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Abstract

This paper presents reduced-rank linearly constrained minimum variance (LCMV) beamforming algorithms based on joir
iterative optimization of filters. The proposed reduced-rank scheme is based on a constrained joint iterative optimization of filte
according to the minimum variance criterion. The proposed optimization procedure adjusts the parameters of a projection mat
and an adaptive reduced-rank filter that operates at the output of the bank of filters. We describe LCMV expressions for the des|
of the projection matrix and the reduced-rank filter. We then describe stochastic gradient and develop recursive least-squares af
tive algorithms for their efficient implementation along with automatic rank selection techniques. An analysis of the stability anc
the convergence properties of the proposed algorithms is presented and semi-analytical expressions are derived for predicting t
mean squared error (MSE) performance. Simulations for a beamforming application show that the proposed scheme and algoritt

outperform in convergence and tracking the existing full-rank and reduced-rank algorithms while requiring comparable complexit
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. INTRODUCTION

In recent years, adaptive beamforming techniques have attracted considerable interest and found applications in ra
wireless communications and sonar [1], [2]. The adaptive beamforming techniques are used in systems equipped v
antenna arrays and usually have a trade-off between performance and computational complexity which depends on
designer’s choice of the adaptation algorithm [3], [6], [7]. The optimal linearly constrained minimum variance (LCMV)
beamformer is designed in such a way that it attempts to minimize the array output power while maintaining a consta
response in the direction of a signal of interest (Sol) [1], [2], [3]. However, this technique requires the computation o
the inverse of the input data covariance matrix and the knowledge of the cross-correlation vector, rendering the meth
very complex for practical applications when the system is large. Adaptive versions of the LCMV beamformer wer:
subsequently reported with stochastic gradient (SG) [4] and recursive least squares (RLS) [8] algorithms.

These algorithms require estimates of the input data covariance matrix, which is a task that may become challenging
large systems and in highly dynamic situations such as those found in wireless communications and radar applicatic
This is because the convergence speed and tracking properties of adaptive filters depend on the number of sel
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elementsV/ [3] and on the eigenvalue spread of the input data covariance matrix. Given this dependency on the numb
of sensor elementd/, it is thus intuitive to reducé/ while simultaneously extracting the key features of the original
signal via an appropriate transformation.

A cost-effective technique in short-data record scenarios and, in particular, with systems containing a large number
parameters is reduced-rank signal processing. The advantages are their superior convergence properties and enh:
tracking performance when compared with full-rank schemes operating with a large number of parameters, and th
ability to exploit the low-rank nature of the signals encountered in beamforming applications. Several reduced-rar
methods have been proposed to generate the signal subspace [3]-[16]. They range from computationally expen:
eigen-decomposition techniques [9]-[11] to alternative approaches such as the auxiliary-vector filter (AVF) [12],[13]
[18], the multistage Wiener filter (MSWF) [13], [14], [16], [17] which are based on the Krylov subspace, and joint
optimization approaches [15], [19]. Despite the improved convergence and tracking performance achieved with Krylc
methods [12]-[14], [16]-[18] they are relatively complex to implement and can suffer from numerical problems. The
joint optimization techniques reported in [15], [19] outperform the eigen-decomposition- and Krylov-based methods an
are amenable to efficient adaptive implementations. However, the design and analysis of adaptive LCMV reduced-ra
algorithms based on joint optimization approaches have not been considered so far.

This work proposes LCMV reduced-rank algorithms based on constrained joint iterative optimization of filters for
antenna-array beamforming. The proposed scheme, whose initial results were reported in [20], [21], jointly optimize
a projection matrix and a reduced-rank filter that operates at the output of the projection matrix. The essence of t
proposed approach is to change the role of adaptive LCMV filters. The bank of adaptive filters is responsible for pe
forming dimensionality reduction, whereas the reduced-rank filter effectively forms the beam in the direction of the So
We describe LCMV expressions for the design of the projection matrix and the reduced-rank filter and present SG a
RLS algorithms for efficiently implementing the method. We also introduce an automatic rank estimation algorithn
for determining the most adequate rank for the proposed algorithms. An analysis of the stability and the convergen
properties of the proposed algorithms is presented and semi-analytical expressions are derived for predicting their
formance.

This paper is organized as follows. The system model is described in Section Il. The full-rank and the reducet
rank LCMYV filtering problems are formulated in Section Ill. Section IV is dedicated to the proposed method, wherea
Section V is devoted to the derivation of the adaptive SG and RLS algorithms and the rank adaptation technique. Sect
VI focuses on the analysis of the proposed algorithms. Section VIl presents and discusses the simulation results :

Section VIII gives the concluding remarks.

[I. SYSTEM MODEL

Let us consider a smart antenna system equipped with a uniform linear array (ULAktdEments, as shown in Fig.
1. Assuming that the sources are in the far field of the array, the sign&lnafirowband sources impinge on the array

(K < M) with unknown directions of arrival (DOA; forl =1,2,..., K.



The input data from the antenna array can be organized M an1 vector expressed by
r(i) = A(0)s(i) + n(i) 1)
where
A(0) = [a(b1),...,a(0k)]
isthe M x K matrix of signal steering vectors. Thié x 1 signal steering vector is defined as

_omjds —omi(M—1)ds T
al®) = 1. e 2mj 52 cos e 2mj(M—1) 52 cost) 2
l ) ) )

for a signal impinging atangléy, [ = 1,2, ..., K, whereds; = A\./2 is the inter-element spacing, is the wavelength
and(.)” denotes the transpose operation. The veetoy denotes the complex vector of sensor noise, which is assumed

to be zero-mean and Gaussian with covariance matrix

[1l. PROBLEM STATEMENT

In this section, we formulate the problems of full-rank and reduced-rank LCMV filters. In order to perform beam-
forming with a full-rank LCMV filter, we linearly combine the data vecidy) = [r@ réi) . r](\?]T with the full-rank
filter w = [wy wy ... w,,]T toyield

z(i) = whr(i) 3)
The optimal LCMV filter is theM x 1 vectorw, which is designed to solve the following optimization problem

minimize E[|wr(i)|?] = w Rw @

subject to wa(6;) =1
The solution to the problem in (4) is given by [3], [4]

w . — R 'a(6)
P aH (0,) R a(0y))

