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Abstract—This paper investigates a robust Tomlinson-
Harashima precoding (THP) design for multiple-input multiple-
output (MIMO) relay systems based on a multi-branch (MB)
strategy. The proposed scheme employs a parallel MB structure
at the source according to different pre-stored ordering patterns.
For each parallel branch, the robust nonlinear transceiver design
consists of a TH precoder at the source along with a linear
precoder at the relay and a linear minimum-mean-squared-
error (MMSE) receiver at the destination. By taking the channel
uncertainties into account, the source and relay precoders are
jointly optimised to minimise the MSE. We can finally use an
iterative method to obtain the solution for the relay and the
source precoders via Karush-Kuhn-Tucker (KKT) conditions. An
appropriate selection rule is developed to choose the nonlinear
transceiver corresponding to the best branch for data transmis-
sion. Simulation results demonstrate that the proposed MB-THP
scheme outperforms existing transceiver designs with perfect and
imperfect channel state information (CSI).1

Index Terms—multiple-input multiple-output (MIMO), multi-
ple branch (MB), channel state information (CSI), Tomlinson-
Harashima precoding (THP)

I. INTRODUCTION

Recently, the nonregenerative multiple-input multiple-
output (MIMO) relay system has attracted intensive interest,
since it has a great potential to increase the coverage of
wireless communications under power and spectral constraints
and can provide a significant improvement in terms of both
spectral efficiency and link reliability [1]–[5]. Many works
have been proposed for linear precoding techniques in MIMO
relay systems [1], [2]. As an alternative to linear transceiver
design, using nonlinear pre-filtering for MIMO relay channels
has recently aroused a great attention. Compared with the
linear transceiver design, nonlinear transceivers yield a better
performance [3], [4]. The authors in [3] focused on the joint
design of linear processors for a two-hop network with THP
employed at the source. In [4], the direct link between the
source and the destination node was also considered. Note
that all the mentioned algorithms above require the perfectly
known channel state information (CSI). However, in a practical
system, CSI is usually imperfect, since channel estimation
errors are inevitable. Thus, the errors should be taken into
account in transceiver design. To overcome the problem, robust
linear transceiver designs have been developed for MIMO
relay systems [5].

To the best of our knowledge, there is a very small number
of works investigating robust Tomlinson- Harashima precoding
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(THP) in MIMO relay systems. Conventional THP algorithms
are only based on one particular cancellation order and are
more sensitive to channel estimation errors than their linear
counterpart [3], [4]. Therefore, in this paper, we propose a
robust nonlinear multi-branch (MB) TH transceiver algorithm
for MIMO relay systems in the presence of imperfect CSI.
The original idea of an MB strategy was first proposed
in [6] to utilize the potential extra diversity gains for DS-
CDMA systems and then extended to precoding in [7]. The
proposed scheme employs a parallel MB structure at the
source according to the pre-stored ordering patterns. For each
branch, the nonlinear transceiver design consists of a TH
precoder at the source along with a linear precoder used at the
relay and an minimum-mean-squared-error (MMSE) receiver
at the destination. We employ the diagonalization method
along with majorization theory to obtain the optimal relay
and source precoders. The solution can finally be computed
by using an iterative method via the Karush-Kuhn-Tucker
(KKT) conditions. An appropriate selection rule is developed
to choose the nonlinear transceiver corresponding to the best
branch for data transmission. Simulations show that the robust
precoder outperforms the conventional precoding algorithms.

II. PROPOSED SYSTEM MODEL

We consider a three-node nonregenerative MIMO relay net-
work comprising of one source, one relay and one destination
equipped with Ns, Nr and Nd antennas, respectively. Here, we
assume that Ns ≤ min {Nr, Nd} provides sufficient degrees
of freedom for signal detection. For simplicity, we ignore the
direct link between the source and the destination node.

