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Abstract—In this paper, we propose novel l1-regularized space-
time adaptive processing (STAP) algorithms with a generalized
sidelobe canceler architecture for airborne radar applications.
The proposed methods suppose that a number of samples at
the output of the blocking process are not needed for sidelobe
canceling, which leads to the sparsity of the STAP filter weight
vector. The core idea is to impose a sparse regularization (l1-norm
type) to the minimum variance criterion. By solving this optimiza-
tion problem, an l1-regularized recursive least squares (l1-based
RLS) adaptive algorithm is developed. We also discuss the SINR
steady-state performance and the penalty parameter setting of
the proposed algorithm. To adaptively set the penalty parameter,
two switched schemes are proposed for l1-based RLS algorithms.
The computational complexity analysis shows that the proposed
algorithms have the same complexity level as the conventional
RLS algorithm (O

(
(NM)2

)
), where NM is the filter weight

vector length), but a far lower complexity level than the loaded
sample covariance matrix inversion algorithm (O

(
(NM)3

)
) and

the compressive sensing STAP algorithm (O
(
(NsNd)

3
)
, where

NsNd > NM is the angle-Doppler plane size). The simulation
results show that the proposed STAP algorithms converge rapidly
and provide a SINR improvement using a small number of
snapshots.

Index Terms—l1-regularized, Generalized sidelobe canceler ar-
chitecture, Recursive least squares algorithm, Sparsity, Switched
schemes, Space-time adaptive processing, Airborne radar.

I. INTRODUCTION

A requirement of airborne surveillance radar systems is to
detect moving targets in a severe and dynamic interference
environment which may be composed of clutter and jamming.
Space-time adaptive processing (STAP) has been motivated as
a key enabling technology for advanced airborne radar applica-
tions following the landmark publication by Brennan and Reed
[1]. By performing a joint-domain optimization of the spatial
and temporal degrees-of-freedom (DOFs), STAP can improve
slow-moving target detection through better mainlobe clutter
suppression, provide better detection in combined clutter and
jamming environments, and offer a significant increase in
output signal-to-interference-plus-noise-ratio (SINR), as com-
pared with traditional factored approaches [2], [3], [8]. How-
ever, there are many practical limitations preventing the use of
the optimum STAP processor, such as a large computational
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complexity cost to compute the matrix inversion operation, the
requirement of a large number of independent and identically
distributed (i.i.d.) training samples to estimate the interfer-
ence covariance matrix, and the severe non-stationary and
heterogeneous interference environment. Thus, much of the
work has been focused on addressing the previously mentioned
problems in the last decades [4]–[8], [10], [11], [35]. In this
paper, we focus on the second problem and devise a STAP
technique that improves the convergence speed and tracking
performance of existing conventional methods.

More recently, motivated by compressive sensing (CS)
techniques used in radar [14]–[16], several authors have con-
sidered CS ideas for moving target indication (MTI) and STAP
problems [17]–[22]. The core notion in CS is to regularize a
linear inverse problem by including prior knowledge that the
signal of interest is sparse [21]. A global matched filter (GMF)
is applied to the basic STAP problem, which points out that it
has the advantage of being able to work on a single snapshot
without prior estimation of the interference matrix since the
GMF identifies both the targets and a model of the clutter [17].
A novel STAP algorithm based on sparse recovery techniques,
called CS-STAP (or SR-STAP sometimes) was presented in
[18]–[20]. In their work, the CS-STAP algorithm is divided
into two steps: first, the data from much fewer range cells
compared with conventional STAP methods is used to estimate
the distribution of clutter energy on the spatial-temporal plane
by a sparse recovery procedure; second, a novel estimator of
the covariance matrix is built based on the result obtained in
the first step, and Capon’s optimal filter is constructed with
the estimated covariance matrix to suppress clutter. In [22],
the angle-Doppler plane is explicitly segmented into the clutter
ridge component and a non-clutter-ridge component. Under the
assumption of the known clutter ridge in angle-Doppler plane,
they impose the sparse regularization to estimate the clutter
covariance excluding the clutter ridge. In [21], the authors
present a post-processing step after clutter whitening using a
standard STAP technique by applying sparse regularization.

The previous works on STAP techniques based on CS
technique have focused on the recovery of the clutter power
in the angle-Doppler plane, and have not applied the sparse
regularization to the STAP filter design. In this paper, we
consider a generalized sidelobe canceler (GSC) architecture
for STAP in airborne radar, which introduces a blocking pro-
cess. Since the interference variance has a low rank property
[3], [8], we assume that a number of samples at the output
of the blocking process are not meaningful for processing,
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which will lead to the sparsity of the filter weight vector.
Then, we design the STAP algorithm with another strategy,
by imposing the sparse regularization (l1-norm type) to the
minimum variance (MV) criterion in order to exploit this
sparsity feature of the received data and the filter weight
vector. This idea is similar to knowledge-aided (KA) STAP [9],
[12], [13], which exploits some prior knowledge of the data.
With this motivation, the STAP algorithm design becomes a
mixed l1-norm and l2-norm optimization problem, which is
currently a vibrant topic [24]–[27]. Sparse least mean-square
(LMS) type algorithms and recursive least squares (RLS)
type algorithms applied to system identification are studied
in [28]–[32], which results in a performance improvement for
sparse systems. In this paper, we extend the work presented in
[33] to RLS algorithms. We derive the optimal l1 regularized
STAP filter weight vector, propose a modified RLS adaptive
algorithm (called l1-based RLS) and devise switched schemes
to adaptively select the penalty parameter. The simulation
results show that this method outperforms the conventional
RLS algorithm in terms of SINR steady-state performance and
convergence speed, and is much simpler than the CS-STAP
[17]–[20].

