respectively, i.e.,

w̃[i] = w̃[i − 1] +
λw̃[i]P[i]rH [i]SD[i − 1]δ[i]γw̃

|δ[i]| (33)

SD[i] =SD[i − 1] +
λS [i]C[i]r[i]w̃H [i − 1]δ[i]

1 + λS [i]F [i]
(34)

where

δ[i] = b[i] − w̃H [i − 1]SH
D [i − 1]r[i]. (35)

To arrive at a recursive estimation procedure for each structure,
P[i − 1] and C[i − 1] are used to calculate the auxiliary scalar
variables G[i] and F [i], respectively, where

G[i] = rH [i]SD[i − 1]P[i − 1]SH
D [i − 1]r[i] (36)

F [i] = w̃H [i − 1]w̃[i − 1]rH [i]C[i − 1]r[i]. (37)

Using the relationship

1 + λw̃[i]G[i] = 1 +
1

G[i]

(
|δ[i]|
γw̃

− 1
)

G[i] =
|δ[i]|
γw̃

(38)

the final reduced-rank filter update equations are reached, i.e.,

w̃[i] = w̃[i − 1] +
λw̃[i]P[i]SH

D [i − 1]r[i]δ[i]
1 + λw̃[i]G[i]

(39)

where

λw̃[i] =

{
1

G[i]

(
|δ[i]|
γw̃

− 1
)

, if |δ[i]| ≥ γw̃

0, otherwise
(40)

and again, the if statement forms the IC. In an analogous manner
to step size in the NLMS variant, the forgetting factor is set to
zero, thus skipping the update procedure when the if statement
returns a negative result. Similarly, for the projection matrix,
the relationship given by

1 + λS [i]F [i] = 1 +
1

F [i]

(
|δ[i]|
γw̃

− 1
)

F [i] =
|δ[i]|
γS

(41)
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Fig. 3. Computational complexity of the proposed and existing algorithms.

is used to arrive at the recursive update procedure, i.e.,

SD[i] = SD[i − 1] +
λS [i]C[i]r[i]w̃H [i − 1]δ[i]

1 + λS [i]F [i]
(42)

where

λS [i] =

{
1

F [i]

(
|δ[i]|
γS

− 1
)

, if |δ[i]| ≥ γS

0, otherwise.
(43)

The final algorithm then iteratively operates using (35), (39),
and (42), where the variable forgetting factors are given by (40)
and (43). The projection matrix adaptation again takes priority
over the reduced-rank filter in the same manner as the JIO-SM-
NLMS algorithm.

C. Computational Complexity

The potential complexity reductions made by the proposed
algorithms are closely related to the frequency of updates or
update rates, denoted URS and URw for the projection matrix
and reduced-rank interference suppression filter, respectively.
These terms are defined as the fraction of received symbols that
result in an update of their respective structure. Fig. 3 shows a
comparison between the complexity of the conventional full-
and reduced-rank algorithms and of the proposed schemes.
The results shown in the figure are based on update rates of
10% for all SM schemes—a rate that is readily achievable
during the training of the algorithms—and a rank of D = 6.
The accompanying analytical expressions for the algorithm
complexities are given by Table I.

In Fig. 3, we can see that the complexity savings of approx-
imately an order of magnitude are possible for JIO-BEACON
and approximately 63% for JIO-SM-NLMS, both of which are
substantial savings with regard to power consumption in mobile
and wireless sensor networks.

