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Transmit Diversity and Relay Selection Algorithms
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Abstract—In this paper, we propose a set of joint transmit
diversity selection (TDS) and relay selection (RS) algorithms
based on discrete iterative stochastic optimization for the uplink
of cooperative multiple-input–multiple-output (MIMO) systems.
Decode-and-forward (DF) and amplify-and-forward (AF) mul-
tirelay systems with linear minimum mean square error (MSE),
successive interference cancelation, and adaptive reception are
considered. The problems of TDS and RS are expressed as MSE
and mutual information (MI) joint discrete optimization problems
and solved using iterative discrete stochastic algorithms. Such
an approach circumvents the need for exhaustive searching and
results in a range of procedures with low complexity and increased
speed of convergence that can track the optimal selection over
an estimated channel. The proposed schemes are analyzed in
terms of their complexity, convergence, and diversity benefits and
are shown to be both stable and computationally efficient. Their
performance is then evaluated via MSE, MI, and bit error rate
comparisons and shown to outperform conventional cooperative
transmission and, in the majority of scenarios, match that of the
optimal exhaustive solution.

Index Terms—Cooperative systems, discrete stochastic op-
timization, minimum mean square error (MMSE) receivers,
multiple-input–multiple-output (MIMO) relaying, relay selection
(RS), transmit diversity (TD).

I. INTRODUCTION

COOPERATIVE multiple-input–multiple-output (MIMO)
networks have received significant attention in the recent

research literature due to their spatial diversity gain, multi-
plexing gain, robustness, low power, and high capacity. These
desirable characteristics make such systems well suited to
future mobile network applications where there is a requirement
for extended coverage, increased data rates, and enhanced
quality of service while minimizing infrastructure investment.
Consequently, cooperative MIMO techniques have been incor-
porated into future mobile protocols [1]–[8]. Although still in
their infancy, promising results and techniques for cooperative
MIMO systems have been published, predominantly focusing
on cooperation protocols, routing, information-theoretic limits,
and diversity maximization [2]. The decode-and-forward (DF)
and amplify-and-forward (AF) protocols both offer added de-
grees of freedom, which, when effectively exploited, can lead to

Manuscript received June 15, 2011; revised November 3, 2011; accepted
December 27, 2011. The review of this paper was coordinated by
Prof. H. H. Nguyen.

The authors are with the Communications Research Group, Depart-
ment of Electronics, University of York, YO10 5DD York, U.K. (e-mail:
pjc500@ohm.york.ac.uk; rcdl500@ohm.york.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2012.2186619

significant performance gains. Cooperative MIMO systems also
enable the use of transmit diversity (TD) selection and relay
optimization to improve performance and reduce the number of
relays burdened with retransmission of the signal. Transmit di-
versity selection (TDS) and relay selection (RS) can be viewed
as suboptimal variants of beamforming, where transmit powers
are constrained to discrete values of 1 and 0. However, a trade-
off exists between this suboptimality and the reduced feedback
requirements resulting from the 1-bit quantization [9], [10]. The
multiplexing gain resulting from MIMO systems is an attractive
feature, but there is an associated increase in interference from
multistream transmission. When channel state information
(CSI) is available at the receiver, this interference can be mit-
igated by the use of successive interference cancelation (SIC)
and equivalent techniques, such as the vertical Bell-Labs lay-
ered space–time and multibranch implementations [11]–[15].
If CSI is not available, adaptive interference suppression and
reception provides an alternative method to mitigate this inter-
ference at significantly lower computational expense [18]–[21].
Previous works [22]–[29] that have addressed antenna selection
and RS considered various approaches to obtain increased
performance and low complexity. A number of works deal-
ing with antenna selection have been reported in [22]–[25],
where the criteria ranged from the minimum mean square error
(MMSE) [22] to the maximum signal-to-noise ratio [23], [24]
and the sum rate [25]. Techniques for cooperative interference
suppression have been reported in [26]–[28].

In this paper, the problem of low-complexity optimization
of TDS with the aid of RS is addressed for a cooperative
MIMO system, where a variety of MMSE-based reception
techniques are used. The finite nature of TDS makes it a
discrete optimization problem where conventional continuous
iterative methods are unsuitable. Although solvable with an
exhaustive search, this constitutes a highly complex solution
and is therefore inappropriate for practical implementation.
Consequently, a discrete stochastic method first proposed in
[30] is introduced as an alternative low-complexity method to
arrive at the optimum TD. However, convergence is dependent
upon the size of the set of solutions, and this therefore acts as
a limiting factor on the performance of an algorithm. Further-
more, the potential for inaccurate reception at the relays leads
to complications and performance implications for the relaying
protocol. To address these issues, we introduce a technique
termed RS that eliminates the most poorly performing relays
from consideration. This leads to a reduction in the cardinality
and an increase in the quality of the solution set. To formalize
this approach, we develop a joint TDS and RS framework and
present a number of discrete iterative algorithms based on the
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mean square error (MSE) and mutual information (MI) criteria.
These schemes are shown to converge to the exhaustive solution
at low computational expense and also operate effectively when
recursive least square (RLS) channel estimation is introduced
to provide the CSI required for MSE calculation and linear and
nonlinear MMSE reception. To illustrate the versatility of the
proposed algorithms and their ability to jointly operate with
continuous algorithms, they are also applied to low-complexity
continuous adaptive interference suppression. We analyze the
complexity, convergence, and diversity gains of the proposed
algorithms and implement them in a multirelay cooperative
MIMO system. Comparisons are drawn against optimal exhaus-
tive solutions, standard cooperative implementations, and the
existing greedy antenna selection (GAS) method [22].

The rest of this paper is organized as follows. Section II
gives the system and data models, and Section III presents the
reception techniques used throughout this paper. Sections IV
and V detail the problems that face multirelay cooperative
MIMO systems, the corresponding linear and nonlinear MMSE
and MI optimization problems, and the framework for their
solution. The proposed discrete iterative algorithms that address
the optimization problems are given in Section VI. Section VII
presents the analysis of and an investigation into the complex-
ity, convergence, diversity, and feedback properties of the pro-
posed algorithms. The performance of the proposed algorithms,
along with comparisons against standard cooperative and non-
cooperative methods, is then given in Section VIII. This pa-
per is drawn to a close by the concluding remarks given in
Section IX.

Notation: Throughout this paper, bold upper- and lowercase
letters represent matrices and vectors, respectively. The com-
plex conjugate, complex conjugate transpose (Hermitian), in-
verse, and transpose operations are denoted by (·)∗, (·)H , (·)−1,
and (·)T , respectively. The trace of a matrix is represented by
trace(.), and Im represents an m × m identity matrix. Block
structures made up of 0s will be represented by 0M×D, where
M and D specify the dimensions of the structure. Estimated
values are denoted by the addition of a hat (̂·), stacked vectors
by the addition of a bar (̄·), | · | represents the cardinality
of a set, and diag(·) represents a diagonal matrix with the
argument’s elements across the main diagonal.

II. SYSTEM AND DATA MODEL

The cooperative network considered in this paper is a two-
phase system where the direct path is nonnegligible and no
intersymbol interference is assumed. All relays are half-duplex,
and MMSE interference suppression and symbol estimation are
performed at all decoding nodes. Single source and destination
nodes are separated by Nr intermediate relay nodes, where the
channel of each antenna pair is represented by a complex gain.
The direct path has a gain that is a fraction of the indirect paths
to reflect the increased geographical distance and shadowing
involved. The source and destination nodes each have Nas

forward and Nad backward antennas, respectively, and the relay
nodes have Nar forward and backward antennas. Nas data
streams are transmitted in the system, and each is allocated
to the correspondingly numbered antenna at the source node.

Fig. 1. MIMO multirelay system model.

Data are transmitted in N symbol packets, and during the
first phase, transmission from the source to the relay and
destination nodes takes place. The second phase then consists
of decoding, power normalization, and forwarding for the DF
protocol and a simple power normalization and retransmission
for the AF protocol. All channels are assumed uncorrelated,
unless otherwise specified, with frequency-flat block fading,
where the coherence time is equal to the duration of the N -
symbol packet. The total average transmit power in each phase
is maintained at unity and equally distributed between the active
antennas. The maximum spatial multiplexing gain and diversity
advantage simultaneously available in the system are r∗ = Nas

and d∗ = Nad(1 + (NrNar/Nas)), respectively [31], [32]. An
outline system model is given in Fig. 1.

A. Decode-and-Forward

The received signals of the first phase at the destination and
nth relay for the ith symbol are respectively given by

rsd[i] =Hsd[i]As[i]Ts[i]s[i] + ηsd[i] (1)
rsrn

[i] =Hsrn
[i]As[i]Ts[i]s[i] + ηsrn

[i]. (2)

The structures Hsd and Hsrn
are the Nas × Nad source–

destination and Nas × Nar source—nth relay channel matrices,
respectively. The quantities ηsd and ηsrn

are the Nad × 1 and
Nar × 1 vectors of zero mean additive white Gaussian noise
at the destination and nth relay, respectively, whose variances
are σ2

sd and σ2
srn

and autocorrelation matrices σ2
sdINad and

σ2
srn

INsrn
. The source’s Nas × 1 transmit data vector is denoted

by s, and As is the diagonal source transmit power allocation
matrix that acts to normalize the average total transmit power of
the first phase to unity assuming that the modulation scheme is
also power normalized to 1. Finally, Ts is a diagonal Nas × Nas

source TDS matrix, where a 1 on each element of the main diag-
onal specifies whether the correspondingly numbered antenna
is active. Consequently, to maintain the maximum multiplexing
gain under the described protocol, all source antennas are
required; therefore, Ts[i] = INas throughout this paper.

At the nth relay, the output of the reception and interference
suppression procedure is denoted zrn

[i], and the decoded sym-
bol vector is given by

ŝrn
[i] = Q (zrn

[i]) (3)

where Q(·) is a general quadrature-amplitude-modulation
slicer.
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The Nad × 1 second-phase received signal at the destination
is the summation of the Nr relayed signals, yielding

rrd[i] =
Nr∑

n=1

Hrnd[i]Arn
[i]Trn

[i]ŝrn
[i] + ηrd[i] (4)

where Hrnd is the nth relay–destination channel matrix, and
Arn

[i] is the nth relay transmit power allocation matrix that en-
sures the total transmit power of the second phase is unity, i.e.,

E

⎡
⎣ Nr∑

j=1

trace
(
AH

rj
[i]Arj

[i]
)⎤
⎦ = 1.

Trn
is the TDS matrix of the nth relay that specifies which of

its Nar antennas are active.
The summation of (4) can be expressed in a more compact

form given by

rrd[i] = Hrd[i]Ar[i]T r[i]ˆ̄s[i] + ηrd[i] (5)

where T r[i] = diag[Tr1 [i] Tr2 [i] . . .TrNr
[i]] is the NarNr ×

NarNr compound relay TDS matrix, ˆ̄s[i] = [ŝT
r1

[i] ŝT
r2

[i] . . .
ŝT
rNr

[i]]T , Hrd[i] = [Hr1d[i] Hr2d[i] . . . HrNr d[i]] is the
Nad × NarNr compound channel matrix, and Ar[i] =
diag[Ar1 [i] Ar2 [i] . . .ArNr

[i]] is the compound power
allocation matrix, where trace(AH

r [i]Ar[i] = 1). The final
received signal at the destination is then formed by stacking
the received signals from the relay and source nodes to give

rd[i] =
[
rsd[i]
rrd[i]

]
. (6)

B. Amplify-and-Forward

For the AF protocol, the common approach of compounding
the first- and second-phase signals and channels is used [10],
resulting in the following expressions for the destination’s
second-phase received signal:

rrd[i] = Hrd[i]Ar[i]T r[i]r̄sr[i] + ηrd (7)

where r̄sr[i] = [rT
sr1

[i] rT
sr2

[i] . . . rT
srNr

[i]]T can be interpreted

as the AF equivalent of ˆ̄s[i]. Expanding (7) yields

rrd[i] = Hrd[i]Ar[i]T r[i]Hsr[i]As[i]Ts[i]s[i]

+ Hrd[i]Ar[i]T r[i]η̄sr + ηrd (8)

where Hsr[i] = [HT
sr1

[i] HT
sr2

[i] . . . HT
srNr

[i]]T , and Ar[i] nor-
malizes the average transmit power of the second phase based
on each relay’s receive power. The received signals of the first
and second phases can then be stacked as in (6) to give rd[i].

III. RECEPTION TECHNIQUES

In cooperative MIMO networks, signal detection and inter-
ference suppression are required for the signals given by (2)
and (6). In this paper, we focus on MMSE-based reception
techniques due to their simplicity, versatility, well-understood
characteristics, and ease of extracting performance metrics. In

this section, we introduce MMSE techniques that are already
known in the literature but whose application to multirelay
cooperative MIMO systems is not widespread [18], [22], [32],
[33]. However, although beyond the scope of this paper, it
is possible to use more complex and sophisticated nonlinear
techniques such as decision feedback and maximum likelihood
receivers. We primarily concentrate on the DF protocol, but
expressions for reception at the destination node are easily
transferred to the AF.

A. Optimal Linear MMSE Reception

Linear MMSE reception can be achieved with the use of the
Wiener filter [33]. The cost functions for the Wiener filter at the
nth relay and the destination are given by

Wopt
rn

= arg min
Wrn [i]

E

∥∥∥∥∥∥∥s[i] − WH
rn

[i]rsrn
[i]︸ ︷︷ ︸

zrn [i]

∥∥∥∥∥∥∥
2

(9)

Wopt
d = arg min

Wd[i]

E

∥∥∥∥∥∥∥s[i] − WH
d [i]rd[i]︸ ︷︷ ︸
zd[i]

∥∥∥∥∥∥∥
2

(10)

whose dimensions are Nar × Nas and 2Nad × Nas, respec-
tively. These expressions yield the following filters:

Wsrn
=R−1

srn
Psrn

(11)

Wd =R−1
d Pd (12)

where Rsrn
= E[rsrn

[i]rH
srn

[i]], Psrn
= E[rsrn

[i]sH [i]], Rd =
E[rd[i]rH

d [i]], and Pd = E[rd[i]sH [i]]. The MSEs at the desti-
nation and nth relay are then, respectively, given by

σ2
s − trace

(
PH

d R−1
d Pd

)
(13)

σ2
s − trace

(
PH

srn
R−1

srn
Psrn

)
(14)

where σ2
s = E[sH [i]s[i]].