This system consists of a TH source precoder, a linear relay
precoder and a linear MMSE receiver, as shown in Fig. 1.
The quantity s is the input signal vector with zero mean and

E
[
ssH

]
= σ2

sINd
, where E [·] stands for the statistical expec-

tation, INd
is an Nd×Nd identity matrix, and σ2

s is the average
transmitted power per antenna at the source. The source signal
s = [s1, ..., sNd

]T is modulated by M-ary square quadrature
amplitude modulation (QAM), where the real and imaginary

parts of sk belong to the set
{
±1,±3, ...,±

(√
M − 1

)}
.

Then the input signal is sorted to generate multiple branch
signals by the pre-stored cancellation ordering patterns. We in-
troduce the ordering transformation matrix T(l), l ∈ {1, ..., L},
which corresponds to the ordering pattern employed in the
l-th branch. The optimal ordering scheme conducts an ex-
haustive search L = Ns!, where ! is the factorial operator.



The reordered vector s(l)=T(l)s which is based on the l-th
cancellation order is then recursively computed by a backward
squared matrix C(l) for the l-th branch and a nonlinear
modulo operation in order to conduct a successive interference
cancellation (SIC) operation.

As shown in Fig. 1, MODm (·) stands for the modulo
operator which is used to constrain a value to be within
the region (−√M,

√
M ]. The modulo operator that acts

independently over the real and imaginary parts of its input
according to the following rule

MODm (x) = x− 2
√
m

⌊
x+

√
m

2
√
m

⌋
. (1)

With C(l) and the modulo operation in (1), the l-th branch

channel symbols x
(l)
k are successively generated

x
(l)
k = s

(l)
k −

k−1∑
m=1

C(l) (k,m)x(l)
m + e

(l)
k , (2)

where C(l) is a strictly lower triangular matrix and

e(l) =
[
e
(l)
1 , ..., e

(l)
Nd

]T
is the error of modulo operation for

the l-th branch. The equation can be rewritten in matrix form
as

x(l) = U(l)−1

v(l), (3)

where U(l) = C(l)+I is a unite triangular matrix (a triangular
matrix with ones on the main diagonal) and v(l) = s(l)+e(l).
This leads to the l-th branch channel symbols x(l) having
slightly higher energy than s(l). For moderate to high M
this energy increase can be neglected [3], thus we still have

E
[
x(l)x(l)H

]
= σ2

sINd
. And it is easy to get E

[
v(l)v(l)H

]
=

σ2
sU

(l)U(l)H . Based on a selection criterion, the optimum
source precoder, relay precoder and receiver corresponding
to the lopt-th branch are chosen for data transmission. The
signal transmission is carried out in two stages. In the first
phase, the signal is processed by the selected precoding matrix

F
(lopt)
s ∈ C

Ns×Nd for the lopt-th branch. The received signal

y
(lopt)
r corresponding to the lopt-th cancellation order at the

relay is given by

y(lopt)
r = HsrF

(lopt)
s x(lopt) + nsr, (4)

where Hsr ∈ C
Nr×Ns denotes the MIMO channel matrix

between the source and the relay. The vector nsr is the additive
noise component at the relay which is modeled as a circularly
symmetric complex Gaussian random vectors with zero-mean
and correlation matrix E

[
nsrn

H
sr

]
= σ2

nsr
INr , where σ2

nsr
is

the average noise power at the relay.
In the second phase, the relay forwards the received signals

to the destination after performing linear precoding, while

the source keeps silent. Thus, the equivalent signal y
(lopt)
d

received at the destination corresponding to the lopt-th branch
is given by

y
(lopt)
d = T(lopt)HrdF

(lopt)
r HsrF

(lopt)
s x(lopt)

+T(lopt)HrdF
(lopt)
r nsr+T(lopt)nrd (5)

where F
(lopt)
r ∈ C

Nr×Nr is the selected relay precoder for the
lopt-th branch. Hrd ∈ C

Nd×Nr stands for the MIMO channel
matrix between the relay and the destination. Mathematically,
the equivalent channel matrix after a specific transmit pattern

can be denoted as H
(lopt)
rd = T(lopt)Hrd. By transforming

the channel matrix, the columns of the channel matrix Hrd

are permutated [8]. The vector nrd is the zero-mean complex
Gaussian noise vector at the destination with E

