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Abstract

This paper presents reduced-rank linearly constrained minimum variance (LCMV) beamforming algorithms based on joint

iterative optimization of filters. The proposed reduced-rank scheme is based on a constrained joint iterative optimization of filters

according to the minimum variance criterion. The proposed optimization procedure adjusts the parameters of a projection matrix

and an adaptive reduced-rank filter that operates at the output of the bank of filters. We describe LCMV expressions for the design

of the projection matrix and the reduced-rank filter. We then describe stochastic gradient and develop recursive least-squares adap-

tive algorithms for their efficient implementation along with automatic rank selection techniques. An analysis of the stability and

the convergence properties of the proposed algorithms is presented and semi-analytical expressions are derived for predicting their

mean squared error (MSE) performance. Simulations for a beamforming application show that the proposed scheme and algorithms

outperform in convergence and tracking the existing full-rank and reduced-rank algorithms while requiring comparable complexity.
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I. I NTRODUCTION

In recent years, adaptive beamforming techniques have attracted considerable interest and found applications in radar,

wireless communications and sonar [1], [2]. The adaptive beamforming techniques are used in systems equipped with

antenna arrays and usually have a trade-off between performance and computational complexity which depends on the

designer’s choice of the adaptation algorithm [3], [6], [7]. The optimal linearly constrained minimum variance (LCMV)

beamformer is designed in such a way that it attempts to minimize the array output power while maintaining a constant

response in the direction of a signal of interest (SoI) [1], [2], [3]. However, this technique requires the computation of

the inverse of the input data covariance matrix and the knowledge of the cross-correlation vector, rendering the method

very complex for practical applications when the system is large. Adaptive versions of the LCMV beamformer were

subsequently reported with stochastic gradient (SG) [4] and recursive least squares (RLS) [8] algorithms.

These algorithms require estimates of the input data covariance matrix, which is a task that may become challenging in

large systems and in highly dynamic situations such as those found in wireless communications and radar applications.

This is because the convergence speed and tracking properties of adaptive filters depend on the number of sensor
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elementsM [3] and on the eigenvalue spread of the input data covariance matrix. Given this dependency on the number

of sensor elementsM , it is thus intuitive to reduceM while simultaneously extracting the key features of the original

signal via an appropriate transformation.

A cost-effective technique in short-data record scenarios and, in particular, with systems containing a large number of

parameters is reduced-rank signal processing. The advantages are their superior convergence properties and enhanced

tracking performance when compared with full-rank schemes operating with a large number of parameters, and their

ability to exploit the low-rank nature of the signals encountered in beamforming applications. Several reduced-rank

methods have been proposed to generate the signal subspace [3]-[16]. They range from computationally expensive

eigen-decomposition techniques [9]-[11] to alternative approaches such as the auxiliary-vector filter (AVF) [12],[13],

[18], the multistage Wiener filter (MSWF) [13], [14], [16], [17] which are based on the Krylov subspace, and joint

optimization approaches [15], [19]. Despite the improved convergence and tracking performance achieved with Krylov

methods [12]-[14], [16]-[18] they are relatively complex to implement and can suffer from numerical problems. The

joint optimization techniques reported in [15], [19] outperform the eigen-decomposition- and Krylov-based methods and

are amenable to efficient adaptive implementations. However, the design and analysis of adaptive LCMV reduced-rank

algorithms based on joint optimization approaches have not been considered so far.

This work proposes LCMV reduced-rank algorithms based on constrained joint iterative optimization of filters for

antenna-array beamforming. The proposed scheme, whose initial results were reported in [20], [21], jointly optimizes

a projection matrix and a reduced-rank filter that operates at the output of the projection matrix. The essence of the

proposed approach is to change the role of adaptive LCMV filters. The bank of adaptive filters is responsible for per-

forming dimensionality reduction, whereas the reduced-rank filter effectively forms the beam in the direction of the SoI.

We describe LCMV expressions for the design of the projection matrix and the reduced-rank filter and present SG and

RLS algorithms for efficiently implementing the method. We also introduce an automatic rank estimation algorithm

for determining the most adequate rank for the proposed algorithms. An analysis of the stability and the convergence

properties of the proposed algorithms is presented and semi-analytical expressions are derived for predicting their per-

formance.

This paper is organized as follows. The system model is described in Section II. The full-rank and the reduced-

rank LCMV filtering problems are formulated in Section III. Section IV is dedicated to the proposed method, whereas

Section V is devoted to the derivation of the adaptive SG and RLS algorithms and the rank adaptation technique. Section

VI focuses on the analysis of the proposed algorithms. Section VII presents and discusses the simulation results and

Section VIII gives the concluding remarks.

II. SYSTEM MODEL

Let us consider a smart antenna system equipped with a uniform linear array (ULA) ofM elements, as shown in Fig.

1. Assuming that the sources are in the far field of the array, the signals ofK narrowband sources impinge on the array

(K < M) with unknown directions of arrival (DOA)θl for l = 1, 2, . . . , K.
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The input data from the antenna array can be organized in anM × 1 vector expressed by

r(i) = A(θ)s(i) + n(i) (1)

where

A(θ) = [a(θ1), . . . ,a(θK)]

is theM ×K matrix of signal steering vectors. TheM × 1 signal steering vector is defined as

a(θl) =
[
1, e−2πj ds

λc
cos θl , . . . , e−2πj(M−1) ds

λc
cos θl

]T
(2)

for a signal impinging at angleθl, l = 1, 2, . . . ,K, whereds = λc/2 is the inter-element spacing,λc is the wavelength

and(.)T denotes the transpose operation. The vectorn(i) denotes the complex vector of sensor noise, which is assumed

to be zero-mean and Gaussian with covariance matrixσ2I.

III. PROBLEM STATEMENT

In this section, we formulate the problems of full-rank and reduced-rank LCMV filters. In order to perform beam-

forming with a full-rank LCMV filter, we linearly combine the data vectorr(i) = [r(i)
1 r

(i)
2 . . . r

(i)
M ]T with the full-rank

filter w = [w1 w2 . . . wM ]T to yield

x(i) = wHr(i) (3)

The optimal LCMV filter is theM × 1 vectorw, which is designed to solve the following optimization problem

minimize E[|wHr(i)|2] = wHRw

subject to wHa(θk) = 1
(4)

The solution to the problem in (4) is given by [3], [4]

wopt =
R−1a(θk)

aH(θk)R−1a(θk)
) (5)

wherea(θk) is the steering vector of the SoI,r(i) is the received data, the covariance matrix ofr(i) is described

by R = E[r(i)rH(i)], (·)H denotes Hermitian transpose andE[·] stands for expected value. The filterw(i) can be

estimated via SG or RLS algorithms [3]. However, the laws that govern their convergence and tracking behaviors imply

that they depend onM and on the eigenvalue spread ofR.