(®)

wherea(0y,) is the steering vector of the Sat(i) is the received data, the covariance matrixr¢f) is described
by R = E[r(i)r(i)], () denotes Hermitian transpose aB] stands for expected value. The filtex(i) can be
estimated via SG or RLS algorithms [3]. However, the laws that govern their convergence and tracking behaviors imp
that they depend o/ and on the eigenvalue spread®f

A reduced-rank algorithm must extract the most important features of the processed data by performing dimensic

ality reduction. This mapping is carried out byl x D projection matrixSp on the received data as given by
7 (i) = Spr(i) (6)

where, in what follows, alD-dimensional quantities are denoted with a "bar”. The resulting projected received vector

7(i) is the input to a filter represented by thevectorw = [w; w, ...wp]T. The filter output is

(i) = (i) @



In order to design the reduced-rank fili@rwe consider the following optimization problem

minimize E [|@7(i)|*| = w" Ru
Uw 7(1 \] w’ Rw @®

subject tow?a(6,) = 1

The solution to the above problem is

9)

(
where the reduced-rank covariance matriiis= E[7(i)7(i)] = S¥ RS p and the reduced-rank steering vector is
a(6) = S%a(6,). The associated minimum variance (MV) for a LCMV filter with rabkis

1

MV =
a(0x)ESp(SERSp)-1SHa(b;)

(10)

The above development shows that the main problem is how to cost-effectively dgsignperform dimensionality
reduction onr(7), resulting in improved convergence and tracking performance over the full-rank filter. In the Appendix,
we provide a necessary and sufficient conditionSer to preserve the MV of optimal full-rank filter and discuss the

existence of multiple solutions. In the following, we detail our proposed reduced-rank method.

IV. PROPOSEDREDUCED-RANK METHOD

In this section, we introduce the principles of the proposed reduced-rank scheme. The proposed scheme, depicte
Fig. 2, employs a matri$ p (i) with dimensionsV/ x D to perform dimensionality reduction on a data veet) with
dimensionsV/ x 1. The reduced-rank filtew (i) with dimensionsD x 1 processes the reduced-rank data veetoy in
order to yield a scalar estimaté:). The projection matrisS (i) and the reduced-rank filtes (i) are jointly optimized
in the proposed scheme according to the MV criterion subject to a constraint that ensures that the reduced-rank ar
response is equal to unity in the direction of the Sol.

In order to describe the proposed method, let us first consider the structureldf th® projection matrix

Sp(i) =[s1(0) [ s2(9) [ ... [sp(i) ] (11)
where the columns,(i) ford = 1, ..., D constitute a bank ab full-rank filters with dimensiong/ x 1 as given by
sq(i) = [s1,a(i) s2,a(i) ... sara(i)]”

The outputz(i) of the proposed reduced-rank scheme can be expressed as a function of the input(vgctbe

projection matrixSp (7) and the reduced-rank filtev(i):

S

(i) = @ (i) SE(i)r(i) = @™ ()7 (i) (12)

It is interesting to note that fab = 1, the proposed scheme becomes a conventional full-rank LCMV filtering scheme
with an addition weight parameterp that provides an amplitude gain. Fbr > 1, the signal processing tasks are

changed and the full-rank LCMV filters compute a subspace projection and the reduced-rank filter provides a unity ga
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in the direction of the Sol. This rationale is fundamental to the exploitation of the low-rank nature of signals in typica
beamforming scenarios.
The LCMV expressions for the filte$p (i) andw(z) can be computed via the proposed optimization problem
minimize E{|w" (i)S7 (i)r(i)|*] = w™ (:)SE (i) RS p(i)w(i) 13
subject tow™ (1) ST (i)a(6y) = 1
In order to solve the above problem, we resort to the method of Lagrange multipliers [3] and transform the constraine

optimization into an unconstrained one expressed by the Lagrangian

L(Sp(i), w(i)) = E[lw" (1) (0)r(@)*] + 2R\@" ()SE (D)a(0k) - 1)), (14)

where) is a scalar Lagrange multiplier,denotes complex conjugate and the oper&tior selects the real part of the
argument. By fixingw(7), minimizing (14) with respect t&'p (i) and solving for), we get
R 'a(6y)w" ()R,

Sp(i) = @H(Z‘)Rg)l'&;(i)aH(ek)R_la(ek) )

(15)

whereR = E[r(i)rfl(i)] and R; = Elw(i)w (i)]. By fixing Sp(i), minimizing (14) with respect tav(i) and

solving for A\, we arrive at the expression

e
w(i) = (©)a(0s) 16
T G OR Wal) “e
whereR(i) = E[SE(i)r(i)rH (i)Sp(i)] = E[#(i)77 (i)], a(dr) = SE (i)a(fy). The associated MV is
V= ! (17)

a0, R (Daoy)
Note that the filter expressions in (15) and (16) are not closed-form solutiong fpand.S (i) since (15) is a function
of w(i) and (16) depends aiy (7). Thus, it is necessary to iterate (15) and (16) with initial values to obtain a solution.
An analysis of the optimization problem in (13) is given in Appendix Il. Unlike existing approaches based on the
MSWF [16] and the AVF [18] methods, the proposed scheme provides an iterative exchange of information betwee
the reduced-rank filter and the projection matrix and leads to a much simpler adaptive implementation. The projectic
matrix reduces the dimension of the input data, whereas the reduced-rank filter yields a unity response in the directi
of the Sol. The key strategy lies in the joint optimization of the filters. The Famkust be set by the designer to ensure
appropriate performance or can be estimated via another algorithm. In the next section, we seek iterative solutions

adaptive algorithms for the design 8f, (i) andw(:), and automatic rank adaptation algorithms.