D. Rank Adaptation Algorithm

The dimensionality of the subspace of a reduced-rank algo-
rithm has an impact on performance, in a manner analogous to
conventional adaptive filtering. This condition therefore allows

the rank of the proposed schemes to act as an additional
optimization parameter. By adjusting the rank of the subspace
depending on the stage of operation, it is possible to obtain
performance improvements. In practical scenarios, this case
corresponds to using lower ranks during the convergence of al-
gorithms to aid the convergence and increased ranks for steady-
state operations. Such methods have been proposed [11], [13],
[20], [30], but the application of an automatic rank selection
algorithm to a SM scheme has not been featured. The integra-
tion of a rank adaptation feature involves the formulation of a
cost function that allows the optimum rank to be determined. In
[15], an exponentially weighted LS a posteriori cost function
was used, and a similar approach will be used here. However,
the adaptation of the rank will only be permitted when the
a priori error exceeds the appropriate bounds and an update
is performed. The chosen rank Dopt will be constrained to
lie between Dmin and Dmax and selected according to the
expression

Dopt[i] =

{
arg min

Dmin≤D≥Dmax

R (w̃D[i],SD[i]) , if |e[i]| ≥ γ

D[i − 1], otherwise
(44)

where

R (w̃D[i],SD[i]) =
i∑

l=1

βi−l
∣∣b[l] − w̃H

D [i]SH
D [i]r[l]

∣∣2 . (45)

The values of Dmin and Dmax are chosen to offer optimum
performance throughout the data record over which the algo-
rithm operates, and β is the exponential weighting factor for
ensuring a smooth transition between subspace ranks. Fig. 4
displays the relationship between the rank and performance
of the NLMS-based schemes with optimized parameters. We
can see that the optimum range of ranks equates to Dmin = 2
and Dmax = 10, and therefore, these bounds will be used for
relevant simulations that will later be featured in this paper.

E. Adaptive Variable Error Bound

The determination of the error bounds for a SM scheme is a
complex task and requires knowledge of the parameters of the
considered system. Inappropriate error bound selection results
in the possibility of underbounding and overbounding, and
associated performance degradation and complexity increases
[34], [36]. By incorporating selected system parameters into the
formulation of a variable bound for the proposed algorithms, it
is possible to not only reduce the probability of encountering
bounding problems but also remove the need for an accurate
determination of error bounds prior to the operation of the
schemes. In this paper, we concentrate on the implementation of
parameter-dependent bounds that require knowledge of the pro-
jection matrix and reduced-rank filter, both of which are avail-
able at the receiver, and the noise variance of the system. For
the implementation given here, we assume knowledge of the
noise variance; however, it is readily obtainable through noise
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED AND EXISTING ALGORITHMS

Fig. 4. NLMS scheme rank comparison.

estimation algorithms [43], [44]. The variable error bounds for
the projection matrix and reduced-rank filter are given by

γS [i + 1] = (1 − β)γS [i] + β
√

αS ‖SD[i]w̃[i]‖ σ̂2
n[i] (46)

γw̃[i + 1] = (1 − β)γw̃[i] + β
√

αw̃ ‖SD[i]w̃[i]‖ σ̂2
n[i] (47)

where β is a forgetting factor, and αS and αw̃ are tuning
parameters for the projection matrix and reduced-rank fil-
ter bounds, respectively. The motivation behind the forma-
tion of the variable bound expressions lies in providing the
SM process with information on the noise at the output of
the filtering process—an approximation given by the term√

αS‖SD[i]w̃[i]‖σ̂2
n[i]. Time averaging is then performed by

β to ensure stable transitions between error bound values
and overall stability. For added protection against the risk of
overbounding and inaccurate symbol estimation, a ceiling value
is implemented with regard to the bounds. For the power-
normalized QPSK system considered in this paper, these ceiling
values are set at γSmax

= 0.7 and γw̃max
= 0.65 for both the

JIO-SM-NLMS and JIO-BEACON schemes.

V. ANALYSIS

The MSE analysis of SM schemes presents a number of
unique and challenging problems compared to conventional

adaptive algorithms. The variable convergence parameters and
the sparse updates significantly increase the complexity of the
analysis. However, methods for partially taking account of these
SM features have been presented in [45] and [46] for system
identification, including a “probability of update” term that
accounts for the sparse adaptation and simplifying assump-
tions about the variable convergence parameters. The analysis
of JIO-SM is substantially more complex than conventional
SM analysis; however, the aforementioned methods will still
be used to aid the analysis. We begin by incorporating the
probability of update terms into the recursive equations for the
adaptation of the reduced-rank interference suppression filter
and the projection matrix. This method yields the following
expressions

w̃[i] = w̃[i − 1] + µ[i]Pw̃up
e∗[i]SH

D [i − 1]r[i] (48)