B. Optimal MMSE SIC Reception

Nonlinear reception offers performance advantages in
MIMO systems by assisting in the mitigation of the multi-
antenna interference; however, this is at the cost of increased
complexity. By using MMSE SIC, advantages can be obtained
while avoiding the levels of complexity associated with other
nonlinear methods such as sphere decoding and full maximum
likelihood decoding. The implementation of SIC in MIMO
systems has been addressed in previous works, but cooperative
DF MIMO systems add an additional layer of complexity to the
process due to the two reception phases and multiple indepen-
dent nodes transmitting simultaneously, [13]–[17]. To perform
SIC at the destination, we begin with the destination received
vector, where the contribution of the lth −1 data streams has
been removed for the lth layer of decoding

rl
d[i] =

[
rl
sd[i]

rl
rd[i]

]
(15)
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where

rl
rd[i] = rrd[i] − Hrd[i]Ar[i]T r[i]ˆ̄s

l−1
d [i] (16)

rl
sd[i] = rsd[i] − Hsd[i]As[i]Ts[i]ŝl−1

d [i]. (17)

The detection and estimation of the lth data stream at the
destination are performed using relayed and direct signals. To
avoid auxiliary calculations and minimize complexity, the in-
terference cancelation is unordered and done in a batch process
where a single destination symbol estimate is used to generate
the cancelation terms from all the relevant source and relay
antennas. The estimated symbol interference cancelation vector
is given by

ˆ̄sl
d[i] =

⎡
⎢⎣ ŝl

d[i]
...Nr

ŝl
d[i]

⎤
⎥⎦ (18)

where

ŝ0
d[i]

for l=0

=

⎡
⎣ 0

...Nas

0

⎤
⎦ ŝl

d[i]
for l=1···Nas−1

=

⎡
⎢⎢⎣

ŝ1
d[i]
...l

ŝl
d[i]

0(Nas−l)×1.

⎤
⎥⎥⎦ . (19)

The destination Wiener filter for the lth layer is then given by

wl
d =

(
Rl

d

)−1
pl

d (20)

where Rl
d = E[rl

d[i](r
l
d)

H [i]] and pl
d = E[rl

d[i](s
l)∗[i]] are the

associated correlation matrices, and sl[i] is the lth element of
the symbol vector s[i]. MMSE SIC reception is also undertaken
at each relay, where the modified received signal for the lth
layer of decoding at the nth relay is given by

rl
srn

[i] = rsrn
[i] − Hsrn

[i]As[i]Ts[i]ŝl−1
rn

[i] (21)

where

ŝ0
rn

[i]
for l=0

=

⎡
⎣ 0

...Nas

0

⎤
⎦ ŝl

rn
[i]

for l=1···Nas−1

=

⎡
⎢⎢⎢⎣

ŝ1
rn

[i]
...l

ŝl
rn

[i]
0(Nas−l)×1

⎤
⎥⎥⎥⎦ (22)

form the estimated symbol interference cancelation vector. The
associated Wiener filter is then given by

wl
rn

=
(
Rl

rn

)−1
pl

rn
(23)

where Rl
rn

= E[rl
rn

[i](rl
rn

)H [i]] and pl
rn

= E[rl
rn

[i](sl)∗[i]]
are the required correlation matrices. The MSEs resulting
from SIC at the relays and destination are, respectively,
given by

MSErn
= σ2

s −
Nas∑
j=1

((
Pj

rn

)H (
Rj

rn

)−1
Pj

rn

)
(24)

MSEd = σ2
s −

Nas∑
j=1

((
Pj

d

)H (
Rj

d

)−1

Pj
d

)
(25)

where the summation is formed from the MSE contribution
of each element of the estimated symbol vector ŝ[i], and the
required structures are analogous to those utilized in (13).

C. Iterative Adaptive Linear MMSE Reception

Adaptive reception and interference suppression is a low-
complexity and practical alternative to the two previous tech-
niques. By iteratively converging toward the optimal estimation
and interference suppression filter, the computational expense
can be significantly reduced. The derivation of this approach
begins as in Section III-A with an MSE optimization problem
given by

Wopt
d [i] = arg min

Wd[i]

E
[∥∥s[i] − WH

d [i]rd[i]
∥∥2

]
. (26)

However, instead of solving optimally, a stochastic gradient
approach is chosen. The gradient is taken with respect to the
filter Wd and a recursive least mean square (LMS) update
equation formed with the aid of a step-size μ. This results in

Wd[i + 1] = Wd[i] + μdrd[i]eH
d [i] (27)

where

ed[i] = s[i] − WH
d [i]rd[i] (28)

and s[i] is provided by a known training sequence or in a
decision directed manner. A similar approach is also taken for
reception at the relay nodes, resulting in the following LMS
update equations:

Wrn
[i + 1] = Wd[i] + μrrrn

[i]eH
rn

[i] (29)

where

ern
[i] = s[i] − WH

rn
[i]rrn

[i]. (30)

Alternatively, a designer can employ more sophisticated esti-
mation algorithms such as reduced-rank techniques [39]–[44].

D. Mutual Information

Maximization of the enhanced capacity and sum rate that
cooperative MIMO networks offer is another important feature
of reception techniques in cooperative MIMO systems. In [34]
and [35], the formulation of the MI of a conventional MIMO
system is studied. Treating the cooperative system considered
in this paper in a similar manner, it is possible to arrive at an
expression for the MI of the first and second phases. Funda-
mentally, the MI of a phase is given by the difference between
the differential entropy and the conditional differential entropy
of the received signal when the transmit data are known. This
can be expressed as

Irn
(s; rrn

) = H (rrn
) − H (rrn

|s) (31)

Id(s; rrd) = H(rrd) − H(rrd|s) (32)

for reception at the Nrth during first phase and reception at the
destination during the second phase, respectively. With further
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manipulation presented in [34] and [35], the MI of the first and
second phases can respectively be expressed as

Irn
(s; rrn

) = log2 det

(
INa + E

[
Hsrn

[i]As[i]Ts[i]ŝ[i]ŝH [i]

× TH
s [i]AH

s [i]HH
srn

[i]
])

(33)

Id(s; rrd) = log2 det

(
INa

+ E
[
Hrd[i]Ar[i]T r[i]ˆ̄s[i]ˆ̄s

H [i]

× T H
r [i]AH

r [i]HH
rd[i]

])
.

(34)

IV. TRANSMIT DIVERSITY OPTIMIZATION

The added spatial diversity and multiplexing that cooperative
MIMO achieves compared to single antenna systems make it
an attractive transmission methodology. However, undiscerning
use of the available channels when a number may have poor
transmission characteristics leads to performance degradation,
loss of achievable diversity and capacity, and increased inter-
ference. These problems can be alleviated by the intelligent
selection of transmit antennas of each phase in a process
we term TDS. Although this will reduce the total diversity
advantage available in the system, it will increase the diversity
achieved by the uncoded MMSE-based reception techniques.
The requirement to maintain maximum multiplexing gain in the
system prohibits selection at the source node, and therefore, we
concentrate on selection at the relays, where the matrix T r[i]
provides the means to do so in both DF and AF systems. By
optimizing the selection of T r[i], it is possible to optimize the
performance of the system as a whole. The limited number
of relay antennas and the finite number of possible states
of each (on/off) make the selection of T r[i] a discrete and
permutation-based task. Therefore, we formulate the selection
task for each reception technique as a discrete optimization
problem.

A. Optimal Linear MMSE Reception

The availability of MSE information from the MMSE recep-
tion of second phase makes optimization based on this metric
an attractive and low-cost procedure, and therefore, one we will
use. We begin by forming a discrete cost function given by

T opt
r = arg min

T r[i]∈ΩT

C [i,T r[i]]

= arg min
T r[i]∈ΩT

E
[
‖s[i] − Wd [i,T r[i]] rd [i,T r[i]]‖2

]
(35)

where the TDS matrix is chosen from a finite set of candidates
denoted by ΩT . The solution to (35) can be found by searching
the set ΩT that has been generated from the permutations of

active antennas over all the relays. However, the cardinality
of such a set is extremely large even at modest numbers of
relays and antennas. When all antennas are active and interrelay
communication is assumed, |ΩT | = (Nar × Nr)! and rises fur-
ther when not all antennas are required to be active. Searching
of such a set is clearly impractical, and therefore, methods to
reduce |ΩT | are required. We start by transforming the problem
from a permutation based to combinatorial based by prohibiting
interrelay communications and restricting the allocation of data
streams to antennas. The distance between relays and the addi-
tional computational expense of interrelay communication lead
us to the realistic and common assumption of no interrelay com-
munication that restricts relays to only forward data that have
been decoded locally. In addition to this, if Nar = Nas at each
relay, then it is possible to preallocate data streams to transmit
antennas and therefore remove complexity from the relaying
process while reducing |ΩT | without bias toward certain data
streams. To do this, we preallocate data streams in such a way to
restrict each stream to be transmitted from its correspondingly
numbered antennas at each relay. The final condition that we
place on the selection of transmit antennas is to specify the
size of the subset of active antennas, a value denoted Nasub ,
where 1 < Nasub < Nr. This constraint ensures that a mini-
mum level of achievable diversity is available while ensuring
increased robustness by preventing the use of poor quality
channels. The combined effect of these conditions and restric-
tions result in a reduced set ΩT , which has a cardinality of

|ΩT | =
(

NarNr

Nasub

)
(36)

where trace(T r[i]) = Nasub when TDS is employed. This up-
dated candidate set of TDS matrices can now be inserted into
the MSE cost function given by (35), and (13) and (14) are used
to provide the necessary MSE information to solve (35).

B. Optimal MMSE SIC Reception

The process of TDS can be extended to SIC and offers the
prospect of performance advantages over that of standard SIC.
As previously set out, the process of TDS is a discrete opti-
mization task whose performance and complexity are heavily
dependent on the cardinality of the candidate set of solutions.
Consequently, the considered set of solutions will be refined
as it has been for in Section IV for optimal linear MMSE
reception. This refined set can then be placed in a TDS SIC
optimization function, giving

T opt
r = arg min

T r[i]∈ΩT

Csic [i,T r[i]]

= arg min
T r[i]∈ΩT

Nas∑
l=1

E
[∥∥sl[i] − wl

d [i,T r[i]] rl
d [i,T r[i]]

∥∥2
]
.

(37)

As before, the task is to then select the optimal TDS matrix
from the set ΩT with respect to MSE performance.
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C. MI and Capacity Maximization

TDS can also be applied to MI and capacity maximization.
Once again, we will concentrate upon the second phase due
to the lack of antenna redundancy at the source node. By
transforming the MI framework given in Section III-D into a
maximization procedure and inserting (34), we arrive at

T opt
r = arg max

T r[i]∈ΩT

IT (s; rrd, i,T r[i])

= arg max
T r[i]∈ΩT

log2 det
(
INa

+
1

Nasubσ
2
ηrd

Hrd[i]T r[i]

× Rˆ̄sT H
r [i]HH

rd[i]
)

(38)

where the autocorrelation matrix of the transmitted relay data is
given by

Rˆ̄s = E
[
ˆ̄s[i]ˆ̄sH [i]

]
=

⎡
⎢⎣

INa
. . . INa

...Nr

. . .
...

INa
. . .
Nr

INa

⎤
⎥⎦ . (39)

Once again, the optimization problem posed by (39) is a dis-
crete combinational problem, where the finite set ΩT contains
the potential solutions, and it is required to search a solution.

D. Iterative Adaptive Linear MMSE Reception

Here, we pose an optimization problem based on low-
complexity continuous iterative adaptive linear MMSE recep-
tion and the discrete TDS. This is again a joint optimization
problem, but the solution to (10) is iteratively found as opposed
to that optimally calculated in Section III-A. Placed into a
single continuous-discrete hybrid optimization, we arrive at[
Wopt

d [i],T opt
r [i]

]
= arg min

Wd[i],T r[i]∈ΩT

Cad [i,T r[i],Wd[i]]

= arg min
Wd[i],T r[i]∈ΩT

E
[
‖s[i] − Wd [i,T r[i]] rd [i,T r[i]]‖2

]
.

(40)

However, due to the use of an LMS algorithm to arrive at Wd[i],
ideal MSE information is not available. Consequently, the
expectation is required to be replaced with an ensemble average
using the destination’s squared instantaneous estimation error
given by (28). This results in an updated expression for Cad

given by

Cad [i,T r[i],Wd[i]]

=
1
i

i∑
k=1

‖s[k] − Wd [k,T r[i]] rd [k,T r[i]]‖2 . (41)

Additional complexity savings are possible through the use

of a recursive averaging procedure instead of the summation

in (41). However, reducing the complexity further by using
the unaveraged instantaneous error is not practical due to the
AWGN and the unreliable estimates of T r[i], even at high
values of i.

V. RELAY SELECTION

In Section IV, optimization of the system is considered
through the process of TDS. However, due to the separation
between the two phases, the advantages are restricted by the
performance of the first phase. The primary problem that exists
for MMSE reception with TDS is the possibility of pairing
a high-quality second-phase channel with a poor-quality first-
phase channel, a problem arising from the lack of consideration
of first-phase channel conditions in the TDS process. This can
be alleviated through optimization of the pairing of channels. A
second aspect of the discrete TDS optimization and methods to
solve it is the dependence of their performance and convergence
on the cardinality of the set ΩT ; therefore, reducing this further
is desirable. However, first-phase performance metrics are not
directly available at the destination, interrelay communication
is assumed not available, and there is no antenna redundancy at
the source. Consequently, direct optimization of the first phase
is not possible. To address these issues, we propose to transfer
the burden of first-phase optimization onto the destination by
performing a joint optimization procedure where the TDS set
is optimized based on performance metrics from the relays.
This is done by forwarding the available MSE and MI of each
relay to the destination and then removing members of the set
ΩT based on the first-phase performance of their relays. It is
then possible to reduce the probability of a mismatch between
the first- and second-phase channels while reducing the size
of the TDS set by eliminating the TDS matrices contained
within ΩT that transmit from the relay(s) with the highest
MSE/lowest MI.