A reduced-rank algorithm must extract the most important features of the processed data by performing dimension-

ality reduction. This mapping is carried out by aM ×D projection matrixSD on the received data as given by

r̄(i) = SH
Dr(i) (6)

where, in what follows, allD-dimensional quantities are denoted with a ”bar”. The resulting projected received vector

r̄(i) is the input to a filter represented by theD vectorw̄ = [w̄1 w̄2 . . . w̄D]T . The filter output is

x̄(i) = w̄H r̄(i) (7)
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In order to design the reduced-rank filterw̄ we consider the following optimization problem

minimizeE
[|w̄H r̄(i)|2] = w̄HR̄w̄

subject tow̄H ā(θk) = 1
(8)

The solution to the above problem is

w̄opt =
R̄
−1

ā(θk)

āH(θk)R̄
−1

ā(θk)
(9)

where the reduced-rank covariance matrix isR̄ = E[r̄(i)r̄H(i)] = SH
DRSD and the reduced-rank steering vector is

ā(θk) = SH
Da(θk). The associated minimum variance (MV) for a LCMV filter with rankD is

MV =
1

a(θk)HSD(SH
DRSD)−1SH

Da(θk)
(10)

The above development shows that the main problem is how to cost-effectively designSD to perform dimensionality

reduction onr(i), resulting in improved convergence and tracking performance over the full-rank filter. In the Appendix,

we provide a necessary and sufficient condition forSD to preserve the MV of optimal full-rank filter and discuss the

existence of multiple solutions. In the following, we detail our proposed reduced-rank method.

IV. PROPOSEDREDUCED-RANK METHOD

In this section, we introduce the principles of the proposed reduced-rank scheme. The proposed scheme, depicted in

Fig. 2, employs a matrixSD(i) with dimensionsM ×D to perform dimensionality reduction on a data vectorr(i) with

dimensionsM × 1. The reduced-rank filter̄w(i) with dimensionsD× 1 processes the reduced-rank data vectorr̄(i) in

order to yield a scalar estimatēx(i). The projection matrixSD(i) and the reduced-rank filter̄w(i) are jointly optimized

in the proposed scheme according to the MV criterion subject to a constraint that ensures that the reduced-rank array

response is equal to unity in the direction of the SoI.

In order to describe the proposed method, let us first consider the structure of theM ×D projection matrix

SD(i) = [ s1(i) | s2(i) | . . . |sD(i) ] (11)

where the columnssd(i) for d = 1, . . . , D constitute a bank ofD full-rank filters with dimensionsM × 1 as given by

sd(i) = [s1,d(i) s2,d(i) . . . sM,d(i)]T

The outputx̄(i) of the proposed reduced-rank scheme can be expressed as a function of the input vectorr(i), the

projection matrixSD(i) and the reduced-rank filter̄w(i):

x̄(i) = w̄H(i)SH
D(i)r(i) = w̄H(i)r̄(i) (12)

It is interesting to note that forD = 1, the proposed scheme becomes a conventional full-rank LCMV filtering scheme

with an addition weight parameterwD that provides an amplitude gain. ForD > 1, the signal processing tasks are

changed and the full-rank LCMV filters compute a subspace projection and the reduced-rank filter provides a unity gain
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in the direction of the SoI. This rationale is fundamental to the exploitation of the low-rank nature of signals in typical

beamforming scenarios.

The LCMV expressions for the filtersSD(i) andw̄(i) can be computed via the proposed optimization problem

minimizeE
[|w̄H(i)SH

D(i)r(i)|2] = w̄H(i)SH
D(i)RSD(i)w̄(i)

subject tow̄H(i)SH
D(i)a(θk) = 1

(13)

In order to solve the above problem, we resort to the method of Lagrange multipliers [3] and transform the constrained

optimization into an unconstrained one expressed by the Lagrangian

L(SD(i), w̄(i)) = E
[|w̄H(i)SH

D(i)r(i)|2] + 2<[λ(w̄H(i)SH
D(i)a(θk)− 1)], (14)

whereλ is a scalar Lagrange multiplier,∗ denotes complex conjugate and the operator<[·] selects the real part of the

argument. By fixingw̄(i), minimizing (14) with respect toSD(i) and solving forλ, we get

SD(i) =
R−1a(θk)w̄H(i)R̄−1

w̄

w̄H(i)R̄−1
w̄ w̄(i)aH(θk)R−1a(θk)

, (15)

whereR = E[r(i)rH(i)] andR̄w̄ = E[w̄(i)w̄H(i)]. By fixing SD(i), minimizing (14) with respect tōw(i) and

solving forλ, we arrive at the expression

w̄(i) =
R̄
−1(i)ā(θk)

āH(θk)R̄
−1(i)ā(θk)

, (16)

whereR̄(i) = E[SH
D(i)r(i)rH(i)SD(i)] = E[r̄(i)r̄H(i)], ā(θk) = SH

D(i)a(θk). The associated MV is

MV =
1

āH(θk)R̄
−1(i)ā(θk)

. (17)

Note that the filter expressions in (15) and (16) are not closed-form solutions forw̄(i) andSD(i) since (15) is a function

of w̄(i) and (16) depends onSD(i). Thus, it is necessary to iterate (15) and (16) with initial values to obtain a solution.

An analysis of the optimization problem in (13) is given in Appendix II. Unlike existing approaches based on the

MSWF [16] and the AVF [18] methods, the proposed scheme provides an iterative exchange of information between

the reduced-rank filter and the projection matrix and leads to a much simpler adaptive implementation. The projection

matrix reduces the dimension of the input data, whereas the reduced-rank filter yields a unity response in the direction

of the SoI. The key strategy lies in the joint optimization of the filters. The rankD must be set by the designer to ensure

appropriate performance or can be estimated via another algorithm. In the next section, we seek iterative solutions via

adaptive algorithms for the design ofSD(i) andw̄(i), and automatic rank adaptation algorithms.