[
nrdn

H
rd

]
=

σ2
nrd

INd
, where σ2

nrd
denotes the destination received average

noise power.
At the destination, the selected linear receiver W(lopt) is

then employed to detect the received signal. The detected
signal is given as follows:

v̂(lopt) = W(lopt)y
(lopt)
d . (6)

The well-known kronecker model is adopted for the
covariance of the CSI mismatch [5]. We have the following
expression

Hsr = H̄sr +ΔHsr, (7)

where H̄sr is the estimated channel matrices, while ΔHsr

is the corresponding channel estimation error matrices, and

ΔHsr can be written as ΔHsr = Σ
1/2
sr Hi.i.dΨ

1/2
sr , where the

elements of Hi.i.d are independent and identically distributed
Gaussian random variables with zero mean and unit variance.
Both the relay and destination have the estimated CSI. Thus,
ΔHsr has the matrix-variate complex Gaussian distribution,
which can be expressed as [5]

ΔHsr ∼ CNNr,Ns

(
0Nr,Ns

,Σsr ⊗ΨT
sr

)
, (8)

where Ψsr denotes the Ns×Ns covariance matrix of channel
estimation error at the transmitter, while Σsr is the Nr ×Nr

covariance matrix of channel estimation error at the receiv-
er. The factor ⊗ represents the operation of the Kronecker
product. Similar definition can be applied on Hrd and ΔHrd,
respectively. The equivalent estimated channel matrix after the

lopt-th transmit ordering pattern can be denoted as H̄
(lopt)
rd =

T(lopt)H̄rd.
The final output is obtained by

ŝ= Q
(
MOD

(
W(lopt)y

(lopt)
d

))
(9)

where Q(·) denotes the quantization operation.

III. PROPOSED ROBUST TRANSCEIVER DESIGN AND

SELECTION CRITERION

In this section, we propose the robust transceiver design
and the selection criterion to choose the best branch for data
transmission.

A. Proposed Transceiver Design
For each branch, we then focus on the problem

that jointly design F
(l)
s , F

(l)
r , W(l), U(l) to minimize

the total MSE under the sum power constraint at the
source and relay. The system MSE matrix is defined as

E[(W(l)y
(l)
d − v(l))(W(l)y

(l)
d − v(l))

H
]. Note that the

expectation is taken with respect to the channel estimation
errors and noise. By taking the statistical property, the MSE
can be calculated as

MSE
(
U(l),F(l)

s ,F(l)
r ,W(l)

)

=tr
(
W(l)A(l)W(l)H

)
+ σ2

str
(
U(l)U(l)H

)

− σ2
str

(
U(l)F(l)H

s H̄H
srF

(l)H

r H̄
(l)H

rd W(l)H
)

− σ2
str

(
W(l)H̄

(l)
rdF

(l)
r H̄srF

(l)
s U(l)H

)
(10)

where
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Fig. 1: MB-TH source and linear relay precoded AF MIMO relay system with MMSE receiver

A(l) Δ
= H̄

(l)
rdF

(l)
r (σ2

sH̄srF
(l)
s F(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr

+ σ2
nsr

INr
)F(l)H

r H̄
(l)H

rd + α
(l)
2 Σ̂rd + σ2

nrd
INd

(11)

α
(l)
1

Δ
= tr

(
F(l)

s F(l)H

s Ψsr

)
(12)

α
(l)
2

Δ
= tr((F(l)

r (σ2
sH̄srF

(l)
s F(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr

+ σ2
nsr

INr )F
(l)H

r Ψrd)) (13)

Σ̂rd
Δ
= T(l)ΣrdT

(l)H . (14)