SD[i] =SD[i − 1] + η[i]PSup
e∗[i]r[i]w̃H [i − 1] (49)

for JIO-NLMS and

w̃[i] = w̃[i − 1] +
λw̃[i]Pw̃up

P[i]SH
D [i − 1]r[i]δ[i]

1 + λw̃[i]G[i]
(50)

SD[i] =SD[i − 1] +
λS [i]PSup

C[i]r[i]w̃H [i − 1]δ[i]
1 + λS [i]F [i]

(51)

for JIO-BEACON. PSup
and Pw̃up

are the probability of up-
date terms for the projection matrix and reduced-rank inter-
ference suppression filter, respectively, and are the analytical
embodiment of the update rates. To increase the accuracy and
practicality of analyzing the SM schemes, we remove their
dependency on the a priori error by confining the analysis to
the excess error under steady-state conditions. This method
allows more accurate models of the probability of update to be
formed, because it can be assumed that PSup/w̃up

are constant
and reflect the probability of the steady-state error that exceeds
the appropriate bound.

A. Stability

With regard to much of the JIO material covered in this
paper, the analysis of its application to adaptive interference
suppression is limited. However, with methods that are inspired
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by beamforming analysis in [47], we can begin to approach the
stability analysis of the proposed JIO-SM-NLMS algorithm.

The spectral-radius technique can be used for JIO-SM-
NLMS but depends on obtaining recursive relationships for the
error weight vector and error weight matrix for the reduced-
rank filter and projection matrix, respectively. To do this ap-
proach, we take expanded versions of (48) and (49), which
include Pw̃up

, PSup
, and the optimized step sizes, and sub-

stitute into the reduced-rank filter error weight vector εw̃[i +
1] = w̃[i + 1] − w̃opt[i + 1] and the projection matrix error
weight matrix εSD

[i + 1] = SD[i + 1] − SD,opt[i + 1] equa-
tions, yielding

εw̃[i + 1] =
(
I − µ[i]Pw̃up

SH
D [i]r[i]rH [i]SH

D [i]
)
εw̃[i]

+ µ[i]Pw̃up
b∗[i]SH

D [i]r[i]

− µ[i]Pw̃up
SH

D [i]r[i]rH [i]SH
D [i]w̃opt (52)

εS [i + 1] = εS [i]
(
I − η[i]PSup

r[i]rH [i]
)

− η[i]PSup
r[i]w̃H [i]rH [i]SD[i]εw̃[i]

− η[i]PSup
r[i]w̃H [i]rH [i]SD[i]w̃opt

+ η[i]PSup
b∗[i]r[i]w̃H [i]. (53)

The expectations of (52) and (53) are then taken, and a recursive
expression is reached, i.e.,[

E (εw̃[i + 1])
E (εS [i + 1])

]
= B

[
E (εw̃[i])
E (εS [i])

]
+ T (54)

where

B =
[

I − µ[i]Pw̃up
R̃ 0

−η[i]PSup
E

(
r[i]w̃H [i]rH [i]SD[i]

)
I − µ[i]PSup

R

]

(55)

T =
[

µ[i]Pw̃up
(p̃ − R̃w̃opt)

η[i]PSup
pw̃H [i] − η[i]PSup

E
(
r[i]w̃H [i]rH [i]SD[i]

) ]

(56)

and p̃ = E(b∗[i]r̃[i]) and R̃ = E(r̃[i]r̃H [i]). The stability of the
algorithm can then be determined from the spectral radius of
(54). For convergence, the eigenvalues of BHB should not
exceed 1 at each time instant—one factor that is partly ensured
by the operation of the SM algorithms and its optimized step
sizes. Numerical studies can then verify (54) and its ability to
determine the stability.