V. A DAPTIVE ALGORITHMS

In this section we present adaptive SG and RLS versions of the proposed scheme for efficient implementation. We

also consider the important issue of automatically determining the rank of the scheme via the proposal of an adapta-

tion technique. We then provide the computational complexity in arithmetic operations of the proposed reduced-rank

algorithms.
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A. Stochastic Gradient Algorithm

In this part, we present a low-complexity SG adaptive reduced-rank algorithm for efficient implementation of the

proposed method. These algorithms were reported in [20], [21] and are reproduced here for convenience. By computing

the instantaneous gradient terms of (14) with respect toS∗D(i) andw̄∗(i), we get

∇LMV S∗D(i) = x̄∗(i)r(i)w̄H(i) + 2λ∗a(θk)w̄H(i)

∇LMV w̄∗(i) = x̄∗(i)SH
D(i)r(i) + 2λ∗SH

D(i)a(θk)
(18)

By introducing the positive step sizesµs andµw, using the gradient rulesSD(i + 1) = SD(i) − µs∇LMV S∗D(i) and

w̄(i + 1) = w̄(i)− µw∇LMV w̄∗(i), enforcing the constraint and solving the resulting equations, we obtain

SD(i + 1) = SD(i)− µsx̄
∗(i)

[
r(i)w̄H(i)− (

aH(θk)a(θk)
)−1

a(θk)w̄H(i)aH(θk)r(i)
]
, (19)

w̄(i + 1) = w̄(i)− µwx̄∗(i)
[
I − (

āH(θk)ā(θk)
)−1

ā(θk)āH(θk)
]
r̄(i), (20)

wherex̄(i) = w̄H(i)SH
D(i)r(i). The proposed scheme trades-off a full-rank filter against one projection matrixSD(i)

and one reduced-rank adaptive filterw̄(i) operating simultaneously and exchanging information.

B. Recursive Least Squares Algorithms

Here we derive an RLS adaptive reduced-rank algorithm for efficient implementation of the proposed method. To

this end, let us first consider the Lagrangian

LLS(SD(i), w̄(i)) =
i∑

l=1

αi−l
∣∣w̄H(i)SH

D(i)r(l)
∣∣2 + 2<[λ

(
w̄H(i)SH

D(i)a(θk)− 1
)
] (21)

whereα is the forgetting factor chosen as a positive constant close to, but less than1.

Fixing w̄(i), computing the gradient of (21) with respect toSD(i), equating the gradient to a null vector and solving

for λ, we obtain

SD(i) =
R−1(i)a(θk)w̄H(i)R̄−1

w̄ (i)

w̄H(i)R̄−1
w̄ (i)w̄(i)aH(θk)R−1(i)a(θk)

(22)

whereR(i) =
∑i

l=1 αi−lr(l)rH(l) is the input covariance matrix, and̄Rw̄(i) = w̄(i)w̄H(i) is the reduced-rank

weight matrix at time instanti. The computation of (22) includes the inversion ofR(i) andR̄w̄(i), which may increase

significantly the complexity and create numerical problems. However, the expression in (22) can be further simplified

using the constraint̄wH(i)SH
D(i)a(θk) = 1. The details of the derivation of the proposed RLS algorithms and the

simplification are given in Appendix III. The simplified expression forSD(i) is given by

SD(i) =
P (i)a(θk)āH(θk)
aH(θk)P (i)a(θk)

(23)

where we defined the inverse covariance matrixP (i) = R−1(i) for convenience of presentation. Employing the matrix

inversion lemma [3], we obtain

k(i) =
α−1P (i− 1)r(i)

1 + α−1rH(i)P (i− 1)r(i)
(24)
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P (i) = α−1P (i− 1)− α−1k(i)rH(i)P (i− 1) (25)

wherek(i) is theM × 1 Kalman gain vector. We setP (0) = δIM to start the recursion of (25), whereδ is a positive

constant andIM is anM ×M identity matrix.

AssumingSD(i) is known and taking the gradient of (21) with respect tow̄(i), equating the terms to a null vector

and solving forλ, we obtain theD × 1 reduced-rank filter

w̄(i) =
P̄ (i)ā(θk)

āH(θk)P̄ (i)ā(θk)
(26)

whereP̄ (i) = R̄
−1(i) and R̄(i) =

∑i
l=1 αi−lr̄(l)r̄H(l) is the reduced-rank input covariance matrix. In order to

estimateP̄ (i), we use the matrix inversion lemma [3] as follows

k̄(i) =
α−1P̄ (i− 1)r̄(i)

1 + α−1r̄H(i)P̄ (i− 1)r̄(i)
(27)

P̄ (i) = α−1P̄ (i− 1)− α−1k̄(i)r̄H(i)P̄ (i− 1) (28)

where k̄(i) is the D × 1 reduced-rank gain vector and̄P (i) = R̄
−1(i) is referred to as the reduced-rank inverse

covariance matrix. Hence, the covariance matrix inversionR̄
−1(i) is replaced at each step by the recursive processes

(27) and (28) for reducing the complexity. The recursion of (28) is initialized by choosingP̄ (0) = δ̄ĪD, whereδ̄ is a

positive constant and̄ID is aD ×D identity matrix.

The proposed RLS algorithm trade-off a full-rank filter withM coefficients against one projection matrixSD(i),

given in (23)-(25) and oneD × 1 reduced-rank adaptive filter̄w(i), given in (26)-(28), operating simultaneously and

exchanging information.

C. Complexity of Proposed Algorithms

Here, we evaluate the computational complexity of the proposed and analyzed LCMV algorithms. The complexity

expressed in terms of additions and multiplications is depicted in Table I. We can verify that the proposed reduced-rank

SG algorithm has a complexity that grows linearly withDM , which is aboutD times higher than the full-rank SG

algorithm and significantly lower than the MSWF-SG [16]. IfD << M (as we will see later) then the additional

complexity can be acceptable provided the gains in performance justify them. In the case of the proposed reduced-rank

RLS algorithm the complexity is quadratic withM2 andD2. This corresponds to a complexity slightly higher than the

one observed for the full-rank RLS algorithm, providedD is significantly smaller thanM , and comparable to the cost

of the MSWF-RLS [16] and the AVF [18].