The optimal linear receiver W(l) can be derived by solving
∂

∂W(l)∗MSE
(
U(l),F

(l)
s ,F

(l)
r ,W(l)

)
= 0, and it is given by

W(l) = σ2
sU

(l)F(l)H

s H̄H
srF

(l)H

r H̄
(l)H

rd A(l)−1

. (15)

By substituting (15) into (10) and making use of the matrix
inversion lemma [9], the MSE matrix can be represented as

MSE
(
U(l),F(l)

s ,F(l)
r

)
= tr

(
E(l)

)
(16)

where

E(l) Δ
= U(l)(σ−2

s INs + F(l)H

s H̄H
srF

(l)H

r H̄
(l)H

rd B(l)−1

× H̄
(l)
rdF

(l)
r H̄srF

(l)
s )−1U(l)H (17)

B(l) Δ
= H̄

(l)
rdF

(l)
r

(
σ2
sα

(l)
1 Σsr + σ2

nsr
INr

)
F(l)H

r H̄
(l)H

rd

+ α
(l)
2 Σ̂rd + σ2

nrd
INd

. (18)

As is known to us, for a positive semi-definite matrix

M ∈ C
N×N , we have |M|1/N ≤ tr (M) /N . Only when

M is a diagonal matrix with equal diagonal elements,
the equality can be achieved. Here we use the fact that∣∣UHU

∣∣ = 1, |MN| = |NM| and
∣∣M−1

∣∣ = |M|−1
, the

operator |·| here denotes the determinant of the matrix. By

letting H̄(l) = H̄
(l)
rdF

(l)
r H̄sr, we obtain the following bound

on the MSE
(
U(l),F

(l)
s ,F

(l)
r

)
:∣∣∣(σ−2

s INs + F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)∣∣∣−1/Ns

≤ tr
{
U(l)

(
σ−2
s INs + F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)
U(l)H

}
/Ns,

(19)

the expression of MSE in (16) can achieve the lower bound
when E(l) = γINs

, where γ is a scaling parameter. By
using the lower bound in (19) as our objective function and
considering the power constraints at the source and relay
based on the channel model, the problem can be simplified as

max
∣∣∣(σ−2

s INs + F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)∣∣∣
s.t. tr

(
σ2
sF

(l)
s F(l)H

s

)
≤ Ps

tr(F(l)
r (σ2

sH̄srF
(l)
s F(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr

+ σ2
nsr

INr
)F(l)H

r ) ≤ Pr. (20)

In order to find the explicit structure of the optimal F
(l)
s

and F
(l)
r , we discuss a scenario with either the covariance

matrix of the channel estimation error at the transmitter
or a scenario in which the receiver is an identity matrix,
respectively. We focus on the former case i.e. Ψsr = INs

and Ψrd = INr
to describe the design of the precoders.

The derivation for the latter case is straightforward. In

this case, we have α
(l)
1 = tr(F

(l)
s F

(l)H

s ) and α
(l)
2 =

tr(F
(l)
r (σ2

sH̄srF
(l)
s F

(l)H

s H̄H
sr + σ2

sα
(l)
1 Σsr + σ2

nsr
INr

)F
(l)H

r ).
Based on the singular value decomposition (SVD) and the
eigenvalue decomposition (EVD), we have the following
expressions:

H̃(l)
sr

Δ
= Λ̃

(l)−
1
2

Σsr
UH

Σsr
H̄sr = Ũ(l)

sr Λ̃
(l)
sr Ṽ

(l)H

sr (21)

H̃
(l)
rd

Δ
= Λ̃

(l)−
1
2

Σrd
U

(l)H

Σrd
H̄

(l)
rd = Ũ

(l)
rd Λ̃

(l)
rdṼ

(l)H

rd , (22)

where H̄sr = UsrΛsrV
H
sr, H̄

(l)
rd = U

(l)
rdΛ

(l)
rdV

(l)H

rd ,

Σsr = UΣsrΛΣsrU
H
Σsr

, Σ̂rd = U
(l)
Σrd

Λ
(l)
Σrd

U
(l)H

Σrd
, Λ̃

(l)
Σsr

=

α
(l)
1 ΛΣsr

+ σ2
nsr

INr
, Λ̃

(l)
Σrd

= α
(l)
2 Λ

(l)
Σrd

+ σ2
nrd

INd
.

