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Introduction

– Reduced-rank detection and estimation techniques are funda-

mental tools in signal processing and communications.

– Motivation of reduced-rank signal processing :

– robustness against noise and model uncertainties,

– computational efficiency,

– decompositions of signals for design and analysis,

– inverse problems,

– feature extraction,

– dimensionality reduction,

– problems with short data record, faster training .
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Introduction

– Main goals of reduced-rank methods :

– simplicity, ease of deployment,

– to provide minimal reconstruction error losses,

– to allow simple mapping and inverse mapping functions,

– to improve convergence and tracking performance for dyna-

mic signals,

– to reduce the need for storage of coefficients,

– to provide amenable and stable implementation,
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Introduction

– Communications :

– Interference mitigation, synchronization, fading mitigation,

channel estimation.

– Estimation with MMSE or LS criteria (Haykin [1]) :

w = R−1p,

where

w is a parameter vector with M coefficients,

r(i) is the M × 1 input data vector,

R = E[r(i)rH(i)] is the M ×M covariance matrix,

p = E[d∗(i)r(i)] and d(i) is the desired signal.

– Detection approaches using MMSE or LS estimates.

– Problems : dimensionality of system, matrix inversions.

– How to improve performance ?

– How do we deal with the computational complexity ?

6



Introduction

– Array signal processing :

– Beamforming, direction finding, information combining with

sensors, radar and sonar (van Trees [2]).

– Parameter estimation with the MVDR criterion :

w = ξ−1R−1a(Θk),

where

w is a parameter vector with M coefficients,

r(i) is the M × 1 input data vector,

R = E[r(i)rH(i)] is the M ×M covariance matrix,

a(Θk) is the M × 1 array response vector and

ξ = a(Θk)
HR−1a(Θk).

– Use of MVDR for beamforming and direction finding.

– Any idea ?

– Undermodelling ? → designer has to select the key features of

r(i) → reduce-rank signal processing
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System Model and Rank Reduction

– Consider the following linear model

r(i) = H(i)s(i) + n(i),

where s(i) is a M × 1 discrete-time signal organized in data

vectors, r(i) is the M × 1 input data, H(i) is a M ×M matrix

and n(i) is M × 1 noise vector.

– Dimensionality reduction → an M-dimensional space is mapped

into a D-dimensional subspace.
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System Model and Rank Reduction

– A general reduced-rank version of r(i) can be obtained using

a transformation matrix SD (assumed fixed here) with dimen-

sions M×D, where D is the rank. Please see Haykin [1], Scharf-

91 [3], Scharf and Tufts-87 [4], Scharf and van Veen-87[5].

– In other words, the mapping is carried out by the transforma-

tion matrix SD.

– The resulting reduced-rank observed data is given by

r̄(i) = SHDr(i)

where r̄(i) is a D × 1 vector.

– Challenge : How to efficiently (or optimally) design SD ?
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Historical Overview of Reduced-Rank Methods

– Origins of reduced-rank methods as a structured field :

• 1987 - Louis Scharf from University of Colorado defined the

problem as “a transformation in which a data vector can

be represented by a reduced number of effective features

and yet retain most of the intrinsic information of the input

data” Scharf and Tufts-87 [4], Scharf and van Veen-87[5].

• 1987- Scharf - Investigation and establishment of the bias

versus noise variance trade-off.
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Historical Overview of Reduced-Rank Methods

– Early Methods :

• Hotelling and Eckhart (see Scharf [3]) in the 1930’s →
first methods using eigen-decompositions or principal com-

ponents.

• Early 1990’s - applications of eigen-decomposition tech-

niques for reduced-rank estimation in communications. See

Haimovich and Bar-Ness [7], Wang and Poor [8], and Hua

et al. [9].

• 1994 → Cai and Wang [6], Bell Labs : joint domain loca-

lised adaptive processing → radar-based scheme, medium

complexity.

– Main problems of eigen-decomposition techniques :

• Require computationally expensive SVD or EVD, or algo-

rithms to obtain the eigenvalues and eigenvectors.

• Performance degradation with the increase in the signal sub-

space.
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Historical Overview of Reduced-Rank Methods

– 1997 - Goldstein and Reed [10], University of Southern Cali-

fornia : cross-spectral approach.

• Appropriate selection of eigenvalues values which addresses

the performance degradation.

• Remaining problem : EVD or SVD requirement.

– 1998/9 - Partial despreading (PD) of Singh and Milstein [19],

University of California at San Diego :

• simple but suboptimal and restricted to CDMA multiuser

detection.
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Historical Overview of Reduced-Rank Methods

– Krylov subspace methods : conjugate gradient techniques de-

veloped in the 1950s.

– 1997 → Pados and Batallama [20]-[24], University of New

York, Buffalo : auxiliary vector filtering (AVF) algorithm :

• do not require SVD .

• very fast convergence but complexity is still a problem.