A. Optimal Linear MMSE Reception

The task of RS is again a discrete combinatorial problem and
can be expressed as a cost function. The selection of the poorest
performing relay based on its MSE performance under optimal
linear reception can be expressed as

ropt = arg max
r[i]∈ΩR

F [i, r[i]]

= arg max
r[i]∈ΩR

E

[∥∥∥s[i] − wH
srr[i]

[i]rsrr[i] [i]
∥∥∥2

]
(42)

where the set ΩR contains the candidate relays.
For the selection of multiple or Nrem relays, the MSE of

subsets of relays needs to be evaluated. This is done by pop-
ulating ΩR with vectors of dimensionality Nrem × 1, which
contain all possible length Nrem combinations of relay indices
such that

|ΩR| =
(

Nr

Nrem

)
(43)
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or alternatively, all possible relay subsets of cardinality Nrem.
When placed into an optimization framework, this yields

ropt = arg max
r[i]∈ΩR

Nrem∑
j=1

F [i, rj [i]]

= arg max
r[i]∈ΩR

Nrem∑
j=1

E

[∥∥∥s[i] − wH
srrj [i]

[i]rsrrj [i] [i]
∥∥∥2

]
(44)

where rj represents the jth element of the vector r. Following
the solution of (42) or (44), set reduction can commence. This
is where the TDS matrices that involve transmission from the
relay(s) contained within ropt/ropt are removed from ΩT .
This reduced TDS set is termed Ω̂T , and its cardinality is
given by

|Ω̂T | =
(

Nar(Nr − Nrem)
Nasub

)
. (45)

The TDS optimization given by (35) then operates over this set.
As can be seen from (45), increasing Nrem leads to a decrease
in |Ω̂T | and, therefore, the complexity of the optimization
process. However, high values of Nrem greatly restrict the
choice of TDS matrices and, therefore, second-phase channels,
leading to an increased probability of first- and second-phase
channel mismatches. Consequently, there is a balance to be
struck between system performance and optimization complex-
ity when choosing Nrem. In general, Nrem should remain low
in comparison with Nr; however, finer adjustment depends
on the variance of the qualities of the first- and second-phase
channels.

B. Optimal MMSE SIC Reception

The SIC receiver when implemented in MIMO networks
has the ability to offer considerable advantages over linear
reception techniques. However, when applied to DF cooperative
networks, the separation of the first and second phases can
lead to performance degradation and the effective operation
of SIC breaking down. In the SIC framework set out in
Sections III-B and IV-B, the estimated relay transmit data are
formed from a single estimate based on the receive signals from
the relayed and direct transmissions. This method operates on
the assumption that identical symbol estimates are obtained
at each relay for every time instant and that this also occurs
at the destination node. However, this assumption is liable to
break down. RS can help mitigate this problem by identifying
and removing the relay(s) most likely to break the identical
relay symbol estimate assumption and then refining the TDS
set accordingly.

This is achieved by identifying the relay(s) with the highest
MSE as for the optimal linear reception. The discrete MSE cost
function to identify the highest MSE relay(s) is given by

ropt = arg max
r[i]∈ΩR

F sic [i, r[i]]

= arg max
r[i]∈ΩR

Nas∑
l=1

E

[∥∥∥sl[i] − wH
srr[i]

[i]rl
srr[i]

[i]
∥∥∥2

]
(46)

for the single relay case. Extending RS to multiple relays yields

ropt = arg max
r[i]∈ΩR

Nrem∑
j=1

F sic [i, rj [i]]

= arg max
r[i]∈ΩR

Nrem∑
j=1

Nas∑
l=1

E

[∥∥∥sl[i] − wH
srrj [i]

[i]rl
srrj [i]

[i]
∥∥∥2

]
.

(47)

The selected relays are then removed from the candidate TDS
set to form |Ω̂T |, which (37) then operates over.

C. MI and Capacity Maximization

We next address the introduction of RS and its effect on the
performance and complexity of the MI TDS process. Equation
(39) does not directly take account of the performance of the
source–relay transmission, and therefore, there is a likelihood
of Isrn < Irnd. We propose removing from consideration the
relays that have the lowest MI between the transmitted data s
and its received signal rsrn . This can be achieved by the discrete
combinatorial optimization problem given by

ropt = arg min
r[i]∈ΩR

Nrem∑
j=1

IR

(
s; rsrrj [i] , i, rj [i]

)

= arg min
r[i]∈ΩR

Nrem∑
j=1

log2 det
(
INa

+
1

Naσ2
ηsr

Hsrrj [i] [i]

×RsHH
srrj [i]

[i]
)

(48)

where the autocorrelation matrix of the transmitted data is
given by

Rs = E
[
s[i]sH [i]

]
= INa

. (49)

As before, the removal of a relay reduces the cardinality of the
set over which TDS is preformed and therefore improves the
speed and/or complexity of the corresponding optimization.

D. Iterative Adaptive Linear MMSE Reception

To further illustrate the use of the discrete approaches pro-
posed, we apply RS to adaptive linear reception. As for optimal
linear reception, the optimal relay(s) will be selected in accor-
dance with the optimization problem given by

ropt = arg max
r[i]∈ΩR

Nrem∑
j=1

Fad [i, rj [i]]

= arg max
r[i]∈ΩR

Nrem∑
j=1

E

[∥∥∥s[i] − wH
srrj [i]

[i]rsrrj [i] [i]
∥∥∥2

]
. (50)

However, as before, in the LMS adaptation, the expecta-
tion is not performed, and the MSE is replaced with an
ensemble average based on the instantaneous squared relay
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Fig. 2. Algorithm flow diagram.

estimation error given by (30). Reformulating Fad accordingly,
we arrive at

Fad [i, rj [i]] =
1
i

i∑
k=1

[∥∥∥s[k] − wH
srrj [k]

[i]rsrrj [i] [k]
∥∥∥2

]
. (51)

E. Amplify-and-Forward

Due to the lack of decoding at each relay in an AF system,
MSE information is not available, and therefore, a secondary
optimization criteria is required. In this paper, we choose the
end-to-end SNR of each relay branch and perform RS based
on the branch(es) with the lowest SNR. Interpreting this in the
multiple RS framework yields

ropt = arg min
r[i]∈ΩR

Nrem∑
j=1

K [i, rj [i]] (52)

where K [i, rj [i]] is defined in (53), shown at the bottom of the
page. The end-to-end SNR given by (53) is constructed from
the compounded channels of the AF system. The numerator is
formed from the signal power transmitted through each relay
in the system, and the noise in the denominator is formed from
the second-phase noise (σ2

rdINa
) and the amplified first-phase

noise (Arrj [i]d[i]σ2
srINa

AH
rrj [i]d

[i]).

VI. PROPOSED ALGORITHMS

In this section, we present algorithms to solve the optimiza-
tion problems of Sections IV and V. We propose that the TDS
and RS schemes operate in a joint and cyclic fashion, where RS
constantly refines the set that TDS operates over. However, to
obtain solutions to the optimization problems, backward CSI is
required at the relays and destination. Due to the cyclic nature
of the proposed optimization framework, it is possible to insert
channel estimation without interrupting the process, and a flow
diagram given in Fig. 2 shows this.

The optimal but most complex method to obtain solutions to
the range of TDS and RS optimization problems is to perform

TABLE I
PROPOSED DISCRETE STOCHASTIC TDS ALGORITHM

FOR LINEAR MMSE RECEPTION

an exhaustive search of the respective sets at each time instant.
However, due to the power consumption and complexity con-
straints on nodes within the system, such an approach is not
possible; however, it can act as a lower bound on performance.
Iterative methods that converge to the optimal solution present
an alternative low-complexity approach, and therefore, this
family of methods will be used in this paper. Conventional
iterative algorithms, including LMS and RLS, are unsuitable
for discrete problems, and therefore, discrete stochastic algo-
rithms (DSAs) are chosen. In this paper, a low-complexity
DSA first presented in [30] and later used [5] is selected. Each
set of optimization problems can then be jointly and itera-
tively solved at little additional computational cost above that
of the reception and decoding processes at each time instant.

For the optimization problems of Sections IV and V, we
propose a low-complexity DSA that jointly optimizes RS and
TDS in accordance with (35) and (42), (37) and (46), (48) and
(39), and (40) and (50), and converges to the optimal exhaustive
solution. First, in Table I, we present the TDS segment of the al-
gorithm that optimizes the selection of the TDS matrix T r with
regard to optimal linear MMSE reception. At each iteration, the
MSE of a randomly chosen candidate TDS matrix (T C

r ) (step
2) and that of the best performing TDS matrix currently known
(T B

r ) are calculated (step 3). Via a comparison, the lower MSE
TDS matrix is designated T B

r for the next iteration (step 3). The
current solution and TDS matrix chosen for transmission (T r)
is denoted as the current optimum and is the TDS matrix that
has occupied T B

r most frequently over the course of the packet
up to the ith time instant. This averaging/selection process is
performed by allocating each member of ΩT a |ΩT | × 1 unit
vector, vl, which has a 1 in its corresponding position in ΩT ,
i.e., vT B

r
[i] is the label of the best performing TDS matrix at the

ith iteration. The current optimum is then chosen and tracked
by means of a |ΩT | × 1 state occupation probability vector πT.
This vector is updated at each iteration by adding vT B

r
[i + i]

K [i, rj [i]] =
trace

(
Hrrj [i]d[i]Arrj

d[i]Hsrrj [i] [i]As[i]AH
s [i]HH

srrj [i]
[i]AH

rrj [i]d
[i]HH

rrj [i]d
[i]

)
trace

(
Hrrj [i]d[i]Arrj [i]d[i]σ2

srINa
AH

rrj [i]d
[i]HH

rrj [i]d
[i] + σ2

rdINa

) (53)
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TABLE II
PROPOSED DISCRETE STOCHASTIC RS ALGORITHM

FOR LINEAR MMSE RECEPTION

and subtracting the previous value of πT (step 4). The current
optimum is then determined by selecting the largest element
in πT and its corresponding entry in ΩT (step 5). Through
this process, the current optimum converges toward and tracks
the exhaustive solution [30]. An alternative interpretation of the
proposed algorithm is to view the transitions T B

r [i] → T B
r [i +

1] as a Markov chain and the members of ΩT as the possible
transition states. The current optimum can then be defined as
the most visited state.

Table II presents the discrete stochastic RS algorithm that
provides the algorithm in Table I with a refined TDS set (ΩT →
Ω̂T ) in accordance with (42). The operation of the RS algorithm
in Table II is similar to that of the TDS algorithm but with
a reversed inequality of step 3, enabling convergence to the
highest MSE relay(s), and the addition of step 6 that performs
set reduction, as described in Section V. In Table II, a single
relay is selected, but extension to the selection of multiple
relays is straightforward and involves replacing R with the
vector form r and using the MSE calculation of (44).

To adapt the algorithms in Tables I and II for use with SIC
reception, MI optimization, and adaptive reception, a number of
alterations are required. These include reversing the inequality
of step 3 for MI optimization and replacing the metric calcu-
lation functions, also of step 3, for all schemes. Details of the
required changes are given in Table III, where alterations with
respect to RS are for the selection of multiple relays.

Due to the purely adaptive nature of the schemes when
iterative adaptive reception is used, a number of further al-
terations and clarifications are required for correct operation.
First, the updating of the receive filter at the destination for
each TDS matrix and the accompanying error calculation occur
only when its corresponding TDS matrix is selected as either
T , T C or T W during the operation of the algorithm given
in Table I. Second, due to the parallel convergence of the
relay filters, destination filters, TDS, and RS, an extended
convergence period is expected. Consequently, the step size of
step 4 (μ[i]) is not suitable since it more heavily weights early
samples. To avoid this, a fixed step size is implemented that
equally weights all samples and assists convergence at large
values of i.

VII. ANALYSIS

In this section, we analyze and discuss four major aspects
of the proposed algorithms that encompass their advantages
over existing methods. The four areas covered are computa-
tional complexity, convergence, diversity gain, and feedback
requirements.

A. Complexity

The iterative operation of the TDS algorithms offers a clear
complexity advantage over an exhaustive search of the entire set
of solutions. These savings result from a significant reduction
in the number of calculations at each time instant for each set
considered compared to the exhaustive search. However, the
complexity benefits are a tradeoff against convergence as is
often found in mobile systems. In contrast to this, performing
RS in combination with the TDS algorithm improves both con-
vergence and complexity. This results from the low complexity
of the RS procedure being outweighed by the saving made from
the TDS process operating over the reduced cardinality set Ω̂. In
Fig. 3, the computational complexity in terms of the (average)
total number of complex multiplications and additions is given
for the optimal exhaustive methods and the proposed DSA
when optimal linear MMSE reception is used. For simplicity
and conciseness, in this figure and throughout the remainder of
this paper, Na is used to refer to the number of antennas at all
nodes, where Na = Nas = Nar = Nad. As one can see, there
are substantial complexity savings from the use of the proposed
algorithms over the exhaustive solutions; these are savings that
increase with the number of relays and total antenna elements in
the system. A second feature to highlight are the savings made
from introducing RS into the optimal exhaustive and proposed
methods. These savings also increase with system size and
confirm that those made by RS exceed the cost of its implemen-
tation. As one can see from Fig. 3, the savings also increase
with Nrem, which is a feature explained by the following
relationship:

(|ΩR,Nrem=2| − |ΩR,Nrem=1|)

≤
(∣∣∣Ω̂T,Nrem=1

∣∣∣ − ∣∣∣Ω̂T,Nrem=2

∣∣∣) . (54)

Table IV presents the analytical expressions for the com-
plexity of the linear MMSE-based TDS and RS algorithms
along with their corresponding exhaustive implementations.
The presence of the set cardinality in all expressions accounts
for each scheme’s complexity dependence on the set over which
it operates. Central to the cardinality of ΩT and Ω̂T is the choice
of Nasub, as shown by (36) and (45). Consequently, the com-
plexities of the schemes are heavily dependent of the binomial
relationship between the number of considered antennas and
Nasub . The reasons behind the complexity reduction achieved
by the iterative RS algorithm are evident from the expressions
for the iterative TDS and iterative TDS with RS. The majority
of the savings arise from the difference between 2|ΩT | and
2|Ω̂T | + 2|ΩR|, and by referring back to the set cardinality
expressions given by (36), (45), and (43), the characteristics of
the lines in Fig. 3 can be accounted for.



10 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

TABLE III
TDS AND RS ALGORITHM ALTERATIONS

Fig. 3. Computational complexity of optimal exhaustive (Ex) and proposed
iterative (It) MMSE schemes.

B. Feedback Requirements

A significant advantage of the schemes proposed in this paper
are their low feedback requirements. No precoding is required
at the transmitting nodes, TDS solely operates in the second
phase, and all receptions at the receiving nodes only require
locally available CSI. Consequently, only the feedback of the
TD selections to the relays is required. For RS, relay MSE
information is required to be forwarded, which is a process
that occurs during the training period. As covered earlier in
this paper, TDS can be interpreted as discrete power control
with one bit quantization, where the relative transmit power
from each antenna is constrained to either 1 or 0. As a result,
Nar feedback bits are required for TDS at each relay node
and a total of Nr × Nar bits for the overall system, a figure
that grows linearly with the size of the system. This low
feedback rate increases the robustness of the TDS and RS
optimization processes and assists in maintaining performance
up to significant levels of feedback errors. Additionally, the
impact on the capacity of the system is small as only a brief
time slot is required for transmission of the feedback informa-
tion. However, the forwarding of the relay MSE information
is subject to quantization, and it is, therefore, the number of
quantization levels that determines the rate of the forwarded

data. In this paper, a binary symmetric channel is used to
model the feedback and feedforward channels, the quality of
which is controlled by the probability of the error term, where
0 ≤ pe ≤ 1. Fig. 4 gives the system model when the feedback
channel is implemented.