In order to illustrate the main trends in what concerns the complexity of the proposed and analyzed algorithms, we

show in Fig. 3 the complexity in terms of additions and multiplications versus the number of input samplesM . The

curves indicate that the proposed reduced-rank RLS algorithm has a complexity lower than the MSWF-RLS algorithm

[16] and the AVF [18], whereas it remains at the same level of the full-rank RLS algorithm. The proposed reduced-rank

SG algorithm has a complexity that is situated between the full-rank RLS and the full-rank SG algorithms.
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D. Automatic Rank Selection

The performance of the algorithms described in the previous subsections depends on the rankD. This motivates

the development of methods to automatically adjustD on the basis of the cost function. Unlike prior methods for

rank selection which utilize MSWF-based algorithms [16] or AVF-based recursions [18], we focus on an approach

that jointly determinesD based on the LS criterion computed by the filtersSD(i) andw̄D(i), where the subscriptD

denotes the rank used for the adaptation. In particular, we present a method for automatically selecting the ranks of the

algorithms based on the exponentially weighteda posteriorileast-squares type cost function described by

C(SD(i− 1), w̄D(i− 1)) =
i∑

l=1

αi−l
∣∣w̄H

D(i− 1)SD(i− 1)r(l)|2, (29)

whereα is the forgetting factor and̄wD(i− 1) is the reduced-rank filter with rankD. For each time intervali, we can

select the rankDopt which minimizesC(SD(i−1), w̄D(i−1)) and the exponential weighting factorα is required as the

optimal rank varies as a function of the data record. The key quantities to be updated are the projection matrixSD(i),

the reduced-rank filter̄wD(i), the associated reduced-rank steering vectorā(θk) and the inverse of the reduced-rank

covariance matrix̄P (i) (for the proposed RLS algorithm). To this end, we define the following extended projection

matrixSD(i) and the extended reduced-rank filter weight vectorw̄D(i) as follows:

SD(i) =




s1,1 s1,2 . . . s1,Dmin . . . s1,Dmax

...
...

...
...

...
...

sM,1 sM,2 . . . sM,Dmin . . . sM,Dmax


 and w̄D(i) =




w1

w2

...

wDmin

...

wDmax




(30)

The extended projection matrixSD(i) and the extended reduced-rank filter weight vectorw̄D(i) are updated along with

the associated quantitiesā(θk) andP̄ (i) (only for the RLS) for the maximum allowed rankDmax and then the proposed

rank adaptation algorithm determines the rank that is best for each time instanti using the cost function in (29). The

proposed rank adaptation algorithm is then given by

Dopt = arg min
Dmin≤d≤Dmax

C(SD(i− 1), w̄D(i− 1)) (31)

whered is an integer,Dmin and Dmax are the minimum and maximum ranks allowed for the reduced-rank filter,

respectively. Note that a smaller rank may provide faster adaptation during the initial stages of the estimation procedure

and a greater rank usually yields a better steady-state performance. Our studies reveal that the range for which the

rankD of the proposed algorithms have a positive impact on the performance of the algorithms is limited, being from

Dmin = 3 to Dmax = 8 for the reduced-rank filter recursions. These values are rather insensitive to the system load

(number of users), to the number of array elements and work very well for all scenarios and algorithms examined. The

additional complexity of the proposed rank adaptation algorithm is that it requires the update of all involved quantities
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with the maximum allowed rankDmax and the computation of the cost function in (29). This procedure can significantly

improve the convergence performance and can be relaxed (the rank can be made fixed) once the algorithm reaches steady

state. Choosing an inadequate rank for adaptation may lead to performance degradation, which gradually increases as

the adaptation rank deviates from the optimal rank. A mechanism for automatically adjustingDmin andDmax based

on a figure of merit and the processed data would be an important technique to be investigated. For example, this

mechanism could in principle adjustDmin andDmax in order to address the needs of the model and the performance

requirements. This remains a topic for future investigation.

One can also argue that the proposed rank adaptation may not be universally applied to signal processing problems,

even though it has been proven highly effective to the problems we dealt with. Another possibility for rank adaptation

is the use of the cross-validation (CV) method reported in [18]. This approach selects the lengths of the filters that

minimize a cost function that is estimated on the basis of data that have not been used in the process of building the filters

themselves. This approach based on the concept of ”leave one out” can be used to determine the rank without requiring

any prior knowledge or the setting of a range of values [18]. A drawback of this method is that it may significantly

increase the length of the filters, resulting in higher complexity. Other possible approaches for rank selection may rely

on some prior knowledge about the environment and the system for inferring the required rank for operation. The

development of cost-effective methods for rank selection remains an interesting area for investigation.

VI. A NALYSIS OF ALGORITHMS

In this section, we present the stability and the MSE convergence analyses of the proposed SG algorithms. Specifi-

cally, we consider the joint optimization approach and derive conditions of stability for the proposed SG algorithms. We

then assume that the algorithms will converge and carry out the MSE convergence analysis in order to semi-analytically

determine the MSE upon convergence. The RLS algorithms are expected to converge to the optimal LCMV filter and

this has been verified in our studies. A discussion on the preservation of the MV performance, the existence of multiple

solutions and an analysis of the optimization of the proposed scheme valid for both SG and RLS algorithms is included

in the Appendices I and II.

A. Stability Analysis

In order to establish conditions for the stability of the proposed SG algorithms, we define the error matrices at timei

as

eSD
(i) = SD(i)− SD,opt

and

ew̄(i) = w̄(i)− w̄opt,

wherew̄opt andSD,opt are the optimal parameter estimators. Since we are dealing with a joint optimization proce-

dure, both filters have to be considered jointly. By substituting the expressions ofeSD
(i) andew̄(i) in (19) and (20),
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respectively, and rearranging the terms we obtain

eSD
(i + 1) =

{
I − µs[I − (aH(θk)a(θk))−1a(θk)aH(θk)]r(i)rH(i)

}
eSD

(i)

− µs[I − (aH(θk)a(θk))−1a(θk)aH(θk)]r(i)w̄H(i)rH(i)SD(i)ew̄(i)

+ µs[I − (aH(θk)a(θk))−1a(θk)aH(θk)]r(i)rH(i)[SD(i)(I− w̄optw̄
H(i))− SD,opt]

(32)

ew(i + 1) =
{
I − µw[I − (āH(θk)ā(θk))−1ā(θk)āH(θk)]r̄(i)r̄H(i)

}
ew(i)

− µw[I − (āH(θk)ā(θk))−1ā(θk)āH(θk)]r̄(i)rH(i)eSD
(i)

+ µw[I − (āH(θk)ā(θk))−1ā(θk)āH(θk))SH
D(i)]r̄(i)r̄H(i)(SD(i)(I − w̄opt)− SD,opt)

(33)

Taking expectations and simplifying the terms, we obtain

 E[eSD

(i + 1)]