B. Steady-State MSE

In this section, we study the steady-state MSE of the pro-
posed schemes and develop expressions that allow the steady-
state MSE to more accurately be predicted compared to using
the a priori error bound.

1) JIO-SM-NLMS: The interdependency of the adaptive
structures in JIO pose several problems when approaching

the analysis; consequently, a semianalytical steady-state error
solution is sought. The analysis begins by forming an M -
dimensional expression for the MSE, where an equivalent M -
dimensional low-rank filter is obtained by an inverse mapping
of the reduced-rank interference suppression filter, given by

w[i] = SD[i]w̃[i]. (57)

The MSE can then be expressed as

J [i] = E
[∣∣b[i] − wH [i]r[i]

∣∣2] . (58)

After straightforward manipulation, the MSE’s dependency on
the full-rank error weight matrix can be obtained as

J [i] = Jmin[i] + tr
(
E

[
εH

w [i]r[i]rH [i]εw[i]
])

(59)

where εw[i] = w[i] − wopt, and Jmin = E[|b[i] − wH
optr[i]|].

The second term in (59) is equal to the excess MSE and can be
rearranged into a form that is appropriate for the analysis and
pursuit of an expression for the steady-state error, i.e.,

J [i] = Jmin[i] + tr
(
E

[
r[i]rH [i]εw[i]εH

w [i]
])︸ ︷︷ ︸

Jex

. (60)

The first step is to reach a recursive expression for the full-rank
equivalent filter error vector. To do this technique, we substitute
(23) and (25) into (57) and then subtract the optimum full-rank
equivalent filter, yielding

εw[i + 1] = εw[i] +
µ[i]Pw̃up

e∗[i]
r̃[i]r̃[i]

SD[i]SH
D [i]r[i]

+
η[i]PSup

e∗[i]
w̃H [i]w̃[i]rHr[i]

r[i]w̃H [i]w̃[i]

+
µ[i]η[i]Pw̃up

PSup
e∗[i]e∗[i]

r̃H [i]r̃H [i]w̃H [i]w̃[i]rHr[i]

× r[i]w̃H [i]SH
D [i]r[i]. (61)

At this point in the derivation, certain simplifying assumptions
can be made as a result of the proposed algorithm structure,
particularly the mutually exclusive updates. This step can be
expressed by

P ((µ[i] �= 0) ∩ (η[i] �= 0)) = 0. (62)

Therefore, we can assume that µ[i]η[i] = 0 and accordingly
remove terms. The next step is to substitute (61) into the expres-
sion for Jex in (60). The convenient manipulation available due
to the trace of expectation operators allows a number of terms to
be simplified and removed, resulting in a recursive expression
for Jex. Then, assuming that PSup

[i], Pw̃up
[i], and Jex[i] are

constant under the conditions

lim
i→∞

PSup
[i] = PSup

Pw̃up
[i] = Pw̃up

Jex[i] = Jex (63)
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we can arrive at an expression for the steady-state excess error
of the JIO-SM-NLMS algorithm, i.e.,

Jex = Jmin

(
µ2P 2

w̃up
+ η2P 2

Sup

)
µPw̃up

(2 − µPw̃up
) + ηPSup

(2 − ηPSup
)

(64)

where µ = E[µ[i]], and η = E[η[i]].
Unlike the majority of existing SM analysis [45], [46], which

concentrate on system identification, the analysis here is in
relation to an interference suppression scenario, and therefore,
certain simplifying assumptions about the properties of the
input signal cannot be made. This condition results in a steady-
state error expression, which, although different, has a similar
structure.