– 1997 - 2004 - multistage Wiener filter (MSWF) of Goldstein,

Reed and Scharf and its variants [12]-[16] :

• State-of-the-art in the field and benchmark.

• Very fast convergence, rank not scaling with system size.

• equivalence between the AVF (with orthogonal AVs) and the

MSWF was established by Chen, Mitra and Schniter [17].

• Complexity is still a problem as well as the existence of nu-

merical instability for implementation.
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Historical Overview of Reduced-Rank Methods

– 2004 → de Lamare and Sampaio-Neto ( [27])- Interpolated

FIR filters with time-varying interpolators : low complexity,

good performance but rank limited.

– 2005 → de Lamare and Sampaio-Neto - Joint interpolation,

decimation and filtering (JIDF) scheme [33]-[35] - Best known

scheme, flexible, smallest complexity in the field, patented.

– 2007 → de Lamare, Haardt and Sampaio-Neto - Robust MSWF

[17] - Development of a robust version of the MSWF using the

constrained constant modulus (CCM) design criterion.

– 2007 → de Lamare and Sampaio-Neto - Joint iterative optimi-

sation of filters - (JIO) - Development of a generic reduced-

rank scheme that is very good for mapping and inverse map-

ping [28].

– 2008 → de Lamare, Sampaio-Neto and Haardt [37] - Robust

JIDF-type approach called BARC - Development of a robust

version of the JIDF using the CCM design criterion.
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Linear MMSE Reduced-Rank Estimator Design

– The linear MMSE estimator is the vector w =
[
w1 w2 . . . wM

]T
,

which is designed to minimize the MSE cost function

J = E
[
|d(i)−wHr(i)|2

]
where d(i) is the desired signal.

– The solution is w = R−1p, where E[d∗(i)r(i)] and R = E[r(i)rH(i)].

– The estimator w can be also be computed via adaptive algo-

rithms, however ...

– The convergence speed and tracking of these algorithms de-

pends on M and the eigenvalue spread. Thus, large M implies

slow convergence.

– Reduced-rank schemes circumvent these limitations via a re-

duction in the number of coefficients and the extraction of the

key features of the data.
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Linear MMSE Reduced-Rank Estimator Design

– Consider a reduced-rank input vector r̄(i) = SHDr(i) as the input

to an estimator represented by the D vector w̄ =
[
w̄1 w̄2 . . . w̄D

]T
for time interval i.

– The estimator output is

x(i) = w̄HSHDr(i)

– The MMSE design problem can be stated as

minimize J (w̄) = E
[
|d(i)− x(i)|2

]
= E

[
|d(i)− w̄HSHDr(i)|2

]
where d(i) is the desired signal.
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Linear MMSE Reduced-Rank Estimator Design

– The MMSE design with the reduced-rank parameters yields

w̄ = R̄−1p̄,

where

R̄ = E [̄r(i)̄rH(i)] = SHDRSD is the reduced-rank covariance

matrix,

R = E[r(i)rH(i)] is the full-rank covariance matrix,

p̄ = E[d∗(i)r̄(i)] = SHDp and p = E[d∗(i)r(i)].

– The associated MMSE for a rank D estimator is expressed by

MMSE = σ2d − p̄HR̄−1p̄ = σ2d − pHSD(SHDRSD)−1SHDp

where σ2d is the variance of d(i).
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MVDR Reduced-Rank Beamformer Design

– Consider a uniform linear array (ULA) of M elements.

– There are K narrowband sources impinging on the array (K < M)

with directions of arrival (DOA) θk for k = 1,2, . . . ,K.

Output
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– The received signal is given by :

r(i) =
K∑
k=1

a(θk)sk(i) + n(i)

– Reduced-rank array processing : The output of the array is

x(i) = w̄H r̄(i) = w̄H(i)SHDr(i)
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MVDR Reduced-Rank Beamformer Design

– In order to design the reduced-rank beamformer w̄(i) we consi-

der the following optimization problem

minimize E
[
|w̄HSHDr(i)|2

]
= w̄HSHDRSDw̄

subject to w̄HSHDa(θk) = 1

– Approach to obtain a solution : method of Lagrange multipliers

L(w̄, λ) = E
[
|w̄HSHDr(i)|2

]
+ λ(w̄HSHDa(θk)− 1)

– The solution to this design problem is

w̄ =
(SHDRSD)−1SHDa(θk)

aH(θk)SD(i)(SHDRSD)−1SHDa(θk)
=

R̄−1ā(θk)

āH(θk)R̄
−1ā(θk)

where the reduced-rank covariance matrix is R̄ = E[r̄(i)r̄H(i)] =

SHDRSD and the reduced-rank steering vector is ā(θk) = SHDa(θk).
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MVDR Reduced-Rank Beamformer Design

– The associated minimum variance (MV) for an MVDR beam-

former with rank D is

MV =
1

āH(θk)R̄
−1ā(θk)

=
1

a(θk)HSD(SHDRSD)−1SHDa(θk)

– The above expression can be used for direction finding by re-

placing the angles θk with a time-varying parameter (ω) in

order to scan the possible angles.