V. ADAPTIVE ALGORITHMS

In this section we present adaptive SG and RLS versions of the proposed scheme for efficient implementation. \
also consider the important issue of automatically determining the rank of the scheme via the proposal of an adap
tion technique. We then provide the computational complexity in arithmetic operations of the proposed reduced-rat

algorithms.



A. Stochastic Gradient Algorithm

In this part, we present a low-complexity SG adaptive reduced-rank algorithm for efficient implementation of the
proposed method. These algorithms were reported in [20], [21] and are reproduced here for convenience. By comput
the instantaneous gradient terms of (14) with respestj§¢;) andw* (i), we get

VLmy st (i) = z*(i)yr(D)w" (i) + 2\ a(0)w" (i) (18)
VLV ar = T (D) SH(0)x(i) +2X° ST (i)a(6y)
By introducing the positive step sizgs and ., using the gradient ruleSp (i + 1) = Sp(i) — usVLrmv 57,y and

w(i+ 1) = w(i) — pwVLyv w+(3), €nforcing the constraint and solving the resulting equations, we obtain
Sp(i+1) = Sp(i) — sz (i) [r(D)@" (i) — (a” (0)a(0k)) " alOh)@™ (i)a™ (O4)r(i)], (19)

w(i+1) = w(i) — p@* (1)[T — (a” (0k)al6r)) " al0r)a" (0x)]7 (), (20)

wherez(i) = w' (i) SH (i)r(i). The proposed scheme trades-off a full-rank filter against one projection nSa(ixy

and one reduced-rank adaptive filie(i) operating simultaneously and exchanging information.

B. Recursive Least Squares Algorithms

Here we derive an RLS adaptive reduced-rank algorithm for efficient implementation of the proposed method. T

this end, let us first consider the Lagrangian
Lis(Sp (i), w(i) = Y o' w" () SE(i)r ()] + 2R (@™ (1) ST ())a(0k) — 1)] (21)
=1

whereq is the forgetting factor chosen as a positive constant close to, but less.than
Fixing w(i), computing the gradient of (21) with respectSg (i), equating the gradient to a null vector and solving

for A\, we obtain B
Sp(i) = B Da)@! )Ry ()
@ (i) Ry (iyw(i)a™ (0) R~ (1)a(6)

w

(22)

where R(i) = Yi_, o' l(I)r*(l) is the input covariance matrix, an, (i) = w(i)w" (i) is the reduced-rank
weight matrix at time instant The computation of (22) includes the inversionf®fi) and R (i), which may increase
significantly the complexity and create numerical problems. However, the expression in (22) can be further simplifie
using the constrainw’ (i)S¥(i)a(6;) = 1. The details of the derivation of the proposed RLS algorithms and the
simplification are given in Appendix lll. The simplified expression (i) is given by

= a0, P(i)alfy) (@3)

where we defined the inverse covariance maktx) = R~!(i) for convenience of presentation. Employing the matrix
inversion lemma [3], we obtain
a tP(i — 1)r(i)

k(i) = 1+ arH () P(i — 1)r(i)

(24)
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P(i)=a PG —1) —a tk@)r ()P — 1) (25)

wherek(i) is the M x 1 Kalman gain vector. We sd?(0) = 61, to start the recursion of (25), whefés a positive
constant and s is anM x M identity matrix.
AssumingSp(i) is known and taking the gradient of (21) with respectui(y), equating the terms to a null vector

and solving for\, we obtain theD x 1 reduced-rank filter

w(i) = . (26)

where P(i) = R™'(i) and R(i) = Yi_, o''#(1)7# (1) is the reduced-rank input covariance matrix. In order to
estimateP (i), we use the matrix inversion lemma [3] as follows

_— a 1P(i—1)7(3)
M) = o () Bl - )7 ()

(27)

Pi)=a P —1)—a k@) ()P — 1) (28)

wherek(i) is the D x 1 reduced-rank gain vector anB(i) = R_l(z‘) is referred to as the reduced-rank inverse
covariance matrix. Hence, the covariance matrix inverfﬁﬁ(i) is replaced at each step by the recursive processes
(27) and (28) for reducing the complexity. The recursion of (28) is initialized by chodgiiy = 41 p, wheres is a
positive constant andip is aD x D identity matrix.

The proposed RLS algorithm trade-off a full-rank filter with coefficients against one projection mati$ (i),
given in (23)-(25) and on® x 1 reduced-rank adaptive filten (i), given in (26)-(28), operating simultaneously and

exchanging information.

C. Complexity of Proposed Algorithms

Here, we evaluate the computational complexity of the proposed and analyzed LCMV algorithms. The complexit
expressed in terms of additions and multiplications is depicted in Table I. We can verify that the proposed reduced-ra
SG algorithm has a complexity that grows linearly with\/, which is aboutD times higher than the full-rank SG
algorithm and significantly lower than the MSWF-SG [16]. IIf << M (as we will see later) then the additional
complexity can be acceptable provided the gains in performance justify them. In the case of the proposed reduced-r:
RLS algorithm the complexity is quadratic witli? and D?. This corresponds to a complexity slightly higher than the
one observed for the full-rank RLS algorithm, provideds significantly smaller thaid/, and comparable to the cost
of the MSWF-RLS [16] and the AVF [18].

In order to illustrate the main trends in what concerns the complexity of the proposed and analyzed algorithms, v
show in Fig. 3 the complexity in terms of additions and multiplications versus the number of input sadmplEse
curves indicate that the proposed reduced-rank RLS algorithm has a complexity lower than the MSWF-RLS algorith
[16] and the AVF [18], whereas it remains at the same level of the full-rank RLS algorithm. The proposed reduced-rar

SG algorithm has a complexity that is situated between the full-rank RLS and the full-rank SG algorithms.