E[ew̄(i + 1)]


 = P


 E[eSD

(i)]

E[ew̄(i)]


 + T (34)

where

P =




{
I − µs[I − (aH(θk)a(θk))−1a(θk)aH(θk)]r(i)rH(i)

} −µs[I − a(θk)aH(θk)]r(i)w̄H(i)rH(i)SD(i)

−µw[I − (āH(θk)ā(θk))−1ā(θk)āH(θk)]r̄(i)rH(i)
{
I − µw[I − (āH(θk)ā(θk))−1ā(θk)āH(θk)]r̄(i)r̄H(i)

}


 ,

T =


 µs[I − (aH(θk)a(θk))−1a(θk)aH(θk)]r(i)rH(i)[SD(i)(I− w̄optw̄

H(i))− SD,opt]

µw[I − (āH(θk)ā(θk))−1ā(θk)āH(θk))SH
D(i)]r̄(i)r̄H(i)(SD(i)(I − w̄opt)− SD,opt)


 .

The previous equations imply that the stability of the algorithms depends on the spectral radius ofP . For convergence,

the step sizes should be chosen such the eigenvalues ofP HP are less than one. Unlike the stability analysis of most

adaptive algorithms [3], in the proposed approach the terms are more involved and depend on each other as evidenced

by the equations inP andT .

B. MSE Convergence Analysis

Let us consider in this part an analysis of the MSE in steady state. This follows the general steps of the MSE

convergence analysis of [3] even though novel elements will be introduced in the proposed framework. These novel

elements in the analysis are the joint optimization of the two adaptive filtersw̄(i) andSD(i) of the proposed scheme

and a strategy to incorporate the effect of the step size of the recursions in (19) and (20).

Let us define the MSE at timei + 1 using the relations

ew(i + 1) = w(i + 1)−wopt

and

ξ(i) = E[wH(i)r(i)r(i)w(i)],

where the filterw(i) = SD(i)w̄(i) with M coefficients is theD-rank approximation of a full-rank filter obtained with

an inverse mapping performed bySD(i).
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The MSE of the proposed scheme can be expressed by:

MSE(i) = E[|d(i)−wH(i)r(i)|2]
= εmin + ξ(i)− ξmin −E[eH

w(i)]a(θk)− aH(θk)E[ew(i)]

= εmin + ξex(i)− E[eH
w(i)]a(θk)− aH(θk)E[ew(i)]

(35)

whered(i) corresponds to the desired signal,ξ(i) = E[wH(i)r(i)rH(i)w(i)], εmin = E[|d(i) − wH
optr(i)|2] is the

MSE with

wopt = ξminR−1a(θk), (36)

whereξmin = 1/(aH(θk)R−1a(θk)) is the minimum variance, andξex(i) = ξ(i)− ξmin is the excess MSE due to the

adaptation process at the time instanti. Sincelimi→∞E[ew(i)] = 0 we have

lim
i→∞

MSE(i) = εmin + lim
i→∞

ξex(i) (37)

where theξex(∞) term in (37) is the steady-state excess MSE resulting from the adaptation process. The main difference

here from prior work lies in the fact that this refers to the excess MSE produced by aD-rank approximation filterw(i).

In order to analyze the trajectory ofξ(i), let us rewrite it as

ξ(i) = E[wH(i)r(i)rH(i)w(i)]

= E[w̄H(i)SH
D(i)r(i)rH(i)SD(i)w̄(i)]

= tr E[Rw(i)R]

(38)

whereRw(i) = E[w(i)wH(i)] = woptw
H
opt + E[ew(i)]wH

opt + woptE[eH
w(i)] + Rew(i) [5].

To proceed with the analysis, we must define the quantitiesR = ΦΛΦH , where the columns ofΦ are the eigenvec-

tors of the symmetric and positive semi-definite matrixR andΛ is the diagonal matrix of the corresponding eigenvalues,

Rew(i) = E[ew(i)eH
w(i)], the rotated tap error vectorẽw(i) = ΦHew(i), the rotated signal vectors̃r(i) = ΦHr(i),

ã(θk) = ΦHa(θk) andRẽw(i) = E[ẽw(i)ẽH
w(i)] = ΦHRew(i)Φ. Rewriting (38) in terms of the above transformed

quantities we have:

ξ(i) = tr E[ΛΦHRwΦ]

= ξmin + tr[E[ẽw(i)]ãH(θk) + ã(θk)E[ẽH
w(i)]

+ ΛRẽw(i)]

(39)

Sincelimi→∞E[ẽw(i)] = 0, thenlimi→∞ ξ(i) = ξmin + tr[ΛRẽw ]. Thus, it is evident that to assess the evolution of

ξ(i) it is sufficient to studyRẽw(i).

UsingeSD
(i) andew̄(i) and combining them to computeew(i), we get

ew(i) = w(i)−wopt

= SD(i)w̄(i)− SD, optw̄opt

= eSD
(i)ew̄(i) + SD,optew̄(i) + eSD

(i)w̄opt

(40)



12

Substituting the expressions foreSD
(i + 1) andew̄(i + 1) in (32) and (33), respectively, to computeew(i + 1), we get

ew(i + 1) = ew(i)− µwx̄∗(i)SD(i)r̄p(i)− µsx̄
∗(i)Srp(i)w̄(i)

+ µsµw(x̄∗(i))2Srp(i)r̄p(i) + SD,optew̄(i) + eSD
(i)w̄opt

(41)

where

x̄(i) = w̄H(i)SH
D(i)r(i) = wH(i)r(i)

Srp(i) =
(
I − (aH(θk)a(θk))−1a(θk)aH(θk)

)
r(i)w̄H(i)

r̄p(i) = (I − (SD(i)aH(θk)SH
D(i)a(θk))−1SD(i)a(θk)aH(θk)SH

D(i)SD(i)r(i)

We can further rewrite the expressions above in order to obtain a more compact and convenient representation as

ew(i + 1) = (I −A)ew(i) + BC + µsµw(x̄∗(i))2Srp(i)r̄p(i) + eSD
(i)w̄opt (42)

where

A = µwSD(i)r̄p(i)rH(i) + µsSrp(i)w̄(i)rH(i)− SD,opt

B = −µwSD(i)r̄p(i)rH(i)− µsSrp(i)w̄(i)rH(i)

C = eSD
(i)w̄opt + SD,optew̄(i) + eSD

(i)w̄opt.