As we can see, (64) depends on PSup/w̃up
and has to be

obtained to arrive at an analytical expression. Assuming that
the additive noise is white and Gaussian and that the estimation
error has reached its steady-state value, the variations in Jex

can also be assumed to be Gaussian. Therefore, the probability
that the steady-state error exceeds the bound can be modeled
by a complementary Gaussian cumulative distribution or Q-
function. Ideally, (64) would be used to obtain an accurate value
for the steady-state error and, therefore, the probability that it
exceeds the error bound. However, its dependency on PSup/w̃up

prohibits such an approach. The alternative is to approximate
the upper and lower bounds on the probability of update for the
projection matrix based on Jmin, γS , and σ2

n. A lower bound
can then be approximated by

PSupmin
= 2Q

(
γS√

σ2
n + Jmin

)
(65)

and an upper bound can be approximated by

PSupmax
= 2Q

(
γS√

σ2
n + γ2

S

)
(66)

where the factor of 2 ensures that Q(0) = Pup = 1 for γS = 0.
The difference in application from the existing SM analysis also
has an impact here, because it is unrealistic to assume that the
minimum error is bounded by the noise variance. Consequently,
the lower bound is assumed to be the error from the optimum
equivalent full-rank filter with the addition of the noise vari-
ance. As before, the upper bound of the error is approximated
by the sum of the SM error bound and the noise variance.
However, as will become clear in Section V-B, using γS as
an upper bound is not a satisfactory approximation of the error
for the γS of interest, and in supporting simulations, the update
rate is considerably better modeled by (65) than (66); therefore,
(65) will be used for the remainder of this paper. Due to the
higher update priority given to the projection matrix, the update
characteristics of the reduced-rank filter Pw̃up

differ from PSup

and is therefore more suitably modeled using a semianalytical
approach, where Pw̃up

can be approximated from comparable
simulations. This approach minimizes the divergence of the
theory from the simulations.

The second pair of quantities required for the calculation of
(64) are the expectation of the step sizes. In [46], the worst case

scenario step size is used, and a similar approach will be taken
in this paper, where the step size can take any value in the range
(0, 1) but will be set to η = 1 and µ = 0.1.

2) JIO-BEACON: The analysis presented in Section V-B1
extends the currently available analysis for SM schemes and
will now be applied to the JIO-BEACON algorithm. The
derivation presented here for JIO-BEACON follows a similar
method and begins by forming an expression for the full-
rank-equivalent filter error weight vector so that Jex can be
calculated from (60). By substituting (33) and (34) into (57)
and again subtracting the optimum full-rank-equivalent filter,
we reach

εw[i + 1] = εw[i] + SD[i]
Pw̃up

G[i]
λw̃[i]P[i]r̃[i]e∗[i]

+
PSup

1 + λS [i]

(
λS [i]
F [i]

C[i]A[i]δ∗[i]
)

w̃[i]

+
PSup

Pw̃up
λS [i]λw̃[i]

(1 + λS [i]) G[i](
λS [i]
F [i]

C[i]A[i]δ∗[i]
)

. . .P[i]R̃[i]e∗[i] (67)

where A[i] = r[i]w̃H [i]. Using an equivalent simplification to
the simplification found in the JIO-SM-NLMS analysis, i.e.,

P ((λS [i] �= 0) ∩ (λw̃[i] �= 0)) = 0 (68)

we can then arrive at an expression for JIO-BEACON steady-
state error as

Jex = Jmin

P 2
w̃up

λ2
w̃ +

P 2
Sup

λ2
S

(1+λS)2

2Pw̃up
λw̃ + 2PSup

λS − P 2
w̃up

λ2
w̃ −

P 2
Sup

λ2
S

(1+λS)2

.

(69)
The expressions in (67)–(69) are included here for mathe-
matical completeness and are similar to JIO-SM-NLMS. The
main differences between (69) and (64) stem from the fact
that the JIO-SM-NLMS uses a variable step size, whereas JIO-
BEACON employs a variable forgetting factor.

VI. SIMULATIONS

In this section, the performance of the algorithms presented
in this paper is compared to existing full- and reduced-rank
schemes. Comparisons will be made in terms of convergence
and tracking performance using the signal-to-interference-plus-
noise ratio (SINR) and bit error rate (BER) as metrics. Through-
out all simulations, the JIO- and MSWF-based schemes have a
reduced dimensionality subspace of ranks 4 and 6, respectively.
Each simulation is averaged over 2000 independent runs, and
where the channel is nonstationary, the fading rate is given by
the dimensionless normalized fading parameter Tsfd, which is
specified in each plot. All MMSE-based filters, full and reduced
rank, are initialized as w[0] = δ × (1), and all LS-based filters
are initialized as w[0] = (0) and w(1) = 1. Projection matrices
will be initialized as SD[0] = ζ ×

[
I
0

]
, where δ and ζ are small

positive constants.
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Fig. 5. Analytical MSE performance.