D. Automatic Rank Selection

The performance of the algorithms described in the previous subsections depends on the fEnk motivates
the development of methods to automatically adji’sbn the basis of the cost function. Unlike prior methods for
rank selection which utilize MSWF-based algorithms [16] or AVF-based recursions [18], we focus on an approac
that jointly determinesd) based on the LS criterion computed by the filt8ts(i) andw (i), where the subscripb
denotes the rank used for the adaptation. In particular, we present a method for automatically selecting the ranks of

algorithms based on the exponentially weighagabsteriorileast-squares type cost function described by

C(Sp(i—1),wp(i—1)) = _ o wp(i—1)Sp(i — )r@1), (29)
=1

whereq is the forgetting factor anérp (i — 1) is the reduced-rank filter with rank. For each time interval we can
select the rankO,,, which minimizesC(Sp(i—1), wp(i—1)) and the exponential weighting facielis required as the
optimal rank varies as a function of the data record. The key quantities to be updated are the projectiofi matrix

the reduced-rank filtew (i), the associated reduced-rank steering veatdy,) and the inverse of the reduced-rank
covariance matrixP (i) (for the proposed RLS algorithm). To this end, we define the following extended projection

matrix S p (i) and the extended reduced-rank filter weight veaigy(i) as follows:

w1
w2
51,1 81,2 o Slmein tee Sl’DmaX .
Sp(i)=1| : S : : and wp(i) = (30)
mein
8]\/]71 SM72 et SMvain tte S]\/IaDmax
L WD max i

The extended projection matrip (i) and the extended reduced-rank filter weight veaigy(i) are updated along with
the associated quantiti@gd;, ) and P (i) (only for the RLS) for the maximum allowed ratk,,., and then the proposed
rank adaptation algorithm determines the rank that is best for each time insising the cost function in (29). The
proposed rank adaptation algorithm is then given by

Doyt = arg min C(Sp(i—1),wp(i —1)) (31)

Dinin<d<Drax
whered is an integer,D.,;, and Dy, are the minimum and maximum ranks allowed for the reduced-rank filter,
respectively. Note that a smaller rank may provide faster adaptation during the initial stages of the estimation procedt
and a greater rank usually yields a better steady-state performance. Our studies reveal that the range for which
rank D of the proposed algorithms have a positive impact on the performance of the algorithms is limited, being fron
Dpnin = 3 to Dyaye = 8 for the reduced-rank filter recursions. These values are rather insensitive to the system loa
(number of users), to the number of array elements and work very well for all scenarios and algorithms examined. T

additional complexity of the proposed rank adaptation algorithm is that it requires the update of all involved quantitie



with the maximum allowed rank),,,,, and the computation of the cost function in (29). This procedure can significantly
improve the convergence performance and can be relaxed (the rank can be made fixed) once the algorithm reaches st
state. Choosing an inadequate rank for adaptation may lead to performance degradation, which gradually increase
the adaptation rank deviates from the optimal rank. A mechanism for automatically adjisting@nd D, based

on a figure of merit and the processed data would be an important technique to be investigated. For example, t
mechanism could in principle adjusl,;, and Dy,.x in order to address the needs of the model and the performance
requirements. This remains a topic for future investigation.

One can also argue that the proposed rank adaptation may not be universally applied to signal processing proble
even though it has been proven highly effective to the problems we dealt with. Another possibility for rank adaptatio
is the use of the cross-validation (CV) method reported in [18]. This approach selects the lengths of the filters th
minimize a cost function that is estimated on the basis of data that have not been used in the process of building the filt
themselves. This approach based on the concept of "leave one out” can be used to determine the rank without requit
any prior knowledge or the setting of a range of values [18]. A drawback of this method is that it may significantly
increase the length of the filters, resulting in higher complexity. Other possible approaches for rank selection may re
on some prior knowledge about the environment and the system for inferring the required rank for operation. TF

development of cost-effective methods for rank selection remains an interesting area for investigation.

VI. ANALYSIS OF ALGORITHMS

In this section, we present the stability and the MSE convergence analyses of the proposed SG algorithms. Spec
cally, we consider the joint optimization approach and derive conditions of stability for the proposed SG algorithms. W
then assume that the algorithms will converge and carry out the MSE convergence analysis in order to semi-analytica
determine the MSE upon convergence. The RLS algorithms are expected to converge to the optimal LCMV filter ar
this has been verified in our studies. A discussion on the preservation of the MV performance, the existence of multig
solutions and an analysis of the optimization of the proposed scheme valid for both SG and RLS algorithms is includs

in the Appendices | and 1.

A. Stability Analysis

In order to establish conditions for the stability of the proposed SG algorithms, we define the error matrices$ at time
as
es, (i) = Sp(i) — Sp.opt
and
ew(i) = w(i) — Wopt,
wherew,p; andSp o are the optimal parameter estimators. Since we are dealing with a joint optimization proce-

dure, both filters have to be considered jointly. By substituting the expressiaens,¢f) ande(7) in (19) and (20),
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respectively, and rearranging the terms we obtain
esp(i+1) = {I — sl — (@™ (Br)a(0r) " a(0r)a™ (01)]r (i)™ (i) }esy, (i)
— ps[I = (@™ (61,)a(6x)) " a(6r)a™ (61)r (D)@ ())r™ () S p(i)ew(i) (32)
+ sl — (@ (0k)a(04) " a(9r)a’ (0x)]r(0)r™ () [Sp (i) (T — woprw™ (i) — Sp,opt]
ew(i+1) = {I — p,[I — (@” (0)a(6)) " a(0r)a™ (0;)]7 ()7 (i)} ew(i)
— ol — (@ (Or)a(br)) " a(@r)a’ (0))7 (i)r" (i)es), (i) (33)

+ pulI = (@ (0r)a(0r)) " a(0r)a" (0x)) ST ()7 (D)7 (D) (Sp (i) (I — Wopt) — Sp.opt)