– It can also be employed for general applications of spectral

estimation including spectral sensing.
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Eigen-Decomposition Techniques

– Why are eigen-decomposition techniques used ?
– For MMSE parameter estimation and a rank D estimator we

have

MMSE = σ2d − pHSD(SHDRSD)−1SHDp

– Taking the gradient of MMSE with respect to SD, we get

SD,opt = [v1 . . .vD],

where vd for d = 1, . . . , D are the eigenvectors of R.

– For MV parameter estimation and a rank D estimator we have

MV =
1

a(θk)HSD(SHDRSD)−1SHDa(θk)

– Taking the gradient of MV with respect to SD, we get

SD,opt = [v1 . . . vD]
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Eigen-Decomposition Techniques

– Rank reduction is accomplished by eigen- decomposition on

the input data covariance matrix

R = V ΛV H ,

where

V = [v1 . . .vM ] and

Λ = diag(λ1, . . . , λM).

– Early techniques : selection of eigenvectors vj (j = 1, . . . ,M)

corresponding to the largest eigenvalues λj
→ Transformation matrix is

SD(i) = [v1 . . . vD]
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Eigen-Decomposition Techniques

– Cross-spectral approach of Goldstein and Reed : choose eigen-

vectors that minimise the design criterion

→ Transformation matrix is

SD(i) = [vi . . . vt]

– Problems : Complexity O(M3), optimality implies knowledge

of R but this has to be estimated.

– Complexity reduction : adaptive subspace tracking algorithms

(popular in the end of the 90s) but still complex and susceptible

to tracking problems.

– Can we skip or circumvent an eigen-decomposition ?
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Krylov Subspace Techniques

– Krylov subspace techniques have a rich history in solving sys-

tems of equations and in numerical linear algebra.

– In array signal processing and communications, we are usually

interested in solving symmetric and positive definite systems.

– In this context, one of the most important Krylov subspace

methods is the conjugate gradient technique invented by Hes-

tenes and Stiefel in 1950s.

– Main idea : to solve Rw = p in the Krylov subspace that spans

after k iterations span{p,Rp, . . . ,Rk−1p}.

– Complexity : quadratic in M .
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Conjugate Gradient Techniques

– Main idea : to solve Rw = p in k iterations.
Initialize all parameter vectors go = p−Rw0, w0, v0
For k = 1, . . . ,K do :
– Calculate step size :

αk =
gHk−1gk−1

pHk Rpk

– Compute parameters :

wk = wk−1 + αvk

– Calculate step size :

βk =
vHk−1Rgk−1

vHk−1Rvk−1

– Compute direction vectors :

vk = gk + βkvk−1

– Calculate negative gradient :

gk = gk−1 − αkRvk
25



Multi-stage Wiener Filter
– Rank reduction is accomplished by a successive refinement

procedure that generates a set of basis vectors, i.e. the signal

subspace, known in numerical analysis as the Krylov subspace.

– Design : use of nested filters cj (j = 1, . . . ,M) and blocking

matrices Bj for the decomposition → Projection matrix is

SD(i) = [p,Rp, ...,RD−1p]

– Advantages : rank D does not scale with system size, very fast

convergence.

– Problems : complexity slightly inferior to RLS algorithms, not

robust to signature mismatches in blind operation.
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Robust Multi-stage Wiener Filter

– Rank reduction is accomplished by a similar successive refi-

nement procedure to original MSWF. However, the design is

based on the CCM criterion (de Lamare, Haardt and Sampaio-

Neto, IEEE TSP, 2008) ).

– Transformation matrix :

SD(i) =
[
q(i), R(i)q(i), . . . , R(D−1)(i)q(i)

]
– The reduced-rank CCM parameter vector with rank D is

w̄(i+1) =
(
SHD(i)R(i)SD(i)

)−1
SHD(i)q(i),

where

q(i) = d(i)− (pH(i)R−1(i)p(i))−1(pH(i)R−1(i)d(i)− ν )p(i),

d(i) = E
[
x∗(i)SHD(i)r(i)

]
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Applications : Interference Suppression for CDMA

– We assess BER performance of the supervised LS, the CMV-

LS and the CCM-LS and their full-rank and reduced-rank ver-

sions.

– The DS-CDMA system uses random sequences with N = 64.

– We use 3-path channels with powers pk,l given by 0, −3 and

−6 dB. In each run the spacing between paths is obtained from

a discrete uniform random variable between 1 and 2 chips.

– Power distribution amongst the users : Follows a log-normal

distribution with associated standard deviation of 1.5 dB.