C. Diversity

A significant benefit of multirelay MIMO systems is the
diversity advantage and spatial multiplexing gains they offer.
However, obtaining full receive diversity requires complex
optimum nonlinear methods such as sphere and maximum
likelihood decoding. In this paper, receivers based on linear
MMSE filtering have been used, and therefore, it is not possible
to obtain the full diversity on offer unless so form of coding is
implemented. Nevertheless, the diversity advantage available to
uncoded MMSE receivers can be maximized and the accompa-
nying interference suppression improved. The method of TDS
and RS restricts the number transmit paths used and therefore
lowers the maximum diversity advantage available to the op-
timum nonlinear receivers from d∗ = Nad(1 + (NrNar/Nas))
to d∗ = Nad(Nasub/Nar + 1) when full spatial multiplexing
gain is maintained. However, it enables the lower complexity
MMSE-based techniques to increase their exploitation of the
diversity at an SNR of interest by removing paths that bring
little or no advantage to the cooperative transmissions of the
first and second phase and dedicating increased transmit power
over the remaining transmission routes.

D. Convergence

Here, we specify the condition under which convergence
of the proposed discrete algorithms is guaranteed and discuss
the behavior of the proposed algorithms under nonideal con-
ditions. Considering the combinatorial nature of the problems
and algorithms presented in this paper, convergence is judged
against the optimal exhaustive solution at each time instant.
Due to the application of the proposed schemes in practical
communications systems, we predominantly concentrate upon
BER and squared estimation error as a measure of performance
and convergence.

Global convergence of the proposed algorithms is depen-
dent on two assumptions: 1) the independence between the
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TABLE IV
PROPOSED ALGORITHM COMPLEXITY

Fig. 4. Cooperative MIMO system model with feedback model.

observations used for the objective function calculations and
2) the satisfaction of

Pr
{
CT [i, topt] > CT [i, t[i]]

}
> Pr

{
CT [i, t[i]] > CT [i, topt]

}
(55)

Pr
{
CT [i, topt] > CT

[
i, tC [i]

]}
> Pr

{
CT [i, t[i]] > C

[
i, tC [i]

]}
(56)

for the MMSE TDS and

Pr
{
FR[i, ropt] > FR [i, r[i]]

}
> Pr

{
FR [i, r[i]] > FR

[
i, ropt

]}
(57)

Pr
{
FR[i, ropt] > CR

[
i, rC [i]

]}
> Pr

{
FR [i, r[i]] > FR

[
i, rC [i]

]}
(58)

for the MMSE RS. When these conditions are met and inde-
pendent observations utilized, t[i] → topt and r[i] → ropt are
guaranteed of operating independently [5], [30]. However, due
to the joint of operation of TDS and RS and the practical
difficulties of obtaining numerous independent observations
under the system model presented in this paper, the proof of
convergence is intractable and, therefore, not guaranteed. Nev-
ertheless, throughout the simulations presented in this paper
and extensive experimentation, excellent steady-state conver-
gence performance has been observed. Further support for this
conclusion is presented in [5], where no convergence issues
were encountered as a result of the lack of independent observa-
tions. This, therefore, indicates that the lack of independent ob-
servations is not a problem for the proposed schemes; however,
the choice of μ does need to be taken into consideration. For

example, if a large initial step size is chosen for the TDS process
and a small step size for the RS process, it is possible that the
TDS process will become trapped in a state associated with a
local minimum and therefore fail to converge to the exhaustive
TDS with RS solution. Additional care has to be taken when
studying the convergence of the schemes that feature adaptive
reception. As previously specified, the step size of TDS and RS
algorithms is fixed for the adaptive MMSE implementation to
aid convergence of TDS and RS at large i and avoid becoming
trapped in a nonoptimal state. Although effective, the rate of
convergence will still lag behind the optimal scheme due to not
only the convergence of the LMS adaptive filter algorithms and
the ensemble error but also the convergence of a total of four
algorithms in parallel for TDS with RS. To aid the convergence
of all schemes, |ΩR| � |Ω̂T | to ensure RS converges signifi-
cantly before TDS (|ΩR| < |Ω̂T |). This, therefore, minimizes
the number of TDS iterations performed on the nonoptimal
Ω̂T set and assists in ensuring that the detrimental convergence
effects of a changing Ω̂T in the initial transient are outweighed
by the benefits of TDS operating over a significantly reduced
cardinality set.

VIII. SIMULATIONS

In this section, simulations of the proposed algorithms and
existing techniques are presented. For all schemes, compar-
isons will be given between the optimal exhaustive (exhaustive
TDS and exhaustive TDS and RS), the standard cooperative
system (no TDS), noncooperative transmission (noncoopera-
tive), and iterative (iterative TDS and iterative TDS and RS)
implementations. QPSK modulation is used, and equal power
allocation will be maintained in all phases for DF schemes,
where Ar[i] = 1/

√
NasubINarNr

when TDS is employed, and
Ar[i] = 1/

√
NarNrINarNr

for standard cooperative transmis-
sion. For AF, the transmit power of the mth antenna at the nth
relay when TDS is employed is given by

Arn,m[i]
1√

NasubHsrn,m[i]HH
srn,m[i] + σ2

sr

(59)

where Hsrn,m denotes the mth row of the matrix Hsrn
. Equa-

tion (59) therefore ensures E[AH
r [i]Ar[i]] = 1. For standard

cooperative transmission, Nasub is replaced with Nar, and to
provide CSI, RLS channel estimation will be used [33], [36],
[37]. The RLS variables PĤrd

, PĤsrn
, and PĤsd

are initialized
as identity matrices and λ, and the exponential forgetting factor
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Fig. 5. BER performance versus the number of received symbols for the
proposed schemes with full and estimated CSI and optimal linear receivers.

is 0.9. The initial values of Ĥrd, Ĥsrn
, and Ĥsd are zero ma-

trices. Throughout all simulations, Nas = Nar = Nad = Na,
where Na is specified in each plot. Each simulation is averaged
over Np packets, where Np is specified in each plot, and the
coherence time is equal to or greater than the period of the
packets.

Fig. 5 shows the BER performance versus the number of re-
ceived symbols for the proposed schemes and the existing GAS
method. For the RS schemes, a single relay is removed, and the
estimated CSI is used for optimal linear MMSE reception at
all nodes. The performance of the TDS schemes exceeds that
of the standard cooperative system, and GAS and RS further
improve the performance in terms of convergence and steady
state. The performance improvement over GAS highlights the
drawback of its restricted antenna selection procedure and the
resulting low probability that it will converge to the exhaustive
solution. The proposed schemes do not suffer from such a
restrictive antenna selection procedure and therefore posses a
clear advantage of GAS. The improvement brought about by
RS indicates a decrease in the likelihood of channel mismatch
between the first and second phases and confirms the improve-
ment in convergence performance obtained by refining and
reducing the cardinality of the set over which the TDS operates.
Finally, the behavior of the CE schemes indicates that TDS, RS,
and CE jointly operate correctly and allow the convergence to
the exhaustive solution if an appropriate value of λ is chosen.

The BER performance versus SNR of the proposed optimal
linear MMSE-based algorithms is shown in Fig. 6. The steeper
gradient of the proposed schemes indicates that increased diver-
sity has been achieved by the RS schemes at the SNR of inter-
est, which are gains that increase when Nrem = 2. Improved
interference mitigation is also obtained as evidenced by the
shifting of the TDS plot compared with the standard system. In
general, the BER performance of the iterative scheme closely
matches the exhaustive performance after 500 iterations; how-
ever, there is an increasing discrepancy for the schemes with
Nrem = 2 as the SNR increases. This is partially accounted
for by the lower BER but is also explained by the increased

Fig. 6. BER performance versus SNR for the proposed schemes with optimal
linear receivers and Nrem = 1, 2.

size of ΩR and the increased time the DSA takes to converge
to the optimal ΩR. This results in the TDS portion of the
algorithm not operating on the optimal Ω̂T for a significant
number of initial iterations and therefore increasing the BER
convergence time. The diminishing returns associated with
increasing Nrem are also evident from Fig. 6. This is due to the
worst performing relaying introducing the highest number of
errors, and therefore, the removal of this relay will result in the
most significant increase in performance. The aforementioned
factors highlight the importance of the choice of Nrem relative
to NR. Too small a value and a near-optimal BER value will not
be achieved because poorly performing relays are not removed
from consideration by TDS, but too large a value will result
in slow convergence of the RS algorithm and overly restrict
the paring of first- and second-phase channels that TDS with
RS achieves. Consequently, the choice of Nrem is similar to
the choice of a step size in a stochastic gradient algorithm in
as much that it is a tradeoff between convergence and steady-
state performance. The choice of Nasub also requires careful
consideration. Primarily, Nasub must be chosen so that sufficient
diversity is available in the system; however, the effect of Nasub

on the cardinality of Ω̂T must also be taken into consideration
if an extended convergence period is to be avoided.

An important aspect of cooperative MIMO systems and
transmission strategies is their performance in the presence of
correlated channels. Fig. 7 shows the performance of the opti-
mal linear MMSE-based schemes over the correlated channels
specified in Section VIII-A. Improved interference mitigation
and diversity have been achieved by the proposed TDS with RS
scheme, and no significant convergence problems are evident.
However, as expected, the performance has been degraded by
correlated channels compared to the results in Fig. 6, which are
based on uncorrelated channels.

The effect of introducing SIC based on optimal linear MMSE
reception is illustrated in Fig. 8. The advantage in interference
suppression is evident from the shifted plots, but there are also
diversity gains when RS is considered. The gains of introducing
RS when SIC is utilized are substantial and exceed that of
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Fig. 7. BER performance versus SNR for the proposed schemes with optimal
linear receivers when operating over correlated channels.

Fig. 8. BER performance versus SNR for the proposed schemes with SIC.

introducing RS when SIC is not used. This can be attributed
to the decrease in probability that different symbols have been
transmitted from the active relays that RS brings about, thus
reducing the likelihood that the identical transmit symbol as-
sumption in Section V-B is violated.

Fig. 9 presents the BER performance versus the number
of received symbols for TDS and TDS with RS when joint
adaptive linear MMSE reception is used at all nodes. The rate
of convergence of both iterative algorithms has been slowed
considerably due to the convergence of the receive filters and
their ensemble error, as well as because of the challenges of
several adaptive schemes operating in parallel. The TDS algo-
rithm converges to its optimal value, but when RS is introduced,
convergence issues arise. This is due to the convergence of the
receivers at the relay nodes and the resulting initial iterations
of the RS algorithm that operate on nonoptimal decoding error
information.

Fig. 10 illustrates the performance of the proposed iterative
schemes when implemented in an AF system. Both of the

Fig. 9. BER performance versus the number of received symbols for proposed
schemes with joint adaptive linear MMSE receive filters.

Fig. 10. BER performance versus the number of received symbols for the
proposed schemes in an AF system with optimum linear receivers.

iterative schemes converge to their optimal exhaustive coun-
terparts, and as expected, the TDS and RS schemes display
increased rates of convergence compared with TDS alone.
However, RS does not bring about an improvement in steady
state performance as in DF systems. This results from to the
use of branch SNR as secondary RS criteria because MSE data
are not available from the relays. Therefore, integration with the
MSE-based TDS at the destination is not as complete.

In previous simulations, the feedback and feedforward chan-
nels are assumed error free, but in reality, this assumption
is likely to breakdown. Fig. 11 gives the BER performance
versus the probability of error in each individual feedback and
feedforward bit when no error coding and correction are em-
ployed and a 2-bit quantization is used for the MSE forwarding.
The TDS and the TDS with RS schemes are compared when
optimal linear receivers with full backward CSI are used at all
nodes. Both schemes provide improved performance over the
noncooperative system up until the probability of error reaches
≈0.1, and their performance converges. At this point, 57% of
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Fig. 11. BER performance versus the probability of feedback errors for the
proposed schemes with optimal linear receivers.

Fig. 12. MI performance versus the number of received symbols for the
proposed schemes.

the NaNr feedback bit packets have at least one error. The
performance degradation is due to the nonoptimal second-phase
channels being utilized, incorrect total transmit power, and
incorrect values used in the calculation of the MMSE receiver
at the destination node. The effect on system performance of
errors and quantization in the forwarded MSE is extremely
small and indicates that the RS process is highly robust and
requires only very coarse quantization.

Fig. 12 gives the MI of the proposed schemes versus the
number of iterations of the DSA. Both schemes achieve gains
over the standard system, but RS results in a small performance
loss compared with the TDS scheme. This is due to the MI
optimization given by (39) not taking into account the MI
of the first phase because of the inherent separation between
phases in DF systems. However, the TDS with RS scheme
has lower complexity and increased speed of convergence
compared to TDS alone due to the refined set Ω̂T and its lower
cardinality. Additionally, when utilizing RS, the probability of

the MI/capacity of the first phase being unable to satisfy that of
the second phase is reduced.

A. Correlated Channels

In practical cooperative MIMO systems, the channels be-
tween antennas pairs are spatially correlated due to the close
proximity of the antennas at the transmitting and receiving
nodes. Therefore, it is important to assess the impact of the
correlated channels on performance.

Generation of correlated channels in this paper is performed
using the intelligent multielement transmit and receive antenna
model in combination with a power azimuth spectrum (PAS)
model [34], [38]. Spatial correlation matrices are generated for
each antenna array of the base station (RBS) and mobile station
(RMS), and the overall correlation matrices for the uplink and
downlinks are, respectively, given by

RUP =RMS ⊗ RBS

RDN =RBS ⊗ RMS (60)

where ⊗ represents the Kronecker product. We apply the pro-
posed schemes to a macrocell environment where the PAS is
given by a truncated Laplacian distribution with angle spread
(AS) = 5◦ and AS = 10◦ for the mobile station and base
station, respectively. A single arrival cluster is assumed for all
nodes, and the angles of arrival for the mobile and base station
are given by 67.5◦ and 20◦, respectively. The antenna spacing
at all nodes is 0.5λ, where λ denotes the system wavelength.