The main contributions of our paper are listed as follows.
(i) A new l1 regularized STAP algorithm with GSC archi-

tecture for airborne radar is proposed.
(ii) An l1-based RLS adaptive algorithm is derived to solve

the l1 regularized GSC-STAP. In order to adaptively set the
penalty parameter, two switched schemes are proposed for l1-
based RLS algorithms.

(iii) The SINR steady-state performance and the penalty
parameter setting of the proposed algorithm are discussed, and
some useful guidelines are given.

(iv) A study and comparative analysis of our proposed algo-
rithms, (including computation complexity, the SINR steady-
state performance and convergence speed) with other STAP
algorithms for radar systems is carried out.

This paper is organized as follows. Section II introduces
the STAP signal model for airborne radar. In Section III,
the full-rank l1 regularized GSC-STAP algorithm is derived.
The SINR steady-state performance and the penalty parameter
setting of the proposed algorithm are discussed. Furthermore,
the l1-based RLS adaptive implementation algorithm and its
computational complexity are given. In order to overcome the
time-varying interference environment, two switched schemes
based on the l1-based RLS algorithm are proposed. Some
examples illustrating the performance of the proposed l1-based
RLS algorithms with simulated radar data are shown in Section
IV. Finally, the paper ends with some conclusions in Section
V.

Notation: In this paper, scalar quantities are denoted with
italic typeface. Lowercase boldface quantities denote vectors
and uppercase boldface quantities denote matrices. The op-
erations of transposition, complex conjugation, and conjugate
transposition are denoted by superscripts T , ∗, and H , re-
spectively. The symbol ⊗ represents the Kronecker product.
Finally, the symbol E {·} denotes the expected value of a
random quantity, operator <[·] selects the real part of the
argument, ‖x‖1 and ‖x‖2 denote the l1-norm and l2-norm

operation of x respectively, and | · | denotes the absolute
operation.

II. SIGNAL MODEL AND PROBLEM STATEMENT

The system under consideration is a pulsed Doppler radar
residing on an airborne platform. The radar antenna is a
uniformly linear spaced array (ULA) which consists of M
elements. The platform is at altitude hp and moving with
constant velocity vp. The chosen coordinate system is shown
in Fig.1(a). The angle variables φ and θ refer to elevation and
azimuth. The radar transmits a coherent burst of pulses at a
constant pulse repetition frequency (PRF) fr = 1/Tr , where
Tr is the pulse repetition interval (PRI). The transmitter carrier
frequency is fc = c/λc, where c is the propagation velocity
and λc is the wavelength. The coherent processing interval
(CPI) length is equal to NTr. For each PRI, L time samples are
collected to cover the range interval. After matched filtering
to the radar returns from each pulse, the received data set for
one CPI comprises LNM complex baseband samples, which
is referred to as the radar datacube shown in Fig.1(b). The data
is then processed at one range of interest, which corresponds
to a slice of the CPI datacube. The slice is an M ×N matrix
which consists of M × 1 spatial snapshots for pulses at the
range of interest. It is convenient to stack the matrix column-
wise to form the NM × 1 vector r[i], termed a space-time
snapshot, 1 ≤ i ≤ L [1]–[3].

An important task for airborne radar is target detection.
Casting the detection problem in the context of binary hy-
pothesis testing, we denote the disturbance only hypothesis
by H0 and the target plus disturbance hypothesis by H1.

H0 : r = ru

H1 : r = αtrt + ru, (1)

where αt is a complex gain and the NM × 1 space-time
steering vector rt in the space-time look-direction is defined
as [3]

rt = b(f td)⊗ a(f ts), (2)

where b(f td) denotes the N × 1 temporal steering vector
at the target Doppler frequency f td and a(f ts) denotes the
spatial steering vector in the direction provided by the target
frequency f ts . The steering vectors a(f ts) and b(f td) are given
by

a(f ts) = [1, exp
(
j2πf ts

)
, · · · , exp

(
j2(M − 1)πf ts

)
]T , (3)

b(f td) = [1, exp
(
j2πf td

)
, · · · , exp

(
j2(N − 1)πf td

)
]T . (4)

The vector ru encompasses any undesired interference or
noise component of the data including clutter rc, jamming
rj , and thermal noise rn. We assume that they are mutually
uncorrelated. And the clutter-jammer-noise (for short, calling
interference in the following part) covariance matrix R can be
expressed as