Taking expectations and simplifying the terms, we obtain

E[eSD(i + 1” -p E[eSD (Z)] LT (34)
Elew(i+1)] Elew(i)]
where
p_ | 1Tl = (@"B)a0) " al6)a” )] (i)r ()} —uslT — albr)a (6)]r (iY@ (i) (i) S p i)
—poo[T = (@ (0k)a(0k)) " a(0r)a™ (0,))7 (i)rH (i) {T = polT — (@ (6x)a(0k))~ a(0r)a™ (0,))7 (i) (i) }

T:

il = (a” (01)a(0x)) " a(0k)a™ (0)]r ()" (D[S p (i) (1 — Dopu @™ (1)) — S ops] ]
nalI = (@ (60)a(0))~ a(6,)a (6,))S P (0)]F ()7 (6) (S p () (L — Wopt) = Spopt) |

The previous equations imply that the stability of the algorithms depends on the spectral ratiusasfconvergence,

the step sizes should be chosen such the eigenvaluBS &t are less than one. Unlike the stability analysis of most
adaptive algorithms [3], in the proposed approach the terms are more involved and depend on each other as evider

by the equations il andT'.

B. MSE Convergence Analysis

Let us consider in this part an analysis of the MSE in steady state. This follows the general steps of the MS
convergence analysis of [3] even though novel elements will be introduced in the proposed framework. These no\
elements in the analysis are the joint optimization of the two adaptive fiis¢isand.S (i) of the proposed scheme
and a strategy to incorporate the effect of the step size of the recursions in (19) and (20).

Let us define the MSE at timet 1 using the relations
ew(i + 1) = 'w(z + 1) — Wopt

and

where the filterw (i) = Sp(i)w(i) with M coefficients is theD-rank approximation of a full-rank filter obtained with

an inverse mapping performed I8 (7).
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The MSE of the proposed scheme can be expressed by:
MSE(i) = E[|d(i) — w" (i)r(i)|?]
= €min + (1) — Emin — Bleg()]a(9r) — a’ () Elew(i)] (35)
= emin + &ex (i) — Eleg, (D)]a(0k) — a™ (04) Elew(i)]
whered(i) corresponds to the desired signgli) = E[w" (i)r(i)r" (i)w(i)], emin = E[|d(i) — wlir(i)[*] is the
MSE with
Wopt = Emin B a(0)), (36)

whereé, i, = 1/(a” (0x)R1a(6y)) is the minimum variance, an@,. (i) = £(i) — &min is the excess MSE due to the

adaptation process at the time instarincelim; .., Flew(i)] = 0 we have

lim MSE(i) = €pin + lim Eaa(i) (37)

where the,, (co) termin (37) is the steady-state excess MSE resulting from the adaptation process. The main differenc
here from prior work lies in the fact that this refers to the excess MSE produce®braak approximation filtetw(i).

In order to analyze the trajectory §fi), let us rewrite it as

= Elw (i)SE(i)r(i)rf ()8 p(i)w(i)] (38)
= tr E[Rw(i)R]
whereRy (i) = E[w(i)w" (i)] = wopwiy, + Elew(i)wly, + wopElef(i)] + R, (i) [5].

To proceed with the analysis, we must define the quantities ® A®!’, where the columns 6P are the eigenvec-
tors of the symmetric and positive semi-definite maiandA is the diagonal matrix of the corresponding eigenvalues,
R, (i) = Elew(i)ell(i)], the rotated tap error vecter,(i) = ®7e,(i), the rotated signal vectoigi) = ® (i),
a(ty) = ®a(hy) andRs,, (i) = Eléw(i)el(i)] = ®7 R, (i)®. Rewriting (38) in terms of the above transformed
guantities we have:

£(i) = tr E[A®" R, ®]
= Emin + tr[Elew()]a’ (01) + a(0r) Eley,(i)] (39)
+ ARg,, ()]
Sincelim; .o E[éq(7)] = 0, thenlim;_,o £(7) = &min + tr[ARs, |. Thus, itis evident that to assess the evolution of
&(q) itis sufficient to studyRz,, (7).
Usinges,, (1) andeg (i) and combining them to compuig, (i), we get
ew(i) = w(i) — Wopt
= Sp(i)w(i) — Sp, optWopt (40)

=ésp, (z)eﬁ,(z) + SD70ptela,(’L') + €Sp (i)@opt
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Substituting the expressions feg, (i + 1) andeg (i + 1) in (32) and (33), respectively, to compuig (i + 1), we get
ew(i + 1) = ew(i) - ij*(i)SD(i)’Fp(i) - Msi'*(i)s'rp (Z) U (Z)

+ st (77 (1))* S, ()7 (i) + S oprew(i) + esp, (1) Wopr

(41)

where
z(i) = ' (1) S (i)r (i) = w' (i)r (i)
Sr, (i) = (I = (a"(0r)a(0r) " a(Ox)a" (0r))r(Hw" (i)
(1) = (I - (Sp(i)a™ (0x) ST (D)a(0r)) "' Sp(i)a(br)a™ (6x) ST (1) Sp(i)r(i)

We can further rewrite the expressions above in order to obtain a more compact and convenient representation as

ew(i+1) = (I — A)ew(i) + BC + s (T*(i))?Sr, (1)7p(i) + es,, (1) Wopt (42)
where
A = 1, Sp(@)Pp ()P (3) + 1S, (D)@ ()" (i) — Sp,opt
B = — 1, Sp(i)7p ()1 (i) — ps Sy, ()w(i)r™ (i)
C =es, (1)Wopt + Sp.optew(i) + esy, (1) Wopt-
Now, we need to computR,,, (i + 1) = Eleq(i + 1)ell (i + 1)] by using the result in (42), which yields
Re, (i+1)= (I — A)Re, (i)(I — A)T + (I — A)e,(i)C" B
+ psp ()2 (I — A)ew(i) (7 (1)Sq, (1))
+ (I — A)ew(i)ywl S .. + BCel(i)(I — A)Y
+ BCC"B" + o (2(i))* BCT (i) S1 (i)
+ BCwgie§, (i) + s (T(0))* S, (0)rp (i) ey () (T — A
+ st (T5(1))* S, (1)7, (1) C T AT
+ (psps) 21 Z(0) | S, (0) P (0) 7)) (8) S, (3)
+ psp (7(0)) *e s, (1) Wopt Ty (1) S, (1)