IX. CONCLUSION

We have presented TDS and RS methods based on DSA for
multirelay cooperative MIMO systems, where RS improves the
performance of conventional TDS. Hybrid continuous-discrete
MMSE and MI optimization problems have been formed, and
a framework to solve them has been developed. The resulting
joint TDS with RS DSA schemes have been shown to operate
well with optimal receivers, converge in parallel with low-
complexity linear adaptive MMSE receivers, exceed the per-
formance of GAS, and, in the majority of scenarios, converge
to the optimal solution. Increased diversity and improved inter-
ference suppression have been shown to be obtained by the pro-
posed schemes, and full algorithmic implementations have then
been given to provide designers with the tools to significantly
improve the performance of cooperative MIMO systems.
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Abstract—In this paper, we propose a set of joint transmit
diversity selection (TDS) and relay selection (RS) algorithms
based on discrete iterative stochastic optimization for the uplink
of cooperative multiple-input–multiple-output (MIMO) systems.
Decode-and-forward (DF) and amplify-and-forward (AF) mul-
tirelay systems with linear minimum mean square error (MSE),
successive interference cancelation, and adaptive reception are
considered. The problems of TDS and RS are expressed as MSE
and mutual information (MI) joint discrete optimization problems
and solved using iterative discrete stochastic algorithms. Such
an approach circumvents the need for exhaustive searching and
results in a range of procedures with low complexity and increased
speed of convergence that can track the optimal selection over
an estimated channel. The proposed schemes are analyzed in
terms of their complexity, convergence, and diversity benefits and
are shown to be both stable and computationally efficient. Their
performance is then evaluated via MSE, MI, and bit error rate
comparisons and shown to outperform conventional cooperative
transmission and, in the majority of scenarios, match that of the
optimal exhaustive solution.

Index Terms—Cooperative systems, discrete stochastic op-
timization, minimum mean square error (MMSE) receivers,
multiple-input–multiple-output (MIMO) relaying, relay selection
(RS), transmit diversity (TD).

I. INTRODUCTION

COOPERATIVE multiple-input–multiple-output (MIMO)
networks have received significant attention in the recent

research literature due to their spatial diversity gain, multi-
plexing gain, robustness, low power, and high capacity. These
desirable characteristics make such systems well suited to
future mobile network applications where there is a requirement
for extended coverage, increased data rates, and enhanced
quality of service while minimizing infrastructure investment.
Consequently, cooperative MIMO techniques have been incor-
porated into future mobile protocols [1]–[8]. Although still in
their infancy, promising results and techniques for cooperative
MIMO systems have been published, predominantly focusing
on cooperation protocols, routing, information-theoretic limits,
and diversity maximization [2]. The decode-and-forward (DF)
and amplify-and-forward (AF) protocols both offer added de-
grees of freedom, which, when effectively exploited, can lead to
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significant performance gains. Cooperative MIMO systems also
enable the use of transmit diversity (TD) selection and relay
optimization to improve performance and reduce the number of
relays burdened with retransmission of the signal. Transmit di-
versity selection (TDS) and relay selection (RS) can be viewed
as suboptimal variants of beamforming, where transmit powers
are constrained to discrete values of 1 and 0. However, a trade-
off exists between this suboptimality and the reduced feedback
requirements resulting from the 1-bit quantization [9], [10]. The
multiplexing gain resulting from MIMO systems is an attractive
feature, but there is an associated increase in interference from
multistream transmission. When channel state information
(CSI) is available at the receiver, this interference can be mit-
igated by the use of successive interference cancelation (SIC)
and equivalent techniques, such as the vertical Bell-Labs lay-
ered space–time and multibranch implementations [11]–[15].
If CSI is not available, adaptive interference suppression and
reception provides an alternative method to mitigate this inter-
ference at significantly lower computational expense [18]–[21].
Previous works [22]–[29] that have addressed antenna selection
and RS considered various approaches to obtain increased
performance and low complexity. A number of works deal-
ing with antenna selection have been reported in [22]–[25],
where the criteria ranged from the minimum mean square error
(MMSE) [22] to the maximum signal-to-noise ratio [23], [24]
and the sum rate [25]. Techniques for cooperative interference
suppression have been reported in [26]–[28].

In this paper, the problem of low-complexity optimization
of TDS with the aid of RS is addressed for a cooperative
MIMO system, where a variety of MMSE-based reception
techniques are used. The finite nature of TDS makes it a
discrete optimization problem where conventional continuous
iterative methods are unsuitable. Although solvable with an
exhaustive search, this constitutes a highly complex solution
and is therefore inappropriate for practical implementation.
Consequently, a discrete stochastic method first proposed in
[30] is introduced as an alternative low-complexity method to
arrive at the optimum TD. However, convergence is dependent
upon the size of the set of solutions, and this therefore acts as
a limiting factor on the performance of an algorithm. Further-
more, the potential for inaccurate reception at the relays leads
to complications and performance implications for the relaying
protocol. To address these issues, we introduce a technique
termed RS that eliminates the most poorly performing relays
from consideration. This leads to a reduction in the cardinality
and an increase in the quality of the solution set. To formalize
this approach, we develop a joint TDS and RS framework and
present a number of discrete iterative algorithms based on the

0018-9545/$31.00 © 2012 IEEE



2 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

mean square error (MSE) and mutual information (MI) criteria.
These schemes are shown to converge to the exhaustive solution
at low computational expense and also operate effectively when
recursive least square (RLS) channel estimation is introduced
to provide the CSI required for MSE calculation and linear and
nonlinear MMSE reception. To illustrate the versatility of the
proposed algorithms and their ability to jointly operate with
continuous algorithms, they are also applied to low-complexity
continuous adaptive interference suppression. We analyze the
complexity, convergence, and diversity gains of the proposed
algorithms and implement them in a multirelay cooperative
MIMO system. Comparisons are drawn against optimal exhaus-
tive solutions, standard cooperative implementations, and the
existing greedy antenna selection (GAS) method [22].

The rest of this paper is organized as follows. Section II
gives the system and data models, and Section III presents the
reception techniques used throughout this paper. Sections IV
and V detail the problems that face multirelay cooperative
MIMO systems, the corresponding linear and nonlinear MMSE
and MI optimization problems, and the framework for their
solution. The proposed discrete iterative algorithms that address
the optimization problems are given in Section VI. Section VII
presents the analysis of and an investigation into the complex-
ity, convergence, diversity, and feedback properties of the pro-
posed algorithms. The performance of the proposed algorithms,
along with comparisons against standard cooperative and non-
cooperative methods, is then given in Section VIII. This pa-
per is drawn to a close by the concluding remarks given in
Section IX.

Notation: Throughout this paper, bold upper- and lowercase
letters represent matrices and vectors, respectively. The com-
plex conjugate, complex conjugate transpose (Hermitian), in-
verse, and transpose operations are denoted by (·)∗, (·)H , (·)−1,
and (·)T , respectively. The trace of a matrix is represented by
trace(.), and Im represents an m × m identity matrix. Block
structures made up of 0s will be represented by 0M×D, where
M and D specify the dimensions of the structure. Estimated
values are denoted by the addition of a hat (̂·), stacked vectors
by the addition of a bar (̄·), | · | represents the cardinality
of a set, and diag(·) represents a diagonal matrix with the
argument’s elements across the main diagonal.

II. SYSTEM AND DATA MODEL

The cooperative network considered in this paper is a two-
phase system where the direct path is nonnegligible and no
intersymbol interference is assumed. All relays are half-duplex,
and MMSE interference suppression and symbol estimation are
performed at all decoding nodes. Single source and destination
nodes are separated by Nr intermediate relay nodes, where the
channel of each antenna pair is represented by a complex gain.
The direct path has a gain that is a fraction of the indirect paths
to reflect the increased geographical distance and shadowing
involved. The source and destination nodes each have Nas

forward and Nad backward antennas, respectively, and the relay
nodes have Nar forward and backward antennas. Nas data
streams are transmitted in the system, and each is allocated
to the correspondingly numbered antenna at the source node.

Fig. 1. MIMO multirelay system model.

Data are transmitted in N symbol packets, and during the
first phase, transmission from the source to the relay and
destination nodes takes place. The second phase then consists
of decoding, power normalization, and forwarding for the DF
protocol and a simple power normalization and retransmission
for the AF protocol. All channels are assumed uncorrelated,
unless otherwise specified, with frequency-flat block fading,
where the coherence time is equal to the duration of the N -
symbol packet. The total average transmit power in each phase
is maintained at unity and equally distributed between the active
antennas. The maximum spatial multiplexing gain and diversity
advantage simultaneously available in the system are r∗ = Nas

and d∗ = Nad(1 + (NrNar/Nas)), respectively [31], [32]. An
outline system model is given in Fig. 1.

A. Decode-and-Forward

The received signals of the first phase at the destination and
nth relay for the ith symbol are respectively given by

rsd[i] =Hsd[i]As[i]Ts[i]s[i] + ηsd[i] (1)
rsrn

[i] =Hsrn
[i]As[i]Ts[i]s[i] + ηsrn

[i]. (2)

The structures Hsd and Hsrn
are the Nas × Nad source–

destination and Nas × Nar source—nth relay channel matrices,
respectively. The quantities ηsd and ηsrn

are the Nad × 1 and
Nar × 1 vectors of zero mean additive white Gaussian noise
at the destination and nth relay, respectively, whose variances
are σ2

sd and σ2
srn

and autocorrelation matrices σ2
sdINad and

σ2
srn

INsrn
. The source’s Nas × 1 transmit data vector is denoted

by s, and As is the diagonal source transmit power allocation
matrix that acts to normalize the average total transmit power of
the first phase to unity assuming that the modulation scheme is
also power normalized to 1. Finally, Ts is a diagonal Nas × Nas

source TDS matrix, where a 1 on each element of the main diag-
onal specifies whether the correspondingly numbered antenna
is active. Consequently, to maintain the maximum multiplexing
gain under the described protocol, all source antennas are
required; therefore, Ts[i] = INas throughout this paper.

At the nth relay, the output of the reception and interference
suppression procedure is denoted zrn

[i], and the decoded sym-
bol vector is given by

ŝrn
[i] = Q (zrn

[i]) (3)

where Q(·) is a general quadrature-amplitude-modulation
slicer.
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The Nad × 1 second-phase received signal at the destination
is the summation of the Nr relayed signals, yielding

rrd[i] =
Nr∑

n=1

Hrnd[i]Arn
[i]Trn

[i]ŝrn
[i] + ηrd[i] (4)

where Hrnd is the nth relay–destination channel matrix, and
Arn

[i] is the nth relay transmit power allocation matrix that en-
sures the total transmit power of the second phase is unity, i.e.,

E

⎡
⎣ Nr∑

j=1

trace
(
AH

rj
[i]Arj

[i]
)⎤
⎦ = 1.

Trn
is the TDS matrix of the nth relay that specifies which of

its Nar antennas are active.
The summation of (4) can be expressed in a more compact

form given by

rrd[i] = Hrd[i]Ar[i]T r[i]ˆ̄s[i] + ηrd[i] (5)

where T r[i] = diag[Tr1 [i] Tr2 [i] . . .TrNr
[i]] is the NarNr ×

NarNr compound relay TDS matrix, ˆ̄s[i] = [ŝT
r1

[i] ŝT
r2

[i] . . .
ŝT
rNr

[i]]T , Hrd[i] = [Hr1d[i] Hr2d[i] . . . HrNr d[i]] is the
Nad × NarNr compound channel matrix, and Ar[i] =
diag[Ar1 [i] Ar2 [i] . . .ArNr

[i]] is the compound power
allocation matrix, where trace(AH

r [i]Ar[i] = 1). The final
received signal at the destination is then formed by stacking
the received signals from the relay and source nodes to give

rd[i] =
[
rsd[i]
rrd[i]

]
. (6)

B. Amplify-and-Forward

For the AF protocol, the common approach of compounding
the first- and second-phase signals and channels is used [10],
resulting in the following expressions for the destination’s
second-phase received signal:

rrd[i] = Hrd[i]Ar[i]T r[i]r̄sr[i] + ηrd (7)

where r̄sr[i] = [rT
sr1

[i] rT
sr2

[i] . . . rT
srNr

[i]]T can be interpreted

as the AF equivalent of ˆ̄s[i]. Expanding (7) yields

rrd[i] = Hrd[i]Ar[i]T r[i]Hsr[i]As[i]Ts[i]s[i]

+ Hrd[i]Ar[i]T r[i]η̄sr + ηrd (8)

where Hsr[i] = [HT
sr1

[i] HT
sr2

[i] . . . HT
srNr

[i]]T , and Ar[i] nor-
malizes the average transmit power of the second phase based
on each relay’s receive power. The received signals of the first
and second phases can then be stacked as in (6) to give rd[i].

III. RECEPTION TECHNIQUES

In cooperative MIMO networks, signal detection and inter-
ference suppression are required for the signals given by (2)
and (6). In this paper, we focus on MMSE-based reception
techniques due to their simplicity, versatility, well-understood
characteristics, and ease of extracting performance metrics. In

this section, we introduce MMSE techniques that are already
known in the literature but whose application to multirelay
cooperative MIMO systems is not widespread [18], [22], [32],
[33]. However, although beyond the scope of this paper, it
is possible to use more complex and sophisticated nonlinear
techniques such as decision feedback and maximum likelihood
receivers. We primarily concentrate on the DF protocol, but
expressions for reception at the destination node are easily
transferred to the AF.

A. Optimal Linear MMSE Reception

Linear MMSE reception can be achieved with the use of the
Wiener filter [33]. The cost functions for the Wiener filter at the
nth relay and the destination are given by

Wopt
rn

= arg min
Wrn [i]

E

∥∥∥∥∥∥∥s[i] − WH
rn

[i]rsrn
[i]︸ ︷︷ ︸

zrn [i]

∥∥∥∥∥∥∥
2

(9)

Wopt
d = arg min

Wd[i]

E

∥∥∥∥∥∥∥s[i] − WH
d [i]rd[i]︸ ︷︷ ︸
zd[i]

∥∥∥∥∥∥∥
2

(10)

whose dimensions are Nar × Nas and 2Nad × Nas, respec-
tively. These expressions yield the following filters:

Wsrn
=R−1

srn
Psrn

(11)

Wd =R−1
d Pd (12)

where Rsrn
= E[rsrn

[i]rH
srn

[i]], Psrn
= E[rsrn

[i]sH [i]], Rd =
E[rd[i]rH

d [i]], and Pd = E[rd[i]sH [i]]. The MSEs at the desti-
nation and nth relay are then, respectively, given by

σ2
s − trace

(
PH

d R−1
d Pd

)
(13)

σ2
s − trace

(
PH

srn
R−1

srn
Psrn

)
(14)

where σ2
s = E[sH [i]s[i]].