Now, we need to computeRew(i + 1) = E[ew(i + 1)eH
w(i + 1)] by using the result in (42), which yields

Rew(i + 1) = (I −A)Rew(i)(I −A)H + (I −A)ew(i)CHBH

+ µsµw(x̄(i))2(I −A)ew(i)(r̄H
p (i)SH

rp
(i))

+ (I −A)ew(i)w̄H
optS

H
D,opt + BCeH

w(i)((I −A)H

+ BCCHBH + µsµw(x̄(i))2BCr̄H
p (i)SH

rp
(i)

+ BCwH
opte

H
SD

(i) + µsµw(x̄∗(i))2Srp(i)rp(i)eH
w(i)(I −A)H

+ µsµw(x̄∗(i))2Srp(i)r̄p(i)CHAH

+ (µsµw)2|x̄(i)|4Srp(i)r̄p(i)r̄H
p (i)Srp(i)

+ µsµw(x̄(i))2eSD
(i)w̄optr̄p(i)Srp(i)

− eSD
(i)w̄opte

H
w(i)(I −A)H + eSD

(i)w̄optC
HBH

+ eSD
(i)w̄optw̄

H
opte

H
SD

(i)

(43)

SinceE[ew(i)] = 0 andE[eSD
(i)] = 0, we can simplify the previous expression and obtain

Rew(i + 1) = (I −A)Rew(i)(I −A)H

+ BCCHBH + µsµw(x̄(i))2BCr̄H
p (i)SH

rp
(i)

+ µsµw(x̄∗(i))2Srp(i)r̄p(i)CHAH

+ (µsµw)2|x̄(i)|4Srp(i)r̄p(i)r̄H
p (i)Srp(i)

+ eSD
(i)w̄optw̄

H
opte

H
SD

(i)

(44)
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Solving forRew , the MSE can be computed by

MSE(i + 1) = εmin + tr[ΛRẽw(i)]

= εmin + tr[ΛΦRew(i)ΦH ]
(45)

It should be remarked that the expression forRew(i) is quite involved and requires a semi-analytical approach with the

aid of computer simulations for its computation. This is because the terms resulting from the joint adaptation create

numerous extra terms in the expression ofRew(i), which are very difficult to isolate. We found that using computer

simulations to pre-compute the terms ofRew(i) as a function of the step sizes was more practical and resulted in good

match between the semi-analytical and simulated curves. In the following section, we will demonstrate that it is able to

predict the performance of the proposed SG algorithm.

VII. S IMULATIONS

In this section we evaluate the performance of the proposed and the analyzed beamforming algorithms via computer

simulations. We also verify the validity of the MSE convergence analysis of the previous section. A smart antenna

system with a ULA containingM sensor elements is considered for assessing the beamforming algorithms. In particular,

the performance of the proposed scheme and SG and RLS algorithms is compared with existing techniques, namely,

the full-rank LCMV-SG [4] and LCMV-RLS [8], and the reduced-rank algorithms withSD(i) designed according to

the MSWF [16], the AVF [18] and the optimal linear beamformer that assumes the knowledge of the covariance matrix

[2]. In particular, the algorithms are compared in terms of the mean-squared error (MSE) and the signal-to-interference-

plus-noise ratio (SINR), which is defined for the reduced-rank schemes as

SINR(i) =
w̄H(i)SH

D(i)RsSD(i)w̄(i)
w̄H(i)SH

D(i)RISD(i)w̄(i)
, (46)

whereRs is the autocorrelation matrix of the desired signal andRI is the cross-correlation matrix of the interference

and noise in the environment. Note that for the full-rank schemes theSINR(i) assumesSH
D(i) = IM , whereIM is an

identity matrix with dimensionalityM . For each scenario,200 runs are used to obtain the curves. In all simulations, the

desired signal power isσ2
d = 1, and the signal-to-noise ratio (SNR) is defined asSNR = σ2

d
σ2 . The filters are initialized

asw̄(0) = [1 0 . . . 0] andSD(0) = [IT
D 0T

D×(M−D)], where0D×M−D is aD × (M − D) matrix with zeros in all

experiments.

A. MSE Analytical Performance

In this part of the section, we verify that the results in (43) and (45) of the section on MSE convergence analysis of

the proposed reduced-rank SG algorithms can provide a means of estimating the MSE upon convergence. The steady

state MSE between the desired and the estimated symbol obtained through simulation is compared with the steady state

MSE computed via the expressions derived in Section VI. In order to illustrate the usefulness of our analysis we have

carried out some experiments. To semi-analytically compute the MSE for the SG recursion, we have used (36) and

assumed the knowledge of the data covariance matrixR. We consider5 interferers (K = 6 users in total - the SoI and
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the interferers) at−60o, −30o, 0o, 45o, 60o with powers following a log-normal distribution with associated standard

deviation3 dB around the SoI’s power level, which impinges on the array at15o.

We compare the results obtained via simulations with those obtained by the semi-analytical approach presented in

Section VI. In particular, we consider two sets of parameters in order to check the validity of our approach. One of the

sets has larger step sizes (µs = 0.0025 andµw = 0.01), whereas the other set employs smaller step sizes (µs = 0.001

andµw = 0.001) for the recursions. The results shown in Fig. 4 indicate that the curves obtained with the semi-

analytical approach agrees with those obtained via simulations for both sets of parameters, verifying the validity of our

analysis. Note that the algorithms with smaller step sizes converge slower than the algorithms equipped with larger

step sizes. However, the proposed algorithms with smaller step sizes converge to the same level of MSE as the optimal

LCMV, whereas the proposed algorithms with larger step sizes exhibit a higher level of misadjustment. In what follows,

we will consider the convergence rate of the proposed reduced-rank algorithms in comparison with existing algorithms.

B. SINR Performance

In the first two experiments, we consider7 interferers at−60o,−45o,−30o,−150, 0o, 45o, 60o with powers following

a log-normal distribution with associated standard deviation3 dB around the SoI’s power level. The SoI impinges on

the array at30o. The parameters of the algorithms are optimized.

We first evaluate the SINR performance of the analyzed algorithms against the rankD using optimized parameters

(µs, µw and forgetting factorsλ) for all schemes andN = 250 snapshots. The results in Fig. 5 indicate that the best

rank for the proposed scheme isD = 4 (which will be used in the second scenario) and it is very close to the optimal

full-rank LCMV filter. Our studies with systems with different sizes show thatD is relatively invariant to the system

size, which brings considerable computational savings. In practice, the rankD can be adapted in order to obtain fast

convergence and ensure good steady-state performance and tracking after convergence.