The optimal solutions of F
(l)
s and F

(l)
r are obtained when

α
(l)
1 = Pt/σ

2
s and α

(l)
2 = Pr. The precoding matrices have

the structure as follows:

F(l)
s = Ṽ(l)

srΛ
(l)
s Φ(l)

s (23)

F̃(l)
r = Λ̃

(l)
rdΛ

(l)
r Ũ(l)H

sr (24)

F(l)
r = F̃(l)

r Λ̃
(l)−

1
2

Σsr
UH

Σsr
, (25)

where Λ
(l)
s and Λ

(l)
r are both diagonal matrices with the

i-th diagonal elements λFs,i and λF̃r,i
, respectively, and

Φ
(l)
s is an unitary matrix yet to be determined. Then, we

have B(l) = H̄
(l)
rd F̃

(l)
r F̃

(l)H

r H̄
(l)H

rd + U
(l)
Σrd

Λ̃
(l)
Σrd

U
(l)H

Σrd
and

B̃(l) = H̃
(l)
rd F̃

(l)
r F̃

(l)H

r H̃
(l)H

rd + INd
.

By substituting (23), (24) into (20), the problem can be
simplified as follows:

max

∣∣∣∣
(
σ−2
s INs + Λ̃(l)2

sr Λ(l)2

s Λ(l)2

r Λ̃
(l)2

rd

(
Λ̃

(l)2

rd Λ(l)2

r + INd

)−1
)∣∣∣∣



s.t. tr
(
σ2
sΛ

(l)2

s

)
≤ Ps

tr
(
Λ(l)2

r

(
σ2
sΛ

(l)2

s Λ̃(l)2

sr + INr

))
≤ Pr. (26)

Note that for a positive semi-definite matrix M ∈ C
N×N ,

we have [9]

det (M) ≤
N∏
i=1

M (i, i), (27)

the equality holds when M is a diagonal matrix. Thus, in order
to maximize the determinant, we can try to design the joint
source and relay precoders to let the matrix of the determinant
be diagonal.

Let λ̃1,i and λ̃2,i be the ith diagonal element of Λ̃
(l)
sr

and Λ̃
(l)
rd , respectively, i=1, · · · ,Ns, from (26) we have the

following results

max

Ns∏
i=1

⎛
⎝σ−2

s +
λ̃2
1,iλ̃

2
2,iλ

2
Fs,i

λ2
F̃r,i

λ̃2
2,iλ

2
F̃r,i

+ 1

⎞
⎠ (28)

s.t.

Ns∑
i=1

σ2
sλ

2
Fs,i ≤ Ps (29)

Ns∑
i=1

λ2
F̃r,i

(
σ2
sλ

2
Fs,iλ̃

2
1,i + 1

)
≤ Pr. (30)

We introduce

xi
Δ
= σ2

sλ
2
Fs,i (31)

yi
Δ
= λ2

F̃r,i

(
σ2
sλ

2
Fs,iλ̃

2
1,i + 1

)
. (32)