B. Optimal MMSE SIC Reception

Nonlinear reception offers performance advantages in
MIMO systems by assisting in the mitigation of the multi-
antenna interference; however, this is at the cost of increased
complexity. By using MMSE SIC, advantages can be obtained
while avoiding the levels of complexity associated with other
nonlinear methods such as sphere decoding and full maximum
likelihood decoding. The implementation of SIC in MIMO
systems has been addressed in previous works, but cooperative
DF MIMO systems add an additional layer of complexity to the
process due to the two reception phases and multiple indepen-
dent nodes transmitting simultaneously, [13]–[17]. To perform
SIC at the destination, we begin with the destination received
vector, where the contribution of the lth −1 data streams has
been removed for the lth layer of decoding

rl
d[i] =

[
rl
sd[i]

rl
rd[i]

]
(15)
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where

rl
rd[i] = rrd[i] − Hrd[i]Ar[i]T r[i]ˆ̄s

l−1
d [i] (16)

rl
sd[i] = rsd[i] − Hsd[i]As[i]Ts[i]ŝl−1

d [i]. (17)

The detection and estimation of the lth data stream at the
destination are performed using relayed and direct signals. To
avoid auxiliary calculations and minimize complexity, the in-
terference cancelation is unordered and done in a batch process
where a single destination symbol estimate is used to generate
the cancelation terms from all the relevant source and relay
antennas. The estimated symbol interference cancelation vector
is given by

ˆ̄sl
d[i] =

⎡
⎢⎣ ŝl

d[i]
...Nr

ŝl
d[i]

⎤
⎥⎦ (18)

where

ŝ0
d[i]

for l=0

=

⎡
⎣ 0

...Nas

0

⎤
⎦ ŝl

d[i]
for l=1···Nas−1

=

⎡
⎢⎢⎣

ŝ1
d[i]
...l

ŝl
d[i]

0(Nas−l)×1.

⎤
⎥⎥⎦ . (19)

The destination Wiener filter for the lth layer is then given by

wl
d =

(
Rl

d

)−1
pl

d (20)

where Rl
d = E[rl

d[i](r
l
d)

H [i]] and pl
d = E[rl

d[i](s
l)∗[i]] are the

associated correlation matrices, and sl[i] is the lth element of
the symbol vector s[i]. MMSE SIC reception is also undertaken
at each relay, where the modified received signal for the lth
layer of decoding at the nth relay is given by

rl
srn

[i] = rsrn
[i] − Hsrn

[i]As[i]Ts[i]ŝl−1
rn

[i] (21)

where

ŝ0
rn

[i]
for l=0

=

⎡
⎣ 0

...Nas

0

⎤
⎦ ŝl

rn
[i]

for l=1···Nas−1

=

⎡
⎢⎢⎢⎣

ŝ1
rn

[i]
...l

ŝl
rn

[i]
0(Nas−l)×1

⎤
⎥⎥⎥⎦ (22)

form the estimated symbol interference cancelation vector. The
associated Wiener filter is then given by

wl
rn

=
(
Rl

rn

)−1
pl

rn
(23)

where Rl
rn

= E[rl
rn

[i](rl
rn

)H [i]] and pl
rn

= E[rl
rn

[i](sl)∗[i]]
are the required correlation matrices. The MSEs resulting
from SIC at the relays and destination are, respectively,
given by

MSErn
= σ2

s −
Nas∑
j=1

((
Pj

rn

)H (
Rj

rn

)−1
Pj

rn

)
(24)

MSEd = σ2
s −

Nas∑
j=1

((
Pj

d

)H (
Rj

d

)−1

Pj
d

)
(25)

where the summation is formed from the MSE contribution
of each element of the estimated symbol vector ŝ[i], and the
required structures are analogous to those utilized in (13).

C. Iterative Adaptive Linear MMSE Reception

Adaptive reception and interference suppression is a low-
complexity and practical alternative to the two previous tech-
niques. By iteratively converging toward the optimal estimation
and interference suppression filter, the computational expense
can be significantly reduced. The derivation of this approach
begins as in Section III-A with an MSE optimization problem
given by

Wopt
d [i] = arg min

Wd[i]

E
[∥∥s[i] − WH

d [i]rd[i]
∥∥2

]
. (26)

However, instead of solving optimally, a stochastic gradient
approach is chosen. The gradient is taken with respect to the
filter Wd and a recursive least mean square (LMS) update
equation formed with the aid of a step-size μ. This results in

Wd[i + 1] = Wd[i] + μdrd[i]eH
d [i] (27)

where

ed[i] = s[i] − WH
d [i]rd[i] (28)

and s[i] is provided by a known training sequence or in a
decision directed manner. A similar approach is also taken for
reception at the relay nodes, resulting in the following LMS
update equations:

Wrn
[i + 1] = Wd[i] + μrrrn

[i]eH
rn

[i] (29)

where

ern
[i] = s[i] − WH

rn
[i]rrn

[i]. (30)

Alternatively, a designer can employ more sophisticated esti-
mation algorithms such as reduced-rank techniques [39]–[44].

D. Mutual Information

Maximization of the enhanced capacity and sum rate that
cooperative MIMO networks offer is another important feature
of reception techniques in cooperative MIMO systems. In [34]
and [35], the formulation of the MI of a conventional MIMO
system is studied. Treating the cooperative system considered
in this paper in a similar manner, it is possible to arrive at an
expression for the MI of the first and second phases. Funda-
mentally, the MI of a phase is given by the difference between
the differential entropy and the conditional differential entropy
of the received signal when the transmit data are known. This
can be expressed as

Irn
(s; rrn

) = H (rrn
) − H (rrn

|s) (31)

Id(s; rrd) = H(rrd) − H(rrd|s) (32)

for reception at the Nrth during first phase and reception at the
destination during the second phase, respectively. With further
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manipulation presented in [34] and [35], the MI of the first and
second phases can respectively be expressed as

Irn
(s; rrn

) = log2 det

(
INa + E

[
Hsrn

[i]As[i]Ts[i]ŝ[i]ŝH [i]

× TH
s [i]AH

s [i]HH
srn

[i]
])

(33)

Id(s; rrd) = log2 det

(
INa

+ E
[
Hrd[i]Ar[i]T r[i]ˆ̄s[i]ˆ̄s

H [i]

× T H
r [i]AH

r [i]HH
rd[i]

])
.

(34)

IV. TRANSMIT DIVERSITY OPTIMIZATION

The added spatial diversity and multiplexing that cooperative
MIMO achieves compared to single antenna systems make it
an attractive transmission methodology. However, undiscerning
use of the available channels when a number may have poor
transmission characteristics leads to performance degradation,
loss of achievable diversity and capacity, and increased inter-
ference. These problems can be alleviated by the intelligent
selection of transmit antennas of each phase in a process
we term TDS. Although this will reduce the total diversity
advantage available in the system, it will increase the diversity
achieved by the uncoded MMSE-based reception techniques.
The requirement to maintain maximum multiplexing gain in the
system prohibits selection at the source node, and therefore, we
concentrate on selection at the relays, where the matrix T r[i]
provides the means to do so in both DF and AF systems. By
optimizing the selection of T r[i], it is possible to optimize the
performance of the system as a whole. The limited number
of relay antennas and the finite number of possible states
of each (on/off) make the selection of T r[i] a discrete and
permutation-based task. Therefore, we formulate the selection
task for each reception technique as a discrete optimization
problem.

A. Optimal Linear MMSE Reception

The availability of MSE information from the MMSE recep-
tion of second phase makes optimization based on this metric
an attractive and low-cost procedure, and therefore, one we will
use. We begin by forming a discrete cost function given by

T opt
r = arg min

T r[i]∈ΩT

C [i,T r[i]]

= arg min
T r[i]∈ΩT

E
[
‖s[i] − Wd [i,T r[i]] rd [i,T r[i]]‖2

]
(35)

where the TDS matrix is chosen from a finite set of candidates
denoted by ΩT . The solution to (35) can be found by searching
the set ΩT that has been generated from the permutations of

active antennas over all the relays. However, the cardinality
of such a set is extremely large even at modest numbers of
relays and antennas. When all antennas are active and interrelay
communication is assumed, |ΩT | = (Nar × Nr)! and rises fur-
ther when not all antennas are required to be active. Searching
of such a set is clearly impractical, and therefore, methods to
reduce |ΩT | are required. We start by transforming the problem
from a permutation based to combinatorial based by prohibiting
interrelay communications and restricting the allocation of data
streams to antennas. The distance between relays and the addi-
tional computational expense of interrelay communication lead
us to the realistic and common assumption of no interrelay com-
munication that restricts relays to only forward data that have
been decoded locally. In addition to this, if Nar = Nas at each
relay, then it is possible to preallocate data streams to transmit
antennas and therefore remove complexity from the relaying
process while reducing |ΩT | without bias toward certain data
streams. To do this, we preallocate data streams in such a way to
restrict each stream to be transmitted from its correspondingly
numbered antennas at each relay. The final condition that we
place on the selection of transmit antennas is to specify the
size of the subset of active antennas, a value denoted Nasub ,
where 1 < Nasub < Nr. This constraint ensures that a mini-
mum level of achievable diversity is available while ensuring
increased robustness by preventing the use of poor quality
channels. The combined effect of these conditions and restric-
tions result in a reduced set ΩT , which has a cardinality of

|ΩT | =
(

NarNr

Nasub

)
(36)

where trace(T r[i]) = Nasub when TDS is employed. This up-
dated candidate set of TDS matrices can now be inserted into
the MSE cost function given by (35), and (13) and (14) are used
to provide the necessary MSE information to solve (35).

B. Optimal MMSE SIC Reception

The process of TDS can be extended to SIC and offers the
prospect of performance advantages over that of standard SIC.
As previously set out, the process of TDS is a discrete opti-
mization task whose performance and complexity are heavily
dependent on the cardinality of the candidate set of solutions.
Consequently, the considered set of solutions will be refined
as it has been for in Section IV for optimal linear MMSE
reception. This refined set can then be placed in a TDS SIC
optimization function, giving

T opt
r = arg min

T r[i]∈ΩT

Csic [i,T r[i]]

= arg min
T r[i]∈ΩT

Nas∑
l=1

E
[∥∥sl[i] − wl

d [i,T r[i]] rl
d [i,T r[i]]

∥∥2
]
.

(37)

As before, the task is to then select the optimal TDS matrix
from the set ΩT with respect to MSE performance.
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C. MI and Capacity Maximization

TDS can also be applied to MI and capacity maximization.
Once again, we will concentrate upon the second phase due
to the lack of antenna redundancy at the source node. By
transforming the MI framework given in Section III-D into a
maximization procedure and inserting (34), we arrive at

T opt
r = arg max

T r[i]∈ΩT

IT (s; rrd, i,T r[i])

= arg max
T r[i]∈ΩT

log2 det
(
INa

+
1

Nasubσ
2
ηrd

Hrd[i]T r[i]

× Rˆ̄sT H
r [i]HH

rd[i]
)

(38)

where the autocorrelation matrix of the transmitted relay data is
given by

Rˆ̄s = E
[
ˆ̄s[i]ˆ̄sH [i]

]
=

⎡
⎢⎣

INa
. . . INa

...Nr

. . .
...

INa
. . .
Nr

INa

⎤
⎥⎦ . (39)

Once again, the optimization problem posed by (39) is a dis-
crete combinational problem, where the finite set ΩT contains
the potential solutions, and it is required to search a solution.

D. Iterative Adaptive Linear MMSE Reception

Here, we pose an optimization problem based on low-
complexity continuous iterative adaptive linear MMSE recep-
tion and the discrete TDS. This is again a joint optimization
problem, but the solution to (10) is iteratively found as opposed
to that optimally calculated in Section III-A. Placed into a
single continuous-discrete hybrid optimization, we arrive at[
Wopt

d [i],T opt
r [i]

]
= arg min

Wd[i],T r[i]∈ΩT

Cad [i,T r[i],Wd[i]]

= arg min
Wd[i],T r[i]∈ΩT

E
[
‖s[i] − Wd [i,T r[i]] rd [i,T r[i]]‖2

]
.

(40)

However, due to the use of an LMS algorithm to arrive at Wd[i],
ideal MSE information is not available. Consequently, the
expectation is required to be replaced with an ensemble average
using the destination’s squared instantaneous estimation error
given by (28). This results in an updated expression for Cad

given by

Cad [i,T r[i],Wd[i]]

=
1
i

i∑
k=1

‖s[k] − Wd [k,T r[i]] rd [k,T r[i]]‖2 . (41)

Additional complexity savings are possible through the use

of a recursive averaging procedure instead of the summation

in (41). However, reducing the complexity further by using
the unaveraged instantaneous error is not practical due to the
AWGN and the unreliable estimates of T r[i], even at high
values of i.

V. RELAY SELECTION

In Section IV, optimization of the system is considered
through the process of TDS. However, due to the separation
between the two phases, the advantages are restricted by the
performance of the first phase. The primary problem that exists
for MMSE reception with TDS is the possibility of pairing
a high-quality second-phase channel with a poor-quality first-
phase channel, a problem arising from the lack of consideration
of first-phase channel conditions in the TDS process. This can
be alleviated through optimization of the pairing of channels. A
second aspect of the discrete TDS optimization and methods to
solve it is the dependence of their performance and convergence
on the cardinality of the set ΩT ; therefore, reducing this further
is desirable. However, first-phase performance metrics are not
directly available at the destination, interrelay communication
is assumed not available, and there is no antenna redundancy at
the source. Consequently, direct optimization of the first phase
is not possible. To address these issues, we propose to transfer
the burden of first-phase optimization onto the destination by
performing a joint optimization procedure where the TDS set
is optimized based on performance metrics from the relays.
This is done by forwarding the available MSE and MI of each
relay to the destination and then removing members of the set
ΩT based on the first-phase performance of their relays. It is
then possible to reduce the probability of a mismatch between
the first- and second-phase channels while reducing the size
of the TDS set by eliminating the TDS matrices contained
within ΩT that transmit from the relay(s) with the highest
MSE/lowest MI.

A. Optimal Linear MMSE Reception

The task of RS is again a discrete combinatorial problem and
can be expressed as a cost function. The selection of the poorest
performing relay based on its MSE performance under optimal
linear reception can be expressed as

ropt = arg max
r[i]∈ΩR

F [i, r[i]]

= arg max
r[i]∈ΩR

E

[∥∥∥s[i] − wH
srr[i]

[i]rsrr[i] [i]
∥∥∥2

]
(42)

where the set ΩR contains the candidate relays.
For the selection of multiple or Nrem relays, the MSE of

subsets of relays needs to be evaluated. This is done by pop-
ulating ΩR with vectors of dimensionality Nrem × 1, which
contain all possible length Nrem combinations of relay indices
such that

|ΩR| =
(

Nr

Nrem

)
(43)
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or alternatively, all possible relay subsets of cardinality Nrem.
When placed into an optimization framework, this yields

ropt = arg max
r[i]∈ΩR

Nrem∑
j=1

F [i, rj [i]]

= arg max
r[i]∈ΩR

Nrem∑
j=1

E

[∥∥∥s[i] − wH
srrj [i]

[i]rsrrj [i] [i]
∥∥∥2

]
(44)

where rj represents the jth element of the vector r. Following
the solution of (42) or (44), set reduction can commence. This
is where the TDS matrices that involve transmission from the
relay(s) contained within ropt/ropt are removed from ΩT .
This reduced TDS set is termed Ω̂T , and its cardinality is
given by

|Ω̂T | =
(

Nar(Nr − Nrem)
Nasub

)
. (45)

The TDS optimization given by (35) then operates over this set.
As can be seen from (45), increasing Nrem leads to a decrease
in |Ω̂T | and, therefore, the complexity of the optimization
process. However, high values of Nrem greatly restrict the
choice of TDS matrices and, therefore, second-phase channels,
leading to an increased probability of first- and second-phase
channel mismatches. Consequently, there is a balance to be
struck between system performance and optimization complex-
ity when choosing Nrem. In general, Nrem should remain low
in comparison with Nr; however, finer adjustment depends
on the variance of the qualities of the first- and second-phase
channels.