— esp (DWoprey () (I — A + es,, (i) wou CT B

(43)

+ esp, (1) Wopr e, (i)
SinceE[eq(i)] = 0 andEles,, (i)] = 0, we can simplify the previous expression and obtain
Re,(i+1)=(I - A)Re, (i)(I - A)"
+ BCCY B + 151 (2(i)) > BCF][! (i) S} (i)
+ thspins (T (1)) S, (1) (1) C T AT (44)
+ (pstin)*2(0)| ' S, (07 (D)7 (1) S, (i)

"N = _H H /-
+ esp, (1) WoptWypies, (1)
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Solving for R.,, , the MSE can be computed by

MSE(i 4+ 1) = €min + tr[ARg,, (i)]
(45)
= €min + tr[A® R, (1) @]
It should be remarked that the expressionfity;, () is quite involved and requires a semi-analytical approach with the
aid of computer simulations for its computation. This is because the terms resulting from the joint adaptation crea
numerous extra terms in the expressionYy, (i), which are very difficult to isolate. We found that using computer
simulations to pre-compute the termsR{,, (i) as a function of the step sizes was more practical and resulted in good
match between the semi-analytical and simulated curves. In the following section, we will demonstrate that it is able

predict the performance of the proposed SG algorithm.

VIl. SIMULATIONS

In this section we evaluate the performance of the proposed and the analyzed beamforming algorithms via compu
simulations. We also verify the validity of the MSE convergence analysis of the previous section. A smart antenn
system with a ULA containing/ sensor elements is considered for assessing the beamforming algorithms. In particulat
the performance of the proposed scheme and SG and RLS algorithms is compared with existing techniques, nham
the full-rank LCMV-SG [4] and LCMV-RLS [8], and the reduced-rank algorithms w8ith(:) designed according to
the MSWF [16], the AVF [18] and the optimal linear beamformer that assumes the knowledge of the covariance matri
[2]. In particular, the algorithms are compared in terms of the mean-squared error (MSE) and the signal-to-interferenc
plus-noise ratio (SINR), which is defined for the reduced-rank schemes as
w" (i) SH (1) Ry Sp(i)w(i)

SINRU) = ()88 () Ry S p (1) (i)

(46)

where R, is the autocorrelation matrix of the desired signal @dis the cross-correlation matrix of the interference
and noise in the environment. Note that for the full-rank schemeSIiK& (i) assumes? (i) = I, wherel ), is an
identity matrix with dimensionality//. For each scenari@)0 runs are used to obtain the curves. In all simulations, the
desired signal power isg = 1, and the signal-to-noise ratio (SNR) is definedbdiR = Z—‘zi The filters are initialized
asw(0) = [10 ... 0] andSp(0) = [I5 OgX(M_D)], whereOp,y—p isaD x (M — D) matrix with zeros in all

experiments.

A. MSE Analytical Performance

In this part of the section, we verify that the results in (43) and (45) of the section on MSE convergence analysis
the proposed reduced-rank SG algorithms can provide a means of estimating the MSE upon convergence. The ste
state MSE between the desired and the estimated symbol obtained through simulation is compared with the steady s
MSE computed via the expressions derived in Section VI. In order to illustrate the usefulness of our analysis we ha
carried out some experiments. To semi-analytically compute the MSE for the SG recursion, we have used (36) a

assumed the knowledge of the data covariance mRiri¥Ve consideb interferers { = 6 users in total - the Sol and



14

the interferers) at-60°, —30°, 0°, 45°, 60° with powers following a log-normal distribution with associated standard
deviation3 dB around the Sol’s power level, which impinges on the arraipat

We compare the results obtained via simulations with those obtained by the semi-analytical approach presentec
Section VI. In particular, we consider two sets of parameters in order to check the validity of our approach. One of tt
sets has larger step sizes (= 0.0025 andu,, = 0.01), whereas the other set employs smaller step sizgs< 0.001
and u,, = 0.001) for the recursions. The results shown in Fig. 4 indicate that the curves obtained with the semi:
analytical approach agrees with those obtained via simulations for both sets of parameters, verifying the validity of o
analysis. Note that the algorithms with smaller step sizes converge slower than the algorithms equipped with larg
step sizes. However, the proposed algorithms with smaller step sizes converge to the same level of MSE as the opti
LCMYV, whereas the proposed algorithms with larger step sizes exhibit a higher level of misadjustment. In what follows

we will consider the convergence rate of the proposed reduced-rank algorithms in comparison with existing algorithm

B. SINR Performance

In the first two experiments, we consideinterferers at-60°, —45°, —30°, —159, 0, 45°, 60° with powers following
a log-normal distribution with associated standard devialioli8 around the Sol’s power level. The Sol impinges on
the array aB0°. The parameters of the algorithms are optimized.

We first evaluate the SINR performance of the analyzed algorithms against th® rasikg optimized parameters
(s, 1w and forgetting factors) for all schemes and/ = 250 snapshots. The results in Fig. 5 indicate that the best
rank for the proposed schemelis= 4 (which will be used in the second scenario) and it is very close to the optimal
full-rank LCMV filter. Our studies with systems with different sizes show tbas relatively invariant to the system
size, which brings considerable computational savings. In practice, thelrara be adapted in order to obtain fast
convergence and ensure good steady-state performance and tracking after convergence.