We show another scenario in Fig. 6 where the adaptive LCMV filters are set to converge to the same level of SINR.

The parameters used to obtain these curves are also shown. The SG version of the MSWF is known to have problems in

these situations since it does not tridiagonalize its covariance matrix [16], being unable to approach the optimal LCMV.

The curves show an excellent performance for the proposed scheme which converges much faster than the full-rank-SG

algorithm, and is also better than the more complex MSWF-RLS and AVF schemes.

In the next experiment, we consider the design of the proposed adaptive reduced-rank LCMV algorithms equipped

with the automatic rank selection method described in Section V.D. We consider5 interferers at−60o, −30o, 0o, 45o,

60o with equal powers to the SoI, which impinges on the array at15o. Specifically, we evaluate the proposed rank

selection algorithms against the use of fixed ranks, namely,D = 3 andD = 8 for both SG and RLS algorithms. The

results show that the proposed automatic rank selection method is capable of ensuring an excellent trade-off between

convergence speed and steady-state performance, as illustrated in Fig 7. In particular, the proposed algorithm can

achieve a significantly faster convergence performance than the scheme with fixed rankD = 8, whereas it attains the

same steady state performance.
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In the last experiment, we consider a non-stationary scenario where the system has6 users with equal power and

the environment experiences a sudden change at timei = 800. The5 interferers impinge on the ULA at−60o, −30o,

0o, 45o, 60o with equal powers to the SoI, which impinges on the array at15o. At time instanti = 800 we have3

interferers with5 dB above the SoI’s power level entering the system with DoAs−45o, −15o and30o, whereas one

interferer with DoA45o and a power level equal to the SoI exits the system. The proposed and analyzed adaptive

beamforming algorithms are equipped with automatic rank adaptation techniques and have to adjust their parameters

in order to suppress the interferers. We optimize the step sizes and the forgetting factors of all the algorithms in order

to ensure that they converge as fast as they can to the same value of SINR. The results of this experiment are depicted

in Fig. 8. The curves show that the proposed reduced-rank algorithms have a superior performance to the existing

algorithms.

VIII. C ONCLUSIONS

We proposed reduced-rank LCMV beamforming algorithms based on joint iterative optimization of filters. The

proposed reduced-rank scheme is based on a constrained joint iterative optimization of filters according to the minimum

variance criterion. We derived LCMV expressions for the design of the projection matrix and the reduced-rank filter and

developed SG and RLS adaptive algorithms for their efficient implementation along with an automatic rank selection

technique. An analysis of the stability and the convergence properties of the proposed algorithms was presented and

semi-analytical expressions were derived for predicting the MSE performance. The numerical results for a digital

beamforming application with a ULA showed that the proposed scheme and algorithms outperform in convergence and

tracking the existing full-rank and reduced-rank algorithms at comparable complexity. The proposed algorithms can be

extended to other array geometries and applications .

APPENDIX

I. PRESERVATION OFMV AND EXISTENCE OFMULTIPLE SOLUTIONS

In this Appendix we discuss the conditions for which the MV obtained for the full-rank filter is preserved and the

existence of multiple solutions in the proposed optimization method. Given anM ×D projection matrixSD(i), where

D ≤ M , theMV is achieved if and only ifw which minimizes (4) belongs to theRange{SD(i)}, i.e. w(i) lies in the

subspace generated bySD(i). In this case, we have

MV(w̄(i)) = (aH(θk)R−1a(θk))−1. (47)

For a generalSD(i), we have

MV(w̄(i)) ≥ (aH(θk)R−1a(θk))−1. (48)

From the above relations, we can conclude that there exists multiple solutions to the proposed optimization problem.
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II. A NALYSIS OF THE OPTIMIZATION OF THE PROPOSEDSCHEME

In this appendix, we carry out an analysis of the proposed reduced-rank method and its optimization. Our approach

is based on expressing the output of the proposed scheme and the proposed constraint in a convenient form that renders

itself to analysis. Let us rewrite the proposed constrained optimization method in (13) using the method of Lagrange

multipliers and express it by the Lagrangian

L = E
[|w̄H(i)SH

D(i)r(i)|2] + 2<[λ(w̄H(i)SH
D(i)a(θk)− 1)], (49)

In order to proceed, let us expressx̄(i) in an alternative and more convenient form as

x̄(i) = w̄H(i)SH
D(i)r(i) = w̄H(i)

D∑

d=1

sH
d (i)r(i)qd

= w̄H(i)




r(i) 0 0 . . . 0

0 r(i) 0 . . . 0
...

...
...

...
...

0 . . . 0 0 r(i)




T 


s∗1(i)

s∗2(i)
...

s∗D(i)




= w̄H(i)<T (i)s∗v(i)

(50)

where<(i) is aDM × D block diagonal matrix with the input data vectorr(i), qd is aD × 1 vector with a1 in the

d-th position ands∗v(i) is aDM × 1 vector with the columns ofSD(i) stacked on top of each other.

In order to analyze the proposed joint optimization procedure, we can rearrange the terms inx̄(i) and define a single

D(M + 1)× 1 parameter vectorf(i) = [w̄T (i) sT
v (i)]T . We can therefore further expressx̄(i) as

x̄(i) = fH(i)


 0D×D 0D×DM

<(i) 0DM×DM


f(i)

= fH(i)G(i)f(i)

(51)

whereG(i) is a D(M + 1) × D(M + 1) matrix which contains<(i). Now let us perform a similar linear algebra

transformation with the proposed constraintw̄H(i)SH
D(i)a(θk) = 1 and express it as

w̄H(i)SH
D(i)a(θk) = fH(i)A(θk)f(i) (52)

where theD(M + 1)×D(M + 1) matrixA(θk) is structured as

A(θk) =


 0D×D 0D×DM

<a(θk) 0DM×DM



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and theDM ×D block diagonal matrix<a(θk)(i) with the steering vectora(θk) constructed as

<a(θk) =




a(θk) 0 0 . . . 0

0 a(θk) 0 . . . 0
...

...
...

...
...

0 . . . 0 0 a(θk)




(53)

At this point, we can alternatively express the Lagrangian in (57) as

L = E
[|fH(i)G(i)f(i)|2] + 2<[λ(fH(i)A(θk)f(i)− 1)]. (54)

We can examine the convexity of the above Lagrangian by computing the Hessian (H)with respect tof(i) using the

expression [22]

H =
∂

∂fH(i)
∂(L)
∂f(i)

(55)

and testing if the terms are positive semi-definite. Specifically,H is positive semi-definite ifvHHv ≥ 0 for all nonzero

v ∈ CD(M+1)×D(M+1) [23]. Therefore, the optimization problem is convex if the HessianH is positive semi-definite.