B. Optimal MMSE SIC Reception

The SIC receiver when implemented in MIMO networks
has the ability to offer considerable advantages over linear
reception techniques. However, when applied to DF cooperative
networks, the separation of the first and second phases can
lead to performance degradation and the effective operation
of SIC breaking down. In the SIC framework set out in
Sections III-B and IV-B, the estimated relay transmit data are
formed from a single estimate based on the receive signals from
the relayed and direct transmissions. This method operates on
the assumption that identical symbol estimates are obtained
at each relay for every time instant and that this also occurs
at the destination node. However, this assumption is liable to
break down. RS can help mitigate this problem by identifying
and removing the relay(s) most likely to break the identical
relay symbol estimate assumption and then refining the TDS
set accordingly.

This is achieved by identifying the relay(s) with the highest
MSE as for the optimal linear reception. The discrete MSE cost
function to identify the highest MSE relay(s) is given by

ropt = arg max
r[i]∈ΩR

F sic [i, r[i]]

= arg max
r[i]∈ΩR

Nas∑
l=1

E

[∥∥∥sl[i] − wH
srr[i]

[i]rl
srr[i]

[i]
∥∥∥2

]
(46)

for the single relay case. Extending RS to multiple relays yields

ropt = arg max
r[i]∈ΩR

Nrem∑
j=1

F sic [i, rj [i]]

= arg max
r[i]∈ΩR

Nrem∑
j=1

Nas∑
l=1

E

[∥∥∥sl[i] − wH
srrj [i]

[i]rl
srrj [i]

[i]
∥∥∥2

]
.

(47)

The selected relays are then removed from the candidate TDS
set to form |Ω̂T |, which (37) then operates over.

C. MI and Capacity Maximization

We next address the introduction of RS and its effect on the
performance and complexity of the MI TDS process. Equation
(39) does not directly take account of the performance of the
source–relay transmission, and therefore, there is a likelihood
of Isrn < Irnd. We propose removing from consideration the
relays that have the lowest MI between the transmitted data s
and its received signal rsrn . This can be achieved by the discrete
combinatorial optimization problem given by

ropt = arg min
r[i]∈ΩR

Nrem∑
j=1

IR

(
s; rsrrj [i] , i, rj [i]

)

= arg min
r[i]∈ΩR

Nrem∑
j=1

log2 det
(
INa

+
1

Naσ2
ηsr

Hsrrj [i] [i]

×RsHH
srrj [i]

[i]
)

(48)

where the autocorrelation matrix of the transmitted data is
given by

Rs = E
[
s[i]sH [i]

]
= INa

. (49)

As before, the removal of a relay reduces the cardinality of the
set over which TDS is preformed and therefore improves the
speed and/or complexity of the corresponding optimization.

D. Iterative Adaptive Linear MMSE Reception

To further illustrate the use of the discrete approaches pro-
posed, we apply RS to adaptive linear reception. As for optimal
linear reception, the optimal relay(s) will be selected in accor-
dance with the optimization problem given by

ropt = arg max
r[i]∈ΩR

Nrem∑
j=1

Fad [i, rj [i]]

= arg max
r[i]∈ΩR

Nrem∑
j=1

E

[∥∥∥s[i] − wH
srrj [i]

[i]rsrrj [i] [i]
∥∥∥2

]
. (50)

However, as before, in the LMS adaptation, the expecta-
tion is not performed, and the MSE is replaced with an
ensemble average based on the instantaneous squared relay
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Fig. 2. Algorithm flow diagram.

estimation error given by (30). Reformulating Fad accordingly,
we arrive at

Fad [i, rj [i]] =
1
i

i∑
k=1

[∥∥∥s[k] − wH
srrj [k]

[i]rsrrj [i] [k]
∥∥∥2

]
. (51)

E. Amplify-and-Forward

Due to the lack of decoding at each relay in an AF system,
MSE information is not available, and therefore, a secondary
optimization criteria is required. In this paper, we choose the
end-to-end SNR of each relay branch and perform RS based
on the branch(es) with the lowest SNR. Interpreting this in the
multiple RS framework yields

ropt = arg min
r[i]∈ΩR

Nrem∑
j=1

K [i, rj [i]] (52)

where K [i, rj [i]] is defined in (53), shown at the bottom of the
page. The end-to-end SNR given by (53) is constructed from
the compounded channels of the AF system. The numerator is
formed from the signal power transmitted through each relay
in the system, and the noise in the denominator is formed from
the second-phase noise (σ2

rdINa
) and the amplified first-phase

noise (Arrj [i]d[i]σ2
srINa

AH
rrj [i]d

[i]).

VI. PROPOSED ALGORITHMS

In this section, we present algorithms to solve the optimiza-
tion problems of Sections IV and V. We propose that the TDS
and RS schemes operate in a joint and cyclic fashion, where RS
constantly refines the set that TDS operates over. However, to
obtain solutions to the optimization problems, backward CSI is
required at the relays and destination. Due to the cyclic nature
of the proposed optimization framework, it is possible to insert
channel estimation without interrupting the process, and a flow
diagram given in Fig. 2 shows this.

The optimal but most complex method to obtain solutions to
the range of TDS and RS optimization problems is to perform

TABLE I
PROPOSED DISCRETE STOCHASTIC TDS ALGORITHM

FOR LINEAR MMSE RECEPTION

an exhaustive search of the respective sets at each time instant.
However, due to the power consumption and complexity con-
straints on nodes within the system, such an approach is not
possible; however, it can act as a lower bound on performance.
Iterative methods that converge to the optimal solution present
an alternative low-complexity approach, and therefore, this
family of methods will be used in this paper. Conventional
iterative algorithms, including LMS and RLS, are unsuitable
for discrete problems, and therefore, discrete stochastic algo-
rithms (DSAs) are chosen. In this paper, a low-complexity
DSA first presented in [30] and later used [5] is selected. Each
set of optimization problems can then be jointly and itera-
tively solved at little additional computational cost above that
of the reception and decoding processes at each time instant.

For the optimization problems of Sections IV and V, we
propose a low-complexity DSA that jointly optimizes RS and
TDS in accordance with (35) and (42), (37) and (46), (48) and
(39), and (40) and (50), and converges to the optimal exhaustive
solution. First, in Table I, we present the TDS segment of the al-
gorithm that optimizes the selection of the TDS matrix T r with
regard to optimal linear MMSE reception. At each iteration, the
MSE of a randomly chosen candidate TDS matrix (T C

r ) (step
2) and that of the best performing TDS matrix currently known
(T B

r ) are calculated (step 3). Via a comparison, the lower MSE
TDS matrix is designated T B

r for the next iteration (step 3). The
current solution and TDS matrix chosen for transmission (T r)
is denoted as the current optimum and is the TDS matrix that
has occupied T B

r most frequently over the course of the packet
up to the ith time instant. This averaging/selection process is
performed by allocating each member of ΩT a |ΩT | × 1 unit
vector, vl, which has a 1 in its corresponding position in ΩT ,
i.e., vT B

r
[i] is the label of the best performing TDS matrix at the

ith iteration. The current optimum is then chosen and tracked
by means of a |ΩT | × 1 state occupation probability vector πT.
This vector is updated at each iteration by adding vT B

r
[i + i]

K [i, rj [i]] =
trace

(
Hrrj [i]d[i]Arrj

d[i]Hsrrj [i] [i]As[i]AH
s [i]HH

srrj [i]
[i]AH

rrj [i]d
[i]HH

rrj [i]d
[i]

)
trace

(
Hrrj [i]d[i]Arrj [i]d[i]σ2

srINa
AH

rrj [i]d
[i]HH

rrj [i]d
[i] + σ2

rdINa

) (53)
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TABLE II
PROPOSED DISCRETE STOCHASTIC RS ALGORITHM

FOR LINEAR MMSE RECEPTION

and subtracting the previous value of πT (step 4). The current
optimum is then determined by selecting the largest element
in πT and its corresponding entry in ΩT (step 5). Through
this process, the current optimum converges toward and tracks
the exhaustive solution [30]. An alternative interpretation of the
proposed algorithm is to view the transitions T B

r [i] → T B
r [i +

1] as a Markov chain and the members of ΩT as the possible
transition states. The current optimum can then be defined as
the most visited state.

Table II presents the discrete stochastic RS algorithm that
provides the algorithm in Table I with a refined TDS set (ΩT →
Ω̂T ) in accordance with (42). The operation of the RS algorithm
in Table II is similar to that of the TDS algorithm but with
a reversed inequality of step 3, enabling convergence to the
highest MSE relay(s), and the addition of step 6 that performs
set reduction, as described in Section V. In Table II, a single
relay is selected, but extension to the selection of multiple
relays is straightforward and involves replacing R with the
vector form r and using the MSE calculation of (44).

To adapt the algorithms in Tables I and II for use with SIC
reception, MI optimization, and adaptive reception, a number of
alterations are required. These include reversing the inequality
of step 3 for MI optimization and replacing the metric calcu-
lation functions, also of step 3, for all schemes. Details of the
required changes are given in Table III, where alterations with
respect to RS are for the selection of multiple relays.

Due to the purely adaptive nature of the schemes when
iterative adaptive reception is used, a number of further al-
terations and clarifications are required for correct operation.
First, the updating of the receive filter at the destination for
each TDS matrix and the accompanying error calculation occur
only when its corresponding TDS matrix is selected as either
T , T C or T W during the operation of the algorithm given
in Table I. Second, due to the parallel convergence of the
relay filters, destination filters, TDS, and RS, an extended
convergence period is expected. Consequently, the step size of
step 4 (μ[i]) is not suitable since it more heavily weights early
samples. To avoid this, a fixed step size is implemented that
equally weights all samples and assists convergence at large
values of i.

VII. ANALYSIS

In this section, we analyze and discuss four major aspects
of the proposed algorithms that encompass their advantages
over existing methods. The four areas covered are computa-
tional complexity, convergence, diversity gain, and feedback
requirements.

A. Complexity

The iterative operation of the TDS algorithms offers a clear
complexity advantage over an exhaustive search of the entire set
of solutions. These savings result from a significant reduction
in the number of calculations at each time instant for each set
considered compared to the exhaustive search. However, the
complexity benefits are a tradeoff against convergence as is
often found in mobile systems. In contrast to this, performing
RS in combination with the TDS algorithm improves both con-
vergence and complexity. This results from the low complexity
of the RS procedure being outweighed by the saving made from
the TDS process operating over the reduced cardinality set Ω̂. In
Fig. 3, the computational complexity in terms of the (average)
total number of complex multiplications and additions is given
for the optimal exhaustive methods and the proposed DSA
when optimal linear MMSE reception is used. For simplicity
and conciseness, in this figure and throughout the remainder of
this paper, Na is used to refer to the number of antennas at all
nodes, where Na = Nas = Nar = Nad. As one can see, there
are substantial complexity savings from the use of the proposed
algorithms over the exhaustive solutions; these are savings that
increase with the number of relays and total antenna elements in
the system. A second feature to highlight are the savings made
from introducing RS into the optimal exhaustive and proposed
methods. These savings also increase with system size and
confirm that those made by RS exceed the cost of its implemen-
tation. As one can see from Fig. 3, the savings also increase
with Nrem, which is a feature explained by the following
relationship:

(|ΩR,Nrem=2| − |ΩR,Nrem=1|)

≤
(∣∣∣Ω̂T,Nrem=1

∣∣∣ − ∣∣∣Ω̂T,Nrem=2

∣∣∣) . (54)

Table IV presents the analytical expressions for the com-
plexity of the linear MMSE-based TDS and RS algorithms
along with their corresponding exhaustive implementations.
The presence of the set cardinality in all expressions accounts
for each scheme’s complexity dependence on the set over which
it operates. Central to the cardinality of ΩT and Ω̂T is the choice
of Nasub, as shown by (36) and (45). Consequently, the com-
plexities of the schemes are heavily dependent of the binomial
relationship between the number of considered antennas and
Nasub . The reasons behind the complexity reduction achieved
by the iterative RS algorithm are evident from the expressions
for the iterative TDS and iterative TDS with RS. The majority
of the savings arise from the difference between 2|ΩT | and
2|Ω̂T | + 2|ΩR|, and by referring back to the set cardinality
expressions given by (36), (45), and (43), the characteristics of
the lines in Fig. 3 can be accounted for.
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TABLE III
TDS AND RS ALGORITHM ALTERATIONS

Fig. 3. Computational complexity of optimal exhaustive (Ex) and proposed
iterative (It) MMSE schemes.

B. Feedback Requirements

A significant advantage of the schemes proposed in this paper
are their low feedback requirements. No precoding is required
at the transmitting nodes, TDS solely operates in the second
phase, and all receptions at the receiving nodes only require
locally available CSI. Consequently, only the feedback of the
TD selections to the relays is required. For RS, relay MSE
information is required to be forwarded, which is a process
that occurs during the training period. As covered earlier in
this paper, TDS can be interpreted as discrete power control
with one bit quantization, where the relative transmit power
from each antenna is constrained to either 1 or 0. As a result,
Nar feedback bits are required for TDS at each relay node
and a total of Nr × Nar bits for the overall system, a figure
that grows linearly with the size of the system. This low
feedback rate increases the robustness of the TDS and RS
optimization processes and assists in maintaining performance
up to significant levels of feedback errors. Additionally, the
impact on the capacity of the system is small as only a brief
time slot is required for transmission of the feedback informa-
tion. However, the forwarding of the relay MSE information
is subject to quantization, and it is, therefore, the number of
quantization levels that determines the rate of the forwarded

data. In this paper, a binary symmetric channel is used to
model the feedback and feedforward channels, the quality of
which is controlled by the probability of the error term, where
0 ≤ pe ≤ 1. Fig. 4 gives the system model when the feedback
channel is implemented.