– All LS type estimators use λ = 0.998 to ensure good perfor-

mance and all experiments are averaged over 200 runs.
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Applications : Interference Suppression for CDMA
– BER convergence performance at Eb/N0 = 12 dB.
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JIO Techniques

– Rank reduction is performed by joint and iterative optimisation

(JIO) of the rank-reduction matrix SD(i) and reduced-rank

estimator w̄(i).

– Design criteria : MMSE, LS, LCMV, etc

– Adaptive algorithms : LMS, RLS, etc

– Highlights : rank D does not scale with system size, very

fast convergence, proof of global convergence established, very

simple.
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MMSE Design of JIO Scheme

– The MMSE expressions for the filters SD(i) and w̄(i) can be

computed through the following cost function :

J = E
[
|d(i)− w̄H(i)SHD(i)r(i)|2

]
– By fixing SD(i) and minimizing the cost function with respect

to w̄(i), the reduced-rank estimator becomes

w̄(i) = R̄−1(i)p̄(i)

where

R̄(i) = E[SHD(i)r(i)rH(i)SD(i)] = E [̄r(i)̄rH(i)],

p̄(i) = E[d∗(i)SHD(i)r(i)] = E[d∗(i)̄r(i)].
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MMSE Design of JIO Scheme

– Fixing w̄(i) and minimizing the cost function with respect to

SD(i), we get

SD(i) = R−1(i)PD(i)R−1
w (i)

where

R(i) = E[r(i)rH(i)],

PD(i) = E[d∗(i)r(i)w̄H(i)] and

Rw(i) = E[w̄(i)w̄H(i)].

– The associated MMSE is

MMSE = σ2d − p̄H(i)R̄−1(i)p̄(i)

where σ2d = E[|d(i)|2].
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MMSE Design of JIO Scheme

– The filter expressions for w̄(i) and SD(i) are functions of one

another and thus it is necessary to iterate them with an initial

guess to obtain a solution.

– Unlike prior art, the JIO scheme provides an iterative exchange

of information between the reduced-rank estimator and the

transformation matrix.

– The key strategy lies in the joint optimization of the filters →
the method is guided by the optimization algorithm.

– The rank D or model order must be set by the designer to

ensure appropriate or adjusted on-line.
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Adaptive JIO-LMS Algorithm

Initialize all parameter vectors, dimensions

For each data vector i = 1, . . . , Q do :

– Perform dimensionality reduction :

r̄(i) = SHD(i)r(i)

– Estimate parameters

SD(i+1) = SD(i) + η(i)e∗(i)r(i)w̄H(i)

w̄(i+1) = w̄(i) + µ(i)e∗(i)r̄(i)

where e(i) = d(i)− w̄H(i)SHD(i)r(i).
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Applications : Interference Suppression for CDMA

– We consider the uplink of a symbol synchronous BPSK DS-

CDMA system with K users, N chips per symbol and L pro-

pagation paths.

– Initialization : for all simulations, we use w̄(0) = 0D,1, SD(0) =

[ID 0D,M−D]T .

– We assume L = 9 as an upper bound on the channel delay

spread, use 3-path channels with relative powers given by 0,

−3 and −6 dB, where in each run the spacing between paths

is obtained from a discrete uniform random variable between

1 and 2 chips and average the experiments over 200 runs.

– The system has a power distribution amongst the users for

each run that follows a log-normal distribution with associated

standard deviation equal to 1.5 dB.
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Applications : Interference Suppression for CDMA
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Applications : Interference Suppression for CDMA
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Applications : Interference Suppression for CDMA
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MVDR Design of JIO Scheme

– Main differences in approach : the beamformers SD(i) and w̄(i)

are jointly optimized and certain key quantities are assumed

statistically independent.

– The MVDR expressions for the beamformers SD(i) and w̄(i)

can be computed via the proposed optimization problem

minimize E
[
|w̄H(i)SHD(i)r(i)|2

]
= w̄H(i)SHD(i)RSD(i)w̄(i)

subject to w̄H(i)SHD(i)a(θk) = 1

– Solution → method of Lagrange multipliers

L(SD(i), w̄(i), λ) = E
[
|w̄H(i)SHD(i)r(i)|2

]
+ λ(w̄H(i)SHD(i)a(θk)− 1),
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MVDR Design of JIO Scheme

– By fixing w̄(i), minimizing L(SD(i), w̄(i), λ) with respect to

SD(i) and solving for λ, we get

SD(i) =
R−1a(θk)w̄

H(i)R−1
w

w̄H(i)R−1
w w̄(i)aH(θk)R

−1a(θk)
,

where

R = E[r(i)rH(i)] and

Rw = E[w̄(i)w̄H(i)].