Evaluating the partial differentiation in the expression given in (55) yields

H = E
[
fH(i)G(i)f(i)G(i) + G(i)f(i)fH(i)G(i)

+ G(i)fH(i)G(i)f(i) + fH(i)G(i)G(i)f(i) + 2λA(θk)
] (56)

By examiningH, we verify that the second and fourth terms are positive semi-definite, whereas the first and the third

terms are indefinite. The fifth term depends on the constraint, which is typically positive in the proposed scheme

as verified in our studies, yielding a positive semi-definite matrix. Therefore, the optimization problem can not be

classified as convex. It is however important to remark that our studies indicate that there are no local minima and there

exists multiple solutions (which are possibly identical).

In order to support this claim, we have checked the impact on the proposed algorithms of different initializations .

This study confirmed that the algorithms are not subject to performance degradation due to the initialization although

we have to bear in mind that the initializationSD(0) = 0M×D annihilates the signal and must be avoided. We

have also studied a particular case of the proposed scheme whenM = 1 andD = 1, which yields the Lagrangian

L(w̄, SD) = E
[|w̄SDr|2] + 2<[

λ(w̄SDa(θk)− 1)
]
. ChoosingSD (the ”scalar” projection) fixed withD equal to1, it

is evident that the resulting functionL(w̄, SD = 1, r) = |w∗ r|2 + 2<[
λ(w̄a(θk) − 1)

]
is a convex one. In contrast to

that, for a time-varying projectionSD the plots of the function indicate that the function is no longer convex but it also

does not exhibit local minima. This problem can be generalized to the vector case, however, we can no longer verify

the existence of local minima due to the multi-dimensional surface. This remains as an interesting open problem.
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III. D ERIVATION AND SIMPLIFICATION OF SD(i)

In this appendix, we detail the derivation of the filterSD(i) and the simplification shown in (23) for reducing the

computational complexity. Let us consider the derivation ofSD(i) obtained from the minimization of the Lagrangian

L(SD(i), w̄(i)) =
i∑

l=1

αi−l|w̄H(i)SH
D(i)r(l)|2 + 2<[λ(w̄H(i)SH

D(i)a(θk)− 1)], (57)

Taking the gradient terms of the above expression with respect toS∗D(i), we get

∇L(SD(i), w̄(i))S∗D(i) =
i∑

l=1

αi−lr(l)rH(l)SD(i)w̄(i)w̄H(i) + 2λa(θk)w̄H(i)

= R(i)SD(i)R̄w̄(i) + 2λa(θk)w̄H(i).

(58)

Making the above gradient terms equal to zero yields

SD(i) = R−1(i)(−2λ)a(θk)w̄H(i)R̄−1
w̄ . (59)

Using the proposed constraintw̄H(i)SH
D(i)a(θk) = 1 and substituting the above filter expression, we obtain the La-

grange multiplierλ = −1/2(w̄H(i)R̄−1
w̄ w̄(i)aH(θk)R−1(i)a(θk))−1. Substitutingλ into (59), we get

SD(i) =
R−1(i)a(θk)w̄H(i)R̄−1

w̄ (i)

w̄H(i)R̄−1
w̄ (i)w̄(i)aH(θk)R−1(i)a(θk)

(60)

The above expression for the matrix filterSD(i) can be simplified by observing the quantities involved and making use

of the proposed constraint̄wH(i)SH
D(i)a(θk) = 1. Let us consider the term̄wH(i)R̄−1

w̄ w̄(i) in the denominator of

(60) and multiply it by the proposed constraint as follows:

w̄H(i)R̄−1
w̄ w̄(i) = w̄H(i)R̄−1

w̄ w̄(i)w̄H(i)SH
D(i)a(θk)

= w̄H(i)SH
D(i)a(θk) = 1.

(61)

Now let us consider the termaH(θk)w̄H(i)R̄−1
w̄ (i) and rewrite it as follows:

a(θk)w̄H(i)R̄−1
w̄ (i) = a(θk)w̄H(i)R̄−1

w̄ (i)w̄H(i)SH
D(i)a(θk)

= a(θk)aH(θk)SD(i)w̄(i)w̄H(i)R̄−1
w̄ (i)

= a(θk)aH(θk)SD(i) = a(θk)āH(θk).

(62)

Using the relations obtained in (61) and (62) into the expression in (60), we can get a simpler expression for the

projection matrix as given by

SD(i) =
R−1(i)a(θk)w̄H(i)R̄−1

w̄ (i)

w̄H(i)R̄−1
w̄ (i)w̄(i)aH(θk)R−1(i)a(θk)

=
R−1(i)

a(θk)āH(θk)︷ ︸︸ ︷
a(θk)w̄H(i)R̄−1

w̄ (i)

w̄H(i)R̄−1
w̄ (i)w̄(i)︸ ︷︷ ︸
1

aH(θk)R−1(i)a(θk)

=
R−1(i)a(θk)āH(θk)
aH(θk)R−1(i)a(θk)

(63)

This completes the derivation and the simplification.
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Fig. 1. Schematic of a linear antenna array system with interferers.

Fig. 2. Schematic of the proposed reduced-rank scheme.
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TABLE I

Computational complexity of LCMV algorithms.

Algorithm Additions Multiplications

Full-rank-SG [4] 3M + 1 3M + 2

Full-rank-RLS [8] 3M2 − 2M + 3 6M2 + 2M + 2

Proposed-SG[21] 3DM + 2M 3DM + M

+2D − 2 +5D + 2

Proposed-RLS 3M2 − 2M + 3 7M2 + 2M

+3D2 − 8D + 3 +7D2 + 9D

MSWF-SG [16] DM2 −M2 DM2 −M2

+3D − 2 +2DM + 4D + 1

MSWF-RLS [16] DM2 + M2 + 6D2 DM2 + M2

−8D + 2 +2DM + 3D + 2

AVF [18] D((M)2 + 3(M − 1)2)− 1 D(4M2 + 4M + 1)

+D(5(M − 1) + 1) + 2M +4M + 2
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Fig. 4. MSE analytical versus simulated performance for the proposed reduced-rank SG algorithm.
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