A. Analytical MSE Performance

In this section, the analytical expressions and approximations
derived in Section V-B for the JIO-SM-NLMS steady-state
error are validated through comparison to the simulations of
the proposed schemes. The JIO-SM-NLMS applied here makes
use of a fixed estimation error bound and therefore exhibits a
specific MSE performance characteristic where the optimum
MSE performance is obtained when the bound is small but
nonzero, a value which we define as γS,opt. Consequently, two
methods of estimating the MSE are required; for small γS , the
MSE expression J [∞] ≈ Jmin + Jex can be used to provide an
accurate lower bound, but for γS > γS,opt, J [∞] = γ2 acts as
an increasingly accurate error approximation.

In the following simulations, a lightly loaded system with
a spreading gain of 32 is used and operates in a stationary
environment with a signal-to-noise ratio (SNR) of 15 dB. The
simulated and analytical MSE are plotted against the projection
matrix error bound, which has been normalized by the noise
power σ2

n, and the reduced-rank filter error bound is set to
γS − 0.05.

As shown in Fig. 5, the analytical MSE provides a lower and
significantly more accurate bound on the MSE of the JIO-SM
schemes for γS < γS,opt compared to γ2

S , where γ2
S,opt/σ2

n ∼
4, and therefore verifies the method of analysis presented in this
paper. However, as aforementioned, γ2

S acts as a more accurate
bound for a larger steady-state error, and therefore, the use of
either technique depends on the relative level of the error bound.

B. SINR and BER Performance

In the simulations presented, each algorithm has an initial
period of training and then switches to decision-directed op-
eration. The step sizes throughout all the simulations were
set to µ = 0.25 for the full-rank NLMS and MSWF-NLMS,
and η = 0.25 and µ = 0.1 for the reduced-rank interference
suppression filter and projection matrix adaptation for JIO-
NLMS, respectively. The exponential forgetting factor for the
LS-based schemes is λ = 0.998 for the convergence, multiuser,
and SNR performance simulations.

Fig. 6. SINR performance comparison of the MSE algorithms with 150
training symbols.

Fig. 7. SINR performance comparison of the LS algorithms with 100 training
symbols.

The performance of the stochastic gradient-based schemes is
shown in Fig. 6. The convergence of the proposed scheme is
shown to exceed the conventional JIO and MSWF algorithms
while having a considerably lower computational complexity.
The proposed scheme is also shown to achieve an equal steady-
state SINR compared to the conventional implementation.

Fig. 7 gives the performance of the LS-based schemes and
shows that the proposed scheme exhibits improved convergence
performance compared to the conventional JIO-RLS. It also
reaches a maximum SINR close to the MSE while achieving
a significant 50% reduction in complexity. In addition, the per-
formance after convergence shows that JIO-BEACON outper-
forms JIO-RLS, indicating that the SM scheme has maintained
the capability to mitigate the effects of a fading channel.

Fig. 8 gives the performance of the proposed and existing
reduced-rank algorithms when the spreading sequence length
is increased to 64 and the system is heavily loaded. Both of
the proposed schemes show an improvement over the MSWF
schemes, and the JIO-SM-NLMS exceeds the performance of
the conventional JIO while making complexity savings. The
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Fig. 8. SINR performance comparison of the LS and MSE algorithms with
250 training symbols and increased spreading sequence length.

Fig. 9. MSE schemes: SNR and multiuser performance after 150 training
symbols. (a) SINR versus SNR. (b) SINR versus system loading.

performance of BEACON-JIO has dropped compared with
JIO-RLS when processing these more highly spread signals, but
complexity savings are still made.