C. Diversity

A significant benefit of multirelay MIMO systems is the
diversity advantage and spatial multiplexing gains they offer.
However, obtaining full receive diversity requires complex
optimum nonlinear methods such as sphere and maximum
likelihood decoding. In this paper, receivers based on linear
MMSE filtering have been used, and therefore, it is not possible
to obtain the full diversity on offer unless so form of coding is
implemented. Nevertheless, the diversity advantage available to
uncoded MMSE receivers can be maximized and the accompa-
nying interference suppression improved. The method of TDS
and RS restricts the number transmit paths used and therefore
lowers the maximum diversity advantage available to the op-
timum nonlinear receivers from d∗ = Nad(1 + (NrNar/Nas))
to d∗ = Nad(Nasub/Nar + 1) when full spatial multiplexing
gain is maintained. However, it enables the lower complexity
MMSE-based techniques to increase their exploitation of the
diversity at an SNR of interest by removing paths that bring
little or no advantage to the cooperative transmissions of the
first and second phase and dedicating increased transmit power
over the remaining transmission routes.

D. Convergence

Here, we specify the condition under which convergence
of the proposed discrete algorithms is guaranteed and discuss
the behavior of the proposed algorithms under nonideal con-
ditions. Considering the combinatorial nature of the problems
and algorithms presented in this paper, convergence is judged
against the optimal exhaustive solution at each time instant.
Due to the application of the proposed schemes in practical
communications systems, we predominantly concentrate upon
BER and squared estimation error as a measure of performance
and convergence.

Global convergence of the proposed algorithms is depen-
dent on two assumptions: 1) the independence between the
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TABLE IV
PROPOSED ALGORITHM COMPLEXITY

Fig. 4. Cooperative MIMO system model with feedback model.

observations used for the objective function calculations and
2) the satisfaction of

Pr
{
CT [i, topt] > CT [i, t[i]]

}
> Pr

{
CT [i, t[i]] > CT [i, topt]

}
(55)

Pr
{
CT [i, topt] > CT

[
i, tC [i]

]}
> Pr

{
CT [i, t[i]] > C

[
i, tC [i]

]}
(56)

for the MMSE TDS and

Pr
{
FR[i, ropt] > FR [i, r[i]]

}
> Pr

{
FR [i, r[i]] > FR

[
i, ropt

]}
(57)

Pr
{
FR[i, ropt] > CR

[
i, rC [i]

]}
> Pr

{
FR [i, r[i]] > FR

[
i, rC [i]

]}
(58)

for the MMSE RS. When these conditions are met and inde-
pendent observations utilized, t[i] → topt and r[i] → ropt are
guaranteed of operating independently [5], [30]. However, due
to the joint of operation of TDS and RS and the practical
difficulties of obtaining numerous independent observations
under the system model presented in this paper, the proof of
convergence is intractable and, therefore, not guaranteed. Nev-
ertheless, throughout the simulations presented in this paper
and extensive experimentation, excellent steady-state conver-
gence performance has been observed. Further support for this
conclusion is presented in [5], where no convergence issues
were encountered as a result of the lack of independent observa-
tions. This, therefore, indicates that the lack of independent ob-
servations is not a problem for the proposed schemes; however,
the choice of μ does need to be taken into consideration. For

example, if a large initial step size is chosen for the TDS process
and a small step size for the RS process, it is possible that the
TDS process will become trapped in a state associated with a
local minimum and therefore fail to converge to the exhaustive
TDS with RS solution. Additional care has to be taken when
studying the convergence of the schemes that feature adaptive
reception. As previously specified, the step size of TDS and RS
algorithms is fixed for the adaptive MMSE implementation to
aid convergence of TDS and RS at large i and avoid becoming
trapped in a nonoptimal state. Although effective, the rate of
convergence will still lag behind the optimal scheme due to not
only the convergence of the LMS adaptive filter algorithms and
the ensemble error but also the convergence of a total of four
algorithms in parallel for TDS with RS. To aid the convergence
of all schemes, |ΩR| � |Ω̂T | to ensure RS converges signifi-
cantly before TDS (|ΩR| < |Ω̂T |). This, therefore, minimizes
the number of TDS iterations performed on the nonoptimal
Ω̂T set and assists in ensuring that the detrimental convergence
effects of a changing Ω̂T in the initial transient are outweighed
by the benefits of TDS operating over a significantly reduced
cardinality set.

VIII. SIMULATIONS

In this section, simulations of the proposed algorithms and
existing techniques are presented. For all schemes, compar-
isons will be given between the optimal exhaustive (exhaustive
TDS and exhaustive TDS and RS), the standard cooperative
system (no TDS), noncooperative transmission (noncoopera-
tive), and iterative (iterative TDS and iterative TDS and RS)
implementations. QPSK modulation is used, and equal power
allocation will be maintained in all phases for DF schemes,
where Ar[i] = 1/

√
NasubINarNr

when TDS is employed, and
Ar[i] = 1/

√
NarNrINarNr

for standard cooperative transmis-
sion. For AF, the transmit power of the mth antenna at the nth
relay when TDS is employed is given by

Arn,m[i]
1√

NasubHsrn,m[i]HH
srn,m[i] + σ2

sr

(59)

where Hsrn,m denotes the mth row of the matrix Hsrn
. Equa-

tion (59) therefore ensures E[AH
r [i]Ar[i]] = 1. For standard

cooperative transmission, Nasub is replaced with Nar, and to
provide CSI, RLS channel estimation will be used [33], [36],
[37]. The RLS variables PĤrd

, PĤsrn
, and PĤsd

are initialized
as identity matrices and λ, and the exponential forgetting factor
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Fig. 5. BER performance versus the number of received symbols for the
proposed schemes with full and estimated CSI and optimal linear receivers.

is 0.9. The initial values of Ĥrd, Ĥsrn
, and Ĥsd are zero ma-

trices. Throughout all simulations, Nas = Nar = Nad = Na,
where Na is specified in each plot. Each simulation is averaged
over Np packets, where Np is specified in each plot, and the
coherence time is equal to or greater than the period of the
packets.

Fig. 5 shows the BER performance versus the number of re-
ceived symbols for the proposed schemes and the existing GAS
method. For the RS schemes, a single relay is removed, and the
estimated CSI is used for optimal linear MMSE reception at
all nodes. The performance of the TDS schemes exceeds that
of the standard cooperative system, and GAS and RS further
improve the performance in terms of convergence and steady
state. The performance improvement over GAS highlights the
drawback of its restricted antenna selection procedure and the
resulting low probability that it will converge to the exhaustive
solution. The proposed schemes do not suffer from such a
restrictive antenna selection procedure and therefore posses a
clear advantage of GAS. The improvement brought about by
RS indicates a decrease in the likelihood of channel mismatch
between the first and second phases and confirms the improve-
ment in convergence performance obtained by refining and
reducing the cardinality of the set over which the TDS operates.
Finally, the behavior of the CE schemes indicates that TDS, RS,
and CE jointly operate correctly and allow the convergence to
the exhaustive solution if an appropriate value of λ is chosen.

The BER performance versus SNR of the proposed optimal
linear MMSE-based algorithms is shown in Fig. 6. The steeper
gradient of the proposed schemes indicates that increased diver-
sity has been achieved by the RS schemes at the SNR of inter-
est, which are gains that increase when Nrem = 2. Improved
interference mitigation is also obtained as evidenced by the
shifting of the TDS plot compared with the standard system. In
general, the BER performance of the iterative scheme closely
matches the exhaustive performance after 500 iterations; how-
ever, there is an increasing discrepancy for the schemes with
Nrem = 2 as the SNR increases. This is partially accounted
for by the lower BER but is also explained by the increased

Fig. 6. BER performance versus SNR for the proposed schemes with optimal
linear receivers and Nrem = 1, 2.

size of ΩR and the increased time the DSA takes to converge
to the optimal ΩR. This results in the TDS portion of the
algorithm not operating on the optimal Ω̂T for a significant
number of initial iterations and therefore increasing the BER
convergence time. The diminishing returns associated with
increasing Nrem are also evident from Fig. 6. This is due to the
worst performing relaying introducing the highest number of
errors, and therefore, the removal of this relay will result in the
most significant increase in performance. The aforementioned
factors highlight the importance of the choice of Nrem relative
to NR. Too small a value and a near-optimal BER value will not
be achieved because poorly performing relays are not removed
from consideration by TDS, but too large a value will result
in slow convergence of the RS algorithm and overly restrict
the paring of first- and second-phase channels that TDS with
RS achieves. Consequently, the choice of Nrem is similar to
the choice of a step size in a stochastic gradient algorithm in
as much that it is a tradeoff between convergence and steady-
state performance. The choice of Nasub also requires careful
consideration. Primarily, Nasub must be chosen so that sufficient
diversity is available in the system; however, the effect of Nasub

on the cardinality of Ω̂T must also be taken into consideration
if an extended convergence period is to be avoided.

An important aspect of cooperative MIMO systems and
transmission strategies is their performance in the presence of
correlated channels. Fig. 7 shows the performance of the opti-
mal linear MMSE-based schemes over the correlated channels
specified in Section VIII-A. Improved interference mitigation
and diversity have been achieved by the proposed TDS with RS
scheme, and no significant convergence problems are evident.
However, as expected, the performance has been degraded by
correlated channels compared to the results in Fig. 6, which are
based on uncorrelated channels.

The effect of introducing SIC based on optimal linear MMSE
reception is illustrated in Fig. 8. The advantage in interference
suppression is evident from the shifted plots, but there are also
diversity gains when RS is considered. The gains of introducing
RS when SIC is utilized are substantial and exceed that of
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Fig. 7. BER performance versus SNR for the proposed schemes with optimal
linear receivers when operating over correlated channels.

Fig. 8. BER performance versus SNR for the proposed schemes with SIC.

introducing RS when SIC is not used. This can be attributed
to the decrease in probability that different symbols have been
transmitted from the active relays that RS brings about, thus
reducing the likelihood that the identical transmit symbol as-
sumption in Section V-B is violated.

Fig. 9 presents the BER performance versus the number
of received symbols for TDS and TDS with RS when joint
adaptive linear MMSE reception is used at all nodes. The rate
of convergence of both iterative algorithms has been slowed
considerably due to the convergence of the receive filters and
their ensemble error, as well as because of the challenges of
several adaptive schemes operating in parallel. The TDS algo-
rithm converges to its optimal value, but when RS is introduced,
convergence issues arise. This is due to the convergence of the
receivers at the relay nodes and the resulting initial iterations
of the RS algorithm that operate on nonoptimal decoding error
information.

Fig. 10 illustrates the performance of the proposed iterative
schemes when implemented in an AF system. Both of the

Fig. 9. BER performance versus the number of received symbols for proposed
schemes with joint adaptive linear MMSE receive filters.

Fig. 10. BER performance versus the number of received symbols for the
proposed schemes in an AF system with optimum linear receivers.

iterative schemes converge to their optimal exhaustive coun-
terparts, and as expected, the TDS and RS schemes display
increased rates of convergence compared with TDS alone.
However, RS does not bring about an improvement in steady
state performance as in DF systems. This results from to the
use of branch SNR as secondary RS criteria because MSE data
are not available from the relays. Therefore, integration with the
MSE-based TDS at the destination is not as complete.

In previous simulations, the feedback and feedforward chan-
nels are assumed error free, but in reality, this assumption
is likely to breakdown. Fig. 11 gives the BER performance
versus the probability of error in each individual feedback and
feedforward bit when no error coding and correction are em-
ployed and a 2-bit quantization is used for the MSE forwarding.
The TDS and the TDS with RS schemes are compared when
optimal linear receivers with full backward CSI are used at all
nodes. Both schemes provide improved performance over the
noncooperative system up until the probability of error reaches
≈0.1, and their performance converges. At this point, 57% of
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Fig. 11. BER performance versus the probability of feedback errors for the
proposed schemes with optimal linear receivers.

Fig. 12. MI performance versus the number of received symbols for the
proposed schemes.

the NaNr feedback bit packets have at least one error. The
performance degradation is due to the nonoptimal second-phase
channels being utilized, incorrect total transmit power, and
incorrect values used in the calculation of the MMSE receiver
at the destination node. The effect on system performance of
errors and quantization in the forwarded MSE is extremely
small and indicates that the RS process is highly robust and
requires only very coarse quantization.

Fig. 12 gives the MI of the proposed schemes versus the
number of iterations of the DSA. Both schemes achieve gains
over the standard system, but RS results in a small performance
loss compared with the TDS scheme. This is due to the MI
optimization given by (39) not taking into account the MI
of the first phase because of the inherent separation between
phases in DF systems. However, the TDS with RS scheme
has lower complexity and increased speed of convergence
compared to TDS alone due to the refined set Ω̂T and its lower
cardinality. Additionally, when utilizing RS, the probability of

the MI/capacity of the first phase being unable to satisfy that of
the second phase is reduced.

A. Correlated Channels

In practical cooperative MIMO systems, the channels be-
tween antennas pairs are spatially correlated due to the close
proximity of the antennas at the transmitting and receiving
nodes. Therefore, it is important to assess the impact of the
correlated channels on performance.

Generation of correlated channels in this paper is performed
using the intelligent multielement transmit and receive antenna
model in combination with a power azimuth spectrum (PAS)
model [34], [38]. Spatial correlation matrices are generated for
each antenna array of the base station (RBS) and mobile station
(RMS), and the overall correlation matrices for the uplink and
downlinks are, respectively, given by

RUP =RMS ⊗ RBS

RDN =RBS ⊗ RMS (60)

where ⊗ represents the Kronecker product. We apply the pro-
posed schemes to a macrocell environment where the PAS is
given by a truncated Laplacian distribution with angle spread
(AS) = 5◦ and AS = 10◦ for the mobile station and base
station, respectively. A single arrival cluster is assumed for all
nodes, and the angles of arrival for the mobile and base station
are given by 67.5◦ and 20◦, respectively. The antenna spacing
at all nodes is 0.5λ, where λ denotes the system wavelength.

IX. CONCLUSION

We have presented TDS and RS methods based on DSA for
multirelay cooperative MIMO systems, where RS improves the
performance of conventional TDS. Hybrid continuous-discrete
MMSE and MI optimization problems have been formed, and
a framework to solve them has been developed. The resulting
joint TDS with RS DSA schemes have been shown to operate
well with optimal receivers, converge in parallel with low-
complexity linear adaptive MMSE receivers, exceed the per-
formance of GAS, and, in the majority of scenarios, converge
to the optimal solution. Increased diversity and improved inter-
ference suppression have been shown to be obtained by the pro-
posed schemes, and full algorithmic implementations have then
been given to provide designers with the tools to significantly
improve the performance of cooperative MIMO systems.
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