– A simplified expression for SD(i) obtained analytically with the

exploitation of the constraint is given by

SD(i) =
P (i)a(θk)ā

H(θk)

aH(θk)P (i)a(θk)
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MVDR Design of JIO Scheme

– By fixing SD(i), minimizing the Lagrangian with respect to

w̄(i) and solving for λ, we arrive at the expression for w̄(i)

w̄(i) =
R̄−1(i)ā(θk)

āH(θk)R̄
−1(i)ā(θk)

,

where

R̄(i) = SHD(i)E[r(i)rH(i)]SD(i) = E[r̄(i)r̄H(i)],

ā(θk) = SHD(i)a(θk).

– The associated MV is

MV =
1

āH(θk)R̄
−1(i)ā(θk)
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MVDR Design of JIO Scheme

– The expressions of the beamformers w̄(i) and SD(i) are not

closed-form solutions.

– They are functions of each other. Therefore, it is necessary to

iterate the expressions with initial values to obtain a solution.

– Existence of multiple solutions (which are identical with res-

pect to the MMSE and symmetrical).

– Global convergence to the optimal reduced-rank LCMV filter

(eigen-decomposition with known covariance matrix) has been

established.

– The key strategy lies in the joint optimization of the filters.

– The rank D must be adjusted by the designer to ensure appro-

priate performance or can be estimated via another algorithm.
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Adaptive MVDR-LMS Algorithm

Initialize all parameter vectors, dimensions

For each data vector i = 1, . . . , Q do :

– Perform dimensionality reduction :

r̄(i) = SHD(i)r(i)

– Estimate parameters

SD(i+1) = SD(i)−µsx∗(i)
[
r(i)w̄H(i)−a(θk)w̄

H(i)aH(θk)r(i)
]

w̄(i+1) = w̄(i)−µwx∗(i)
[
I−

(
āH(θk)ā(θk)

)−1
ā(θk)ā

H(θk)
]
r̄(i)
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Complexity of MVDR-JIO ALgorithms

Algorithm Additions Multiplications

Full-rank-SG [1] 3M +1 3M +2

Full-rank-RLS [1] 3M2 − 2M +3 6M2 +2M +2

JIO-LMS 3DM +2M 3DM +M

+2D − 2 +5D+2

JIO-RLS 3M2 − 2M +3 7M2 +2M

+3D2 − 8D+3 +7D2 +9D

MSWF-SG [12] DM2 −M2 DM2 −M2

+3D − 2 +2DM +4D+1

MSWF-RLS [12] DM2 +M2 +6D2 DM2 +M2

−8D+2 +2DM +3D+2

AVF [24] D((M)2 +3(M − 1)2)− 1 D(4M2 +4M +1)

+D(5(M − 1) + 1) + 2M +4M +2
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Complexity of JIO-MVDR Algorithms
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Applications : MVDR Beamforming

– A smart antenna system with a ULA containing M sensor ele-

ments and half wavelength inter-element spacing is considered.

– Figure of merit : the SINR, which is defined as

SINR(i) =
w̄H(i)SHD(i)Rs(i)SD(i)w̄(i)

w̄H(i)SHD(i)RI(i)SD(i)w̄(i)

– The signal-to-noise ratio (SNR) is defined as SNR =
σ2d
σ2

.

– Initialization : w̄(0) = [1 0 . . . 0] and SD(0) = [ITD 0T
D×(M−D)],

where 0D×M−D is a D × (M −D) matrix with zeros in all ex-

periments.
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Applications : MVDR Beamforming
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Applications : MVDR Beamforming
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Applications : Direction of Arrival Estimation

– A smart antenna system with a ULA containing M sensor ele-

ments and half wavelength inter-element spacing is considered.

– We compare the proposed LCMV JIO method with an LS

algorithm with the Capon, MUSIC, ESPRIT, AVF, and CG

methods, and run K = 1000 iterations to get each curve.

– The spatial smoothing (SS) technique is employed for each

algorithm to improve the performance in the presence of cor-

related sources.

– The DOAs are considered to be resolved if |θ̂JISO − θk| < 1o.

– The probability of resolution is used as a figure of merit and

plotted against the number of snapshots.
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Applications : Direction of Arrival Estimation

Parameters : Probability of resolution versus number of snap-

shots (separation 3o, SNR= −2dB, q = 2, c= 0.9, m = 30,

r = 6, δ = 5× 10−4, α = 0.998, n = 26)
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Applications : Direction of Arrival Estimation

Parameters : Probability of resolution versus number of snap-

shots (separation 3o, SNR= −5dB, q= 10, m = 50, r = 6,

δ = 5× 10−4, α = 0.998, n = 41)
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Applications : Direction of Arrival Estimation

Parameters : Probability of resolution versus snapshots (sepa-
ration 3o, SNR= 0dB, qw = 9, m = 50, r = 6, δ = 5 × 10−4,
α = 0.998, n = 41). We assume an incorrect number of sources
qw = 9 instead of q = 10.
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JIDF Techniques

– Interpolated received vector : rI(i) = V H(i)r(i)

– Decimated received vector for branch b : r̄(i) = Db(i)V
H(i)r(i)

– Selection of decimation branch D(i) : Euclidean distance

– Expression of estimate as a function of v(i), D(i) and w(i) :

x(i) = w̄H(i)SHD(i)r(i) = w̄H(i)Db(i)V
H(i)r(i) = w̄H(i)D(i)ℜo(i)v

∗(i)

– Joint optimisation of v(i), D(i) and w̄(i)
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JIDF Techniques

– Decimation schemes : Optimal, uniform, random, pre-stored.