Fig. 9(a) and (b) shows the SINR performance of the
proposed MSE-based scheme versus the system SNR and
loading, respectively, for a fading channel after 150 training
symbols. Again, the JIO-SM performs better than the con-
ventional scheme at practical SNRs while achieving a reduc-
tion in complexity. However, at high SNR, its performance
declines in line with the other schemes. The performance of
the scheme under increasing system loads is good and exceeds
the conventional scheme at moderate system loads. However,
its performance degrades similar to MSWF when interference
suppression becomes more challenging.

The SINR performance versus system SNR and loading for
the LS-based schemes is shown in Fig. 10(a) and (b). Again, the
simulations have been conducted with a fading channel and 100
training symbols. In Fig. 10(a), the proposed scheme performs

Fig. 10. LS schemes: SNR and multiuser performance after 100 training
symbols. (a) SINR versus system SNR. (b) SINR versus system loading.

Fig. 11. Performance comparison of the automatic rank selection algorithms.

well and closely matches the performance of the conventional
JIO for SNRs of interest and makes substantial complexity
savings. The performance of the scheme in Fig. 10(b) at low
system loading is good but degrades at higher loading levels
compared with the conventional JIO-RLS.

The SINR plot in Fig. 11 shows the performance gains that
are possible when the automatic rank selection feature from
Section IV-D is incorporated into the proposed algorithms. We
can see that the automatic rank selection improves the steady-
state SINR performance while also exceeding the convergence
performance of the fixed-rank algorithms. The update rates
associated with the schemes in Fig. 11 differ from the previous
simulations because of the larger gap between the error bounds
placed on the adaptive structures. In this simulation, the pro-
jection matrix and reduced-rank filter bounds are γS = 0.6 and
γw = 0.3, respectively; therefore, an increase in the probability
of the reduced-rank filter updating results.

The performance and complexity improvements brought
about by an adaptive variable error bound are illustrated in
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Fig. 12. SINR performance of the proposed JIO-SM-NLMS and JIO-
BEACON algorithms with variable γS and γw̃ , where αS = 5, and αw̃ = 4,
and a training sequence of 100 symbols.

Fig. 13. BER performance comparison.

Fig. 12. Improvements in both convergence and steady-state
SINR of the JIO-SM-NLMS result while also achieving a
reduction in complexity. For the JIO-BEACON scheme, an
increase in the steady-state performance is achieved, along with
an increase in the maximum obtainable SINR, but at the cost of
a marginally higher projection matrix updated ratio. However,
this increase in complexity is lower than the complexity associ-
ated with simply tightening the fixed error bound.

Fig. 13 shows the uncoded BER performance of the proposed
schemes and existing reduced-rank schemes along with the two
most common full-rank schemes. The schemes are trained with
500 symbols and then switched to a decision-directed opera-
tion. As we can see, both of the SM reduced-rank algorithms
exceed the convergence of the MSWF schemes and reach a
lower steady-state error; however, as has been documented,
MSWF-NLMS fails to tridiagonalize its covariance matrix and
therefore struggles in this scenario. JIO-BEACON exhibits
excellence performance and, along with the NLMS implemen-
tation, achieves significant complexity savings, which increase
with the SNR.

VII. CONCLUSION

This paper has presented a SM reduced-rank framework
based on the JIO of receive parameters. The sparse updates
and optimized convergence parameters associated with SM
schemes were brought to the adaptation of the rank-reduction
matrix and the reduced-rank interference suppression filter.
LS, NLMS, automatic rank adaptation, and adaptive error
bound algorithms were presented, along with their application
to interference suppression in the uplink of a time-varying
multiuser DS-CDMA system. A novel analysis of the proposed
schemes has been given, along with the limitations of applying
existing SM analysis techniques to the proposed algorithms.
Simulations have then been presented and illustrate that the
performance of the proposed schemes closely matches the
existing reduced-rank schemes while achieving a significant
reduction in computational complexity.
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