We show another scenario in Fig. 6 where the adaptive LCMV filters are set to converge to the same level of SIN}
The parameters used to obtain these curves are also shown. The SG version of the MSWF is known to have problem
these situations since it does not tridiagonalize its covariance matrix [16], being unable to approach the optimal LCM
The curves show an excellent performance for the proposed scheme which converges much faster than the full-rank-
algorithm, and is also better than the more complex MSWF-RLS and AVF schemes.

In the next experiment, we consider the design of the proposed adaptive reduced-rank LCMV algorithms equipp:
with the automatic rank selection method described in Section V.D. We consid&rferers at-60°, —30°, 0°, 45°,
60° with equal powers to the Sol, which impinges on the array54t Specifically, we evaluate the proposed rank
selection algorithms against the use of fixed ranks, naniehy 3 and D = 8 for both SG and RLS algorithms. The
results show that the proposed automatic rank selection method is capable of ensuring an excellent trade-off betw:
convergence speed and steady-state performance, as illustrated in Fig 7. In particular, the proposed algorithm
achieve a significantly faster convergence performance than the scheme with fixdd rarik whereas it attains the

same steady state performance.
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In the last experiment, we consider a non-stationary scenario where the systénuders with equal power and
the environment experiences a sudden change atitin800. Theb5 interferers impinge on the ULA at60°, —30°,
0°, 45°, 60° with equal powers to the Sol, which impinges on the array5dt At time instanti = 800 we have3
interferers with5 dB above the Sol’s power level entering the system with DeA§°, —15° and30°, whereas one
interferer with DoA45° and a power level equal to the Sol exits the system. The proposed and analyzed adaptiv
beamforming algorithms are equipped with automatic rank adaptation techniques and have to adjust their paramel
in order to suppress the interferers. We optimize the step sizes and the forgetting factors of all the algorithms in orc
to ensure that they converge as fast as they can to the same value of SINR. The results of this experiment are depi
in Fig. 8. The curves show that the proposed reduced-rank algorithms have a superior performance to the existi

algorithms.

VIIl. CONCLUSIONS

We proposed reduced-rank LCMV beamforming algorithms based on joint iterative optimization of filters. The
proposed reduced-rank scheme is based on a constrained joint iterative optimization of filters according to the minimt
variance criterion. We derived LCMV expressions for the design of the projection matrix and the reduced-rank filter an
developed SG and RLS adaptive algorithms for their efficient implementation along with an automatic rank selectic
technique. An analysis of the stability and the convergence properties of the proposed algorithms was presented :
semi-analytical expressions were derived for predicting the MSE performance. The numerical results for a digit
beamforming application with a ULA showed that the proposed scheme and algorithms outperform in convergence a
tracking the existing full-rank and reduced-rank algorithms at comparable complexity. The proposed algorithms can |

extended to other array geometries and applications .
APPENDIX

|. PRESERVATION OFMV AND EXISTENCE OFMULTIPLE SOLUTIONS

In this Appendix we discuss the conditions for which the MV obtained for the full-rank filter is preserved and the
existence of multiple solutions in the proposed optimization method. Givéd anD projection matrixSp (i), where
D < M, theMV is achieved if and only itv which minimizes (4) belongs to tHeange{Sp(i)}, i.e. w(i) lies in the

subspace generated By, (7). In this case, we have
MV (w(i)) = (a® (0) R a(6y)) " (47)

For a generalp(i), we have
MV (@(i)) > (a” (6;) R a(6;)) . (48)

From the above relations, we can conclude that there exists multiple solutions to the proposed optimization problem.
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Il. ANALYSIS OF THE OPTIMIZATION OF THE PROPOSEDSCHEME

In this appendix, we carry out an analysis of the proposed reduced-rank method and its optimization. Our approa
is based on expressing the output of the proposed scheme and the proposed constraint in a convenient form that ren
itself to analysis. Let us rewrite the proposed constrained optimization method in (13) using the method of Lagrang

multipliers and express it by the Lagrangian
£ = El|lw"(i)SE(0)r5)*] + 20w (1) ST (1)a(6)) — 1)), (49)

In order to proceed, let us expresg) in an alternative and more convenient form as

D
(i) = @™ ()SE()r(i) = @ (i) ) s (i)r(i)aa

: d=1
(e 0 0 o 1 [ i) ]
e (.) r(.z') 9 (.) sgl(i) (50)
0 0 0 )| | sp0)
=o' ()R (i)s, (1)

whereR (i) isaDM x D block diagonal matrix with the input data vectefi), g, is aD x 1 vector with al in the
d-th position ands;;(7) isaDM x 1 vector with the columns af (i) stacked on top of each other.
In order to analyze the proposed joint optimization procedure, we can rearrange the tefmsimd define a single

D(M + 1) x 1 parameter vectof (i) = [w’ (i) sI(i)]T. We can therefore further expresg) as

v

#(i) = £y | DX e ]f(z’)
R(i) Opmxpm (51)
= ()G (i) f (i)

whereG(i) isaD(M + 1) x D(M + 1) matrix which containd®(i). Now let us perform a similar linear algebra

transformation with the proposed constrain® (i) S2 (i)a(6)) = 1 and express it as
w' ()SP(D)a(0r) = £ () A(0k) £ (i) (52)

where theD(M + 1) x D(M + 1) matrix A(6y) is structured as

A(Oy) =

Opxp Opxpm ]

Raw6,) ObpmxDM
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and theDM x D block diagonal matrisit, g, (i) with the steering vectas (6 constructed as

(a(6) 0 0 ... 0 |
0 a(&k) 0o ... 0
Rao) = : : Do, : (53)
| 0 . 0 0 a(@k) ]

At this point, we can alternatively express the Lagrangian in (57) as

L= B[ (OGO FOP] + 2RAF (1) A0 £ (i) — 1)]. (54)

We can examine the convexity of the above Lagrangian by computing the He&E)aiitli respect tof (i) using the

expression [22]
d 9(L)

~ aff()of ()

and testing if the terms are positive semi-definite. SpecificBllys positive semi-definite it Hv > 0 for all nonzero

(55)

v € CPM+1)xDM+1) 193] Therefore, the optimization problem is convex if the Hesdiiis positive semi-definite.