In order to simplify the problem, we take the logarithm
operation to the cost function. The solution to the objective
function can be obtained by using an iterative waterfilling
method via Karash-Kuhn-Tucker (KKT) conditions. For a
given xi, by solving (28) and (30), the optimum yi can be
obtained as follows:

yi =
1

2λ̃2
2,i

[√
λ̃4
1,ix

2
i + 4λ̃2

1,ixiλ̃2
2,iμr − λ̃2

1,ixi − 2

]+
(33)

where [y]
+

= max [0, y], and μr is the water level which
satisfies the power constraint with equality at the relay in (30).
By solving (28) and (29), the optimum xi can be calculated
as

xi =
1

2λ̃2
1,i

[√
λ̃4
2,iy

2
i + 4λ̃2

1,iyiλ̃
2
2,iμs − λ̃2

2,iyi − 2

]+
(34)

where μs is the water level which satisfies the power constraint
with equality at the source in (29). The algorithm can be
implemented iteratively with initial values. Note that λFs,i and
λF̃r,i

can be calculated based on (31) and (32). We then focus

on the derivation of the unitary matrix Φ
(l)
s and the feedback

matrix U(l).
The lower bound of MSE is achieved when the objective

function in (17) is a diagonal matrix with equal diagonal
elements. Thus, the following equation must be met:

U(l)
(
σ−2
s INs + F(l)H

s H̄(l)HB(l)−1

H̄(l)F(l)
s

)
U(l)H = σ̄2INs .

(35)

By substituting (23) and (25) into (35), we obtain

U(l)Φ
(l)H

s Σ(l)−1/2

Σ(l)−1/2

Φ
(l)
s U(l)H = σ̄2INs

, where we

have Σ(l) Δ
= (σ−2

s INs
+ Λ̃

(l)2

sr Λ
(l)2

s Λ
(l)2

r Λ̃
(l)2

rd (Λ̃
(l)2

rd Λ
(l)2

r +

INd
)−1). Then we define Ũ(l)=σ̄U(l)−H

and apply the

geometric mean decomposition (GMD) [10] on Σ(l)−1/2

, then

obtain Σ(l)−1/2

= Q(l)Ũ(l)Φ
(l)H

s , where Q(l) and Φ
(l)
s are

unitary matrices, and Ũ(l) is an upper triangular matrix with
equal diagonal elements σ̄, where σ̄2 is given by

σ̄2 =

Ns∏
i=1

⎛
⎝σ−2

s +
λ̃2
1,iλ̃

2
2,iλ

2
Fs,i

λ2
F̃r,i

λ̃2
2,iλ

2
F̃r,i

+ 1

⎞
⎠
−1/Ns

. (36)

From the equation above, it can be clearly seen that the

equality is achieved. We then calculate U(l) = σ̄Ũ(l)−H

. With

Φ
(l)
s and U(l), the source and relay precoders corresponding

to the l-th cancellation order are obtained by (23) and (25).
Subsequently, the MMSE receiver W(l) can be derived by
substituting (23) and (25) into (15).

Then, we consider the case that the covariance matrix of
channel estimation error at the receiver side is identity matrix,
i.e. Σsr = σ2

eINs
and Σrd = σ2

eINr
. In this case, the

precoding matrices have the structure as: F
(l)
s = VsrΛ

(l)
s Φ

(l)
s ,

F
(l)
r = V

(l)
rdΛ

(l)
r UH

sr. One can obtain the similar solutions to
the problem by using the aforementioned iterative method.

B. Selection Criterion for MB-THP Scheme
A proper selection criterion is of great importance for the

MB-THP algorithm to achieve the transmit diversity gains
of MIMO relay systems. The selection criterion chooses the
best branch corresponding to the minimum Euclidean distance:

lopt=arg min
1≤l≤L

J (l) , (37)

where the Euclidean distance for the l-th cancellation order
is given by

J (l) =
∥∥∥s− ŝ(l)

∥∥∥2

(38)

where ŝ(l)=T(l)T s̃(l), ŝ(l) is the transformed version of
s̃(l) back to the original order, the vector s̃(l) denotes the
noise-free pre-estimated values of the data at the transmitter
using estimated CSI, it is given by

s̃(l)=MOD
(
ỹ(l)

)
(39)

where ỹ(l)=W(l)H̄
(l)
rdF

(l)
r H̄srF

(l)
s x(l). The procedure of the

proposed robust transceiver algorithm is summarized in Table
I.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
precoding scheme. In the following, we consider a nonregen-
erative MIMO relay system with Ns = Nr = Nd = 4. By
using the exponential model [5], the channel estimation error
covariance matrices can be expressed as: Ψsr = Ψrd = δ|i−j|
and Σsr = Σrd = σ2

eγ
|i−j|, where δ and γ denote the

correlation coefficients, and σ2
e is the estimation error variance.