– The decimation pattern D(i) is selected according to :

D(i) = Db when Db(i) = arg min
1≤b≤B

|eb(i)|2

– Optimal decimator : combinatorial problem with B possibilities

B =M · (M − 1) . . . (M −M/L+1)︸ ︷︷ ︸
M/L terms

=
M !

(M −M/L)!

– Suboptimal decimation schemes :

– Uniform (U) Decimation

– Pre-Stored (PS) Decimation.

– Random (R) Decimation.
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JIDF Techniques
– General framework for decimation schemes

Db =



0 . . . 0︸ ︷︷ ︸
r1 zeros

1 0 0 0 0 . . . 0 0 0

... ... ... ... ... ... ... ... ... ... ... ...
0 0 . . . 0︸ ︷︷ ︸

rm zeros

1 0 0 0 . . . 0 0 0

... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 . . .0︸ ︷︷ ︸

rD zeros

1 0 . . . 0︸ ︷︷ ︸
(M−rD−1) zeros


where m (m = 1,2, . . . ,M/L) denotes the m-th row and rm is

the number of zeros given by the decimation strategy.

– Suboptimal decimation schemes :

a. Uniform (U) Decimation with B = 1 → rm = (m− 1)L.

b. Pre-Stored (PS) Decimation. We select rm = (m − 1)L+

(b− 1) which corresponds to the utilization of uniform de-

cimation for each branch b out of B branches.

c. Random (R) Decimation. We choose rm as a discrete uni-

form random variable between 0 and M − 1.
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Linear MMSE Design of Parameter Vectors

– The MMSE expressions for w̄(i) and v(i) can be computed via

the minimization of the cost function

J
(v(i),D(i),w̄(i))
MSE = E[|d(i)− vH(i)ℜT

o (i)D
T (i)w̄∗(i)|2]

– Fixing the interpolator v(i) and minimizing the cost function

with respect to w̄(i) the interpolated Wiener filter weight vec-

tor is

w̄(i) = α(v) = R̄−1(i)p̄(i)

where

R̄(i) = E [̄r(i)̄rH(i)],

p̄(i) = E[d∗(i)̄r(i)],
r̄(i) = ℜ(i)v∗(i).
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Linear MMSE Design of Parameter Vectors

– Fixing w̄(i) and minimizing the cost function with respect to

v(i) the interpolator weight vector is

v(i) = β(w̄) = R−1
u (i)pu(i)

where

Ru(i) = E[u(i)uH(i)], pu(i) = E[d∗(i)u(i)] and u(i) = ℜT (i)w̄∗(i).

– The associated MSE expressions are

J(v) = JMSE(α(v),v) = σ2d − p̄H(i)R̄−1(i)p̄(i)

JMSE(w̄,β(w̄)) = σ2d − pHu (i)R−1
u (i)pu(i)

where σ2d = E[|d(i)|2].
– The points of global minimum can be obtained by vopt =

argminv J(v) and w̄opt = α(vopt) or w̄opt = argminw̄ JMSE(w̄,β(w̄))

and vopt = β(w̄opt).
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Adaptive JIDF-LMS Algorithms

Initialize all parameter vectors, dimensions, number of branches

B and select decimation technique

For each data vector i = 1, . . . , Q do :

– Select decimation branch that minimizes eb(i) = d(i)−wH(i)r̄(i)

– Make r̄(i) = r̄b(i) when b = argmin1≤b≤B |eb(i)|2

– Estimate parameters

v(i+1) = v(i) + ηe∗(i)u(i)

w̄(i+1) = w̄(i) + µe∗(i)r̄(i)

where u(i) = ℜT (i)w̄∗(i) and r̄(i) = D(i)V H(i)r(i).
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Complexity of JIDF Algorithms

Number of operations per symbol

Algorithm Additions Multiplications

Full-rank-LMS 2M 2M +1

Full-rank-RLS 3(M − 1)2 +M2 +2M 6M2 +2M +2

JIDF-LMS (B+1)(D) + 2NI (B+2)D

JIDF-RLS 3(D − 1)2 +3(NI − 1)2 6(D)2 +6N2
I

+(D − 1)NI +NIM + (D)2 +DNI +2

+N2
I + (B+1)D+2NI +(B+2)D+NI

MWF-LMS D(2(M̄ − 1)2 + M̄ +3) D(2M̄2 +5M̄ +7)

MWF-RLS D(4(M̄ − 1)2 +2M̄) D(4M̄2 +2M̄ +3)

AVF D((M)2 +3(M − 1)2)− 1 D(4(M)2 +4M +1)

+D(5(M − 1) + 1) + 2M +4M +2
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Complexity of JIDF Algorithms
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Applications : Interference suppression for CDMA

Parameters : Uplink scenario, QPSK symbols, K users, N chips per symbol

and L propagation paths, receiver filter has M = N + Lp − 1 taps.
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Applications : Interference suppression for CDMA

Parameters : Uplink scenario, QPSK symbols, K users, N chips per symbol

and L propagation paths, receiver filter has M = N + Lp − 1 taps.
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Applications : STAP for Radar Systems

– The system under consideration is a pulsed Doppler radar re-
siding on an airborne platform.