Evaluating the partial differentiation in the expression given in (55) yields

H = E[f"()G) f ()G (i) + G(i) () £ (1)G(3)
+ GO (GO F(0) + £ (1)GOGE) F (i) + 22 A(0r)]

(56)

By examiningH, we verify that the second and fourth terms are positive semi-definite, whereas the first and the thir
terms are indefinite. The fifth term depends on the constraint, which is typically positive in the proposed schem
as verified in our studies, yielding a positive semi-definite matrix. Therefore, the optimization problem can not b
classified as convex. It is however important to remark that our studies indicate that there are no local minima and the
exists multiple solutions (which are possibly identical).

In order to support this claim, we have checked the impact on the proposed algorithms of different initializations
This study confirmed that the algorithms are not subject to performance degradation due to the initialization althoug
we have to bear in mind that the initializatid®,(0) = 0x/xp annihilates the signal and must be avoided. We
have also studied a particular case of the proposed scheme Mhenl and D = 1, which yields the Lagrangian
L(w,Sp) = E[|wSpr|*] + 2R[A(wSpa(fy) — 1)]. ChoosingS, (the "scalar” projection) fixed wittD equal tol, it
is evident that the resulting functia®(w, Sp = 1,r) = [w* r|* + 2R [A(wa(f)) — 1)] is a convex one. In contrast to
that, for a time-varying projectiofp the plots of the function indicate that the function is no longer convex but it also
does not exhibit local minima. This problem can be generalized to the vector case, however, we can no longer ver

the existence of local minima due to the multi-dimensional surface. This remains as an interesting open problem.
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IIl. DERIVATION AND SIMPLIFICATION OF Sp (i)

In this appendix, we detail the derivation of the filt8 (i) and the simplification shown in (23) for reducing the

computational complexity. Let us consider the derivatio®ef(:) obtained from the minimization of the Lagrangian

L(Sp(i),w(i)) =)o@ (§)SE(@)r(1) + 2R\ (@ ()P (i)a(br) — 1), (57)
=1

Taking the gradient terms of the above expression with respeg} o), we get

VL(Sp(i), ; Z o lr()rH (1) Sp(D)w(i)w™ (i) + 2 a (0w (4) 58)
58
= R(i)Sp(i) Ry (i) + 2)a (0w (7).
Making the above gradient terms equal to zero yields
Sp(i) = R7'(i)(-2\)a(0r)w" (i) Ry (59)

Using the proposed constraiat’’ (i)S% (i)a(6)) = 1 and substituting the above filter expression, we obtain the La-
1_

)S
grange multiplien\ = —1/2(wf (i)R, w(i)a™ (6x) R~ (i)a(6;))~'. Substituting\ into (59), we get
R~ (i)a(0)w™ (i) Ry (i)
w! (i) R, ())w(i)ak (6,) R~ (i)a(6))

The above expression for the matrix filt&f, (¢) can be simplified by observing the quantities involved and making use

Sp(i) = (60)

of the proposed constraime (i) S (i)a(6)) = 1. Let us consider the termv” (i) R, w( ) in the denominator of

(60) and multiply it by the proposed constraint as follows:

W W (61)
= w(1)SH(i)a(b) =1
Now let us consider the termH(ek)wH(i)Rgl(i) and rewrite it as follows:
a(@)w" ()R’ (i) = a@r)w” ()R, (Dw" () ST (i)a(6y)
= a(0r)a” (0:) S p()w(D)w" (i) Ry (i) (62)

= a(6)a" (6;)Sn(i) = a(by)a" (6y).
Using the relations obtained in (61) and (62) into the expression in (60), we can get a simpler expression for tt

projection matrix as given by

a(0x)a" (05)
Sp(i) = B 0aleOR @) _ R()ab)w ()R ()
w (i) Ry (w())a (O)R™ (Daly) @ (HRy (hw(i)a(O)R(Dalr) (g3

_ R (i)a(b)a" (6r)
aH(Hk)R_l(z)a(Gk)

This completes the derivation and the simplification.
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Computational complexity of LCMV algorithms.
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Algorithm Additions Multiplications
Full-rank-SG [4] 3M +1 3M +2
Full-rank-RLS [8] 3M2 —2M +3 6M2 +2M + 2
Proposed-SG[21] 3DM +2M 3DM + M
+2D — 2 +5D + 2
Proposed-RLS 3M? —2M + 3 TM? +2M
+3D? —8D +3 +7D% 4+ 9D
MSWF-SG [16] DM? — M? DM? — M?
+3D — 2 +2DM +4D +1
MSWF-RLS [16] DM? 4+ M? + 6D? DM? + M?
—8D + 2 +2DM 43D + 2
AVF [18] D((M)?+3(M—1)2)—1 D(4M?+4M +1)
+D(5(M — 1) +1) 4+ 2M +4M + 2

M=32, K=6 users, SNR=15 dB
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Fig. 4. MSE analytical versus simulated performance for the proposed reduced-rank SG algorithm.
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M=32, K=8 users, SNR=15 dB, data record: 250 snapshots
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Fig. 5. SINR performance of LCMV algorithms against rafik) (vith M = 32, SNR = 15 dB, N = 250 shapshots.
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Fig. 6. SINR performance of LCMV algorithms against snapshots witk- 32, SNR = 15 dB.
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M=24, K=6 users, SNR=12 dB M=24, K=6 users, SNR=12 dB
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Fig. 7. SINR performance of LCMV (a) SG and (b) RLS algorithms against snapshotsWvith 24, SNR = 12 dB with

automatic rank selection.
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Fig. 8. SINR performance of LCMV algorithms against snapshots witk- 24, SN R = 12 dB in a non-stationary scenario.