The estimated channel H̄sr is generated by the distribution

as follows: H̄sr ∼ CNNr,Ns

(
0Nr,Ns ,

(1−σ2
e)

σ2
e

Σsr ⊗ΨT
sr

)
,

similar definition can be applied on H̄rd, such that channel
realizations have unit variance. Let SNRsr and SNRrd denote,
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Fig. 2: BER performance comparison for different multi-branch
ordering schemes
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Fig. 3: BER performance comparison for conventional precoding
techniques and the proposed MB-TH precoding algorithm (δ = γ =
0, σ2

e = 0.001)

respectively, the signal-to-noise ratios (SNR) per receive an-
tenna of the source-to-relay and the relay-to-destination links.
Here, we let SNRsr = 30 dB and vary SNRrd. Also, we use
16-QAM modulation as the modulation scheme.

TABLE I: Proposed Robust Transceiver Algorithm
1 for each parallel branch l, l ∈ {1, ..., L}.

2 Solve for the unknown diagonal matrices Λ
(l)
s and Λ

(l)
r

in the optimal precoding structure using (33) and (34)
via KKT conditions.

3 Compute Φ
(l)
s and the feedback matrix U(l) based on

(23), (25) and (35).

4 Derive the optimal structure of F
(l)
s and F

(l)
r

given by (23) and (25).

5 Compute the receiver W(l) by using the obtained F
(l)
s ,

F
(l)
r and U(l).

5 Compute the squared Euclidean distance for the l-th

cancellation order, J (l) =
∥
∥s− ŝ(l)

∥
∥
2

.
6 end
7 Choose the optimum branch by using the selection criterion (37)

for data transmission.

All the simulation results are averaged over 5000 inde-
pendent realizations of the true channel matrices Hsr and
Hrd. Fig. 2 shows the BER performance versus the SNR for

comparing the proposed MB-TH transceiver scheme, i.e. 4-,
10-, 24- cancellation ordering branches, respectively. The best
performance is achieved with the proposed scheme with 24
ordering branches, i.e. the optimal scheme. The BER decreases
as the number of branches increases.

We also compare the proposed robust MB-THP algorithm
with the following five MIMO relay precoding algorithms:
1) an unprecoded system with a Wiener filter (NAF); 2) the
linear relay precoded system without source precoding (U-
L) [1]; 3) the robust linear relay precoded system without
source precoding (U-L-robust) [5]; 4) the TH source and linear
relay precoded system (TH-L) [3]; 5) the proposed robust
TH source and linear relay precoded system (TH-L-robust).
As shown in Fig. 3, the proposed robust MB-TH source and
linear relay precoding algorithm using the optimum ordering
scheme outperforms the existing transceiver designs in terms
of BER. Meanwhile, the performance of the proposed robust
algorithm considering the estimation error is better than that
of the algorithm based on estimated channels only.

V. CONCLUSION

In this paper, the robust MB-TH transceiver design in
MIMO relay networks with imperfect CSI has been addressed.
The proposed MB structure is equipped with several parallel
branches based on pre-stored ordering patterns. For each
branch, the transceiver is composed of a TH precoder at the
source, a linear precoder at the relay and an MMSE receiver at
the destination. The solution for the precoders has been finally
obtained by using an iterative method via the KKT conditions.
An appropriate selection rule has been developed to choose the
nonlinear transceiver corresponding to the best branch for data
transmission. Simulations have shown that the proposed robust
design outperforms the existing unprecoded/precoded systems
without taking the channel uncertainties into account.
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