– The radar antenna is a uniformly spaced linear antenna array
consisting of N elements. The radar returns are collected in a
coherent processing interval (CPI).

– The M × 1 radar space-time snapshot r(i) is then expressed
for each of the two hypotheses in the following form

H0 : r(i) = v(i);

H1 : r(i) = as+ v(i);

– Problem : to design a spatial-temporal beamformer with limi-
ted training.
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Applications : STAP for Radar Systems

Airborne radar system parameters :

Parameter Value

Antenna array Sideway-looking array (SLA)
Carrier frequency (fc) 450 MHz
Transmit pattern Uniform
PRF (fr) 300 Hz
Platform velocity (v) 75 m/s
Platform height (h) 9000 m
Clutter-to-Noise ratio (CNR) 40 dB
Elements of sensors (N) 8
Number of Pulses (J) 8
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Applications : STAP for Radar Systems
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Applications : STAP for Radar Systems
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Applications : UWB communications

– We apply the a variation of the JIDF scheme called SAABF

to the downlink of a multiuser BPSK DS-UWB system and

evaluate their performance against existing methods.

– In all numerical simulations, the pulse shape adopted is the

RRC pulse with the pulse-width 0.375ns.

– The spreading codes are generated randomly with a spreading

gain of 24 and the data rate of the communication is approxi-

mately 110Mbps.

– The standard IEEE 802.15.4a channel model for the NLOS

indoor environment is employed.

– We assume that the channel is constant during the whole

transmission.

– The sampling rate at the receiver is assumed to be 8GHz that

is the same as the standard channel model and the observation

window length M for each data symbol is set to 120 samples.
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Applications : UWB communications

Parameters :BER performance of different algorithms for a SNR=16dB and 3

users. The following parameters were used : full-rank LMS (µ = 0.075), full-

rank RLS (λ = 0.998, δ = 10), MSWF-LMS (D = 6, µ = 0.075), MSWF-RLS

(D = 6, λ = 0.998), AVF (D = 6), SAABF (1,3,M)-LMS (µw = 0.1, µψ = 0.2,

2 iterations) and SAABF (1,3,M)-RLS (λ = 0.998, δ = 0.1, 1 iteration).
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Applications : UWB communications

Parameters :BER performance of the proposed SAABF scheme versus the

number of training symbols for a SNR=16dB. The number of users is 3 and

the following parameters were used : SAABF-RLS (λ = 0.98, δ = 10).

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of symbols

B
E

R

 

 
SAABF(C,3,1)−RLS
SAABF(C,3,4)−RLS
MMSE

C=6

C=8

C=10

C=12

69



Applications : UWB communications
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Model-order selection techniques

– Basic principle : to determine the best fit between observed

data and the model used.

– General approaches to model-order selection :

– Setting of upper bounds on models with ”some” prior know-

ledge : one of the most used in communications.

– Akaike’s information theoretic criterion : works well, requires

a large number of computations, not suitable to time-varying

scenarios.

– Minimum description length (MDL) : also works well, not

suitable to time-varying scenarios.

– Adaptive filtering approach : use for adaptive algorithms with

dynamic lengths, work well and have lower complexity than

prior art.
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Akaike Information Criterion

– Basic principle : employs information entropy to perform model

order selection.

– Method :

AIC = 2k − 2l(θ̂),

where

k is the number of parameters

θ̂ is the ML estimate

l(·) is the log likelihood function.

– The lower the AIC the better the model selected.

– It is more suitable to ML estimation problems.
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Minimum Description Length

– Basic principle : given a data set and competing statistical

models, the best one is that which provides the shortest des-

cription length.

– Method :

MDL = 1/2mlnN − l(θ̂),

where

N is the number of samples

m is the number of independently adjusted parameters

l(·) is the log likelihood function.

– The shortest the MDL the better the model selected.

– It is more suitable to ML estimation problems.

– The MDL converges to the true model order.
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Model-Order Selection for Time-Varying Scenarios

– Approaches used for reduced-rank techniques :

– Testing of orthogonality conditions between columns of trans-

formation matrix SD(i) [12] :

– used with the MSWF for selecting the rank D.

– Cross-validation of data [24] :

– used with the AVF,

– works well but can be complex since the algorithms some-

times selects D quite large.

– This can be a problem if M is large and D approaches it.

– Use of a priori values of least-squares type cost functions

with lower and upper bounds :

– works very well and it is simple to use and design [12, 17,

35].

– It can be easily extended when the designer has multiple

parameters with orders to adjust.

74



Model-order selection with the JIO-MVDR algorithm

– Consider the exponentially weighted a posteriori least-squares

type cost function described by

C(SD(i−1), w̄(D)(i−1)) =
i∑

l=1

αi−l
∣∣∣w̄H, (D)(i−1)SD(i−1)r(l)|2,

where α is the forgetting factor and w̄(D)(i−1) is the reduced-

rank filter with rank D.

– For each time interval i, we can select the rank Dopt which mi-

nimizes C(SD(i−1), w̄(D)(i−1)) and the exponential weighting

factor α is required as the optimal rank varies as a function of

the data record.

– The key quantities to be updated are SD(i),w̄(i), ā(θk) and

P̄ (i) (RLS algorithm).
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Model-order selection with JIO-MVDR algorithms

– Let us define the following extended matrix S(D)(i) and the

extended reduced-rank beamformer w̄(D)(i) as follows :

S(D)(i) =

 s1,1 . . . s1,Dmin
. . . s1,Dmax

... ... ... . . . ...
sM,1 . . . sM,Dmin

. . . sM,Dmax

 (1)

and

w̄(D)(i) =


w1
...

wDmin...
wDmax


– S(D)(i) and w̄(D)(i) are updated along with the associated

quantities ā(θk) and P̄ (i) for the maximum allowed rank Dmax.
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Model-order selection with JIO-MVDR algorithms

– The model-order selection algorithm determines the rank that

is best for each time instant i using the cost function.

– The model-order selection algorithm is then given by

Dopt = arg min
Dmin≤d≤Dmax

C(SD(i− 1), w̄(D)(i− 1))

where

d is an integer,

Dmin and Dmax are the minimum and maximum ranks allowed

for the reduced-rank filter, respectively.
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Model-order selection with JIO-MVDR algorithms

SINR performance of LCMV (a) SG and (b) RLS algorithms

against snapshots with M = 24, SNR = 12 dB with automatic

rank selection.
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Model-order selection with JIDF algorithms

– Consider the following exponentially weighed a posteriori least-

squares type cost function

C(w̄(D),v(NI), D) =
i∑

l=1

αi−l
∣∣∣d(l)−w̄H, (D)(l)D(l)ℜo(l)v

∗, (NI)(l)|2,

where

α is the forgetting factor,

w̃(D)(i− 1) is the reduced-rank filter with rank D and

v(NI)(i) is the interpolator filter with rank NI.

– For each time interval i and a given decimation pattern and

B, we can select D and NI which minimizes C(w̄(D),v(NI), D).
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Model-order selection with JIDF algorithms

– The model-order selection algorithm that chooses the best

lengths Dopt and NIopt for the filters v(i) and w̄(i), respectively,

is given by

{Dopt, NIopt} = arg min
NImin

≤n≤NImax
Dmin≤d≤Dmax

C(w̄(d),v(n), D)

where

d and n are integers,

Dmin and Dmax and

NImin
and NImax are the minimum and maximum ranks allowed

for w̄(i) and v(i), respectively.
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Model-order selection with JIDF algorithm

SINR performance against rank (D) for the analyzed schemes

using LMS and RLS algorithms.
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Applications, perspectives and future work
– Applications : interference suppression, beamforming, channel

estimation, echo cancellation, target tracking, wireless sensor

networks, signal compression, radar, control, seismology, etc.

– Perspectives :

• Work in this field is not fully explored.

• Many unsolved problems when dimensions become large :

estimation, tracking, general acquisition, networks, distribu-

ted problems .

– Future work :

• Information theoretic study of very large observation data :

performance limits as M goes to infinity.

• Development of vector and matrix-based parameter esti-

mates as opposed to current scalar parameter estimation

of existing methods.

• Distributed reduced-rank processing.
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Concluding remarks

– Reduced-rank signal processing is a powerful set of tools that

allow the processing of large data vectors, enabling a substan-

tial reduction in training and complexity.

– An overview of reduced-rank techniques, detailing eigen-decomposition

methods and the MSWF, was presented along with applica-

tions in communications and sensor array systems.

– A family of reduced-rank algorithms based on JIO techniques

was presented along with applications.

– A recently proposed reduced-rank scheme called JIDF was also

briefly reviewed with applications.

– Several applications have been considered as well as a number

of future investigation topics have been discussed.
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Questions ?
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Thank you !

Contact :

Dr. R. C. de Lamare

Communications Research Group

University of York

Website : http ://www-users.york.ac.uk/∼rcdl500/

E-mail : rcdl500@ohm.york.ac.uk
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