R = E
{
rur

H
u

}
= Rc + Rj + Rn, (5)

where Rc = E
{
rcr

H
c

}
, Rj = E

{
rjr

H
j

}
and Rn =

E
{
rnr

H
n

}
, denote clutter, jammer and thermal noise covari-

ance matrix, respectively.
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(a) Platform geometry
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Fig. 1. The radar platform geometry and the radar CPI datacube

The GSC processor results in an unconstrained weight
vector and reformulates the STAP detector structure into the
form of a standard Wiener filter [10]. The GSC filtering
diagram is shown in Fig. 2. Thus we obtain the output of
the GSC-STAP as

y = d−wHx, (6)

where d is the radar mainbeam output which is a scalar, and x
is the (NM − 1)× 1 noise-subspace output data vector, given
by

d = rHt r, (7)

x = Br, (8)

where B is the (NM − 1) × NM signal blocking matrix,
which is composed of any orthogonal basis set for the target
steering vector rt. Hence, we have

Brt = 0. (9)

Generally, the blocking matrix B can be directly obtained by
using the singular value decomposition (SVD) and the QR
decomposition algorithms [35].

rt

B w

x

∑+

−
y

d

r

Fig. 2. STAP with GSC architecture for airborne radar

The idea behind the MV approach is to minimize the
GSC-STAP output power, which leads to the following power

minimization problem

min
w

J(w) = min
w

E
{
‖y‖22

}
, (10)

where the optimal weight vector is given by

wMV = R−1
x rxd, (11)

where Rx = E{xxH} denotes the noise-subspace data
covariance matrix, and rxd = E{xd∗} denotes the cross-
correlation between the output of the radar mainbeam d and
the noise-subspace data vector x.

Assuming Gaussian-distributed interference, an optimum
detection statistic follows from the likelihood ratio test and
appears as

Λ =
|y|2
Ψ0

H1

>
<
H0

η, (12)

where η is the detection threshold, and Ψ0 is the output-noise
power, which is expressed by (13) for the optimal MV filter.

Ψ0 = E{d2} − rHxdR
−1
x rxd = rHt Rrt − rHxdR

−1
x rxd, (13)

where R = E{rrH}, is the input noise-covariance matrix.
The performance of (12) is given by

Pfa = exp

(
−η

2

2

)
, (14)

PD =

∫ ∞

β

µ exp

(
−µ

2 + ρ2

2

)
I0(ρµ)dµ, (15)

where Pfa is the probability of false alarm, PD is the
probability of detection, I0(·) is the modified zero-order Bessel
function of the first kind and ρ equals the square-root of the
peak output SINR, which is expressed by (16) for the optimal
MV filter [10], [35]

SINR =
E{|yt|2}

Ψ0
=

σ2
t

rHt Rrt − rHxdR
−1
x rxd

, (16)

where σ2
t = E

{
|αt|2

}
, denotes the single-channel, single-

pulse signal power. From (15), we can see that PD depends
on both output SINR and the value of Pfa. If the value of
Pfa is specified, PD is a monotonic function of ρ, that is to
say, maximizing SINR is equivalent to maximizing PD.
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III. STAP WITH L1-NORM REGULARIZATION

In this section, we detail the design of the proposed l1-
norm regularized STAP algorithm, discuss the SINR steady-
state performance and the penalty parameter setting of the
proposed algorithm, and derive the proposed l1-based RLS
adaptive algorithm. We also propose two switched schemes
for the l1-based RLS algorithm to adaptively select the penalty
parameter and detail their computational complexity.

A. Proposed STAP Algorithm

In STAP applied to radar systems, it is well known that
the rank of the clutter subspace is much smaller than the
number of system DOFs [3], [8]. In the GSC structure, each
row of the blocking matrix may denote a basis of the clutter
subspace. Therefore, the clutter subspace can be constructed
by only a small number of basis, corresponding to a small
number of rows of the blocking matrix, which results in that
a number of the samples at the output of the blocking process
are not needed for sidelobe canceling. In this case, the signal
at the output of the blocking process may have a high degree
of sparsity. Since the filtering operation involves a linear
mapping between the filter and the received signal, it will
lead to the sparsity of the filter cofficients. The conventional
STAP algorithms do not exploit this sparsity feature. In this
paper, we devise the STAP algorithm by employing an l1-
regularized condition to the MV criterion. Thus the proposed
l1-norm regularized STAP can be described as the following
optimization problem

min
w

J1(w), (17)

where J1(w) is the new cost function, defined as

J1(w) = E
{
‖y‖22

}
+ 2λ‖w‖1, (18)

where λ is a positive scalar which provides a trade-off between
sparsity and total squared error. The larger the chosen λ, the
more components are shrunk to zero [26]. Now, the question
that arises is how to effectively solve the l1 regularized STAP.
In order to solve this problem, we expand the new cost
function J1(w) as

J1(w) = rHt Rrt −
(
wHrxd

)∗

−wHrxd + wHRxw + 2λ‖w‖1. (19)

In order to solve the optimization problem presented in (17),
we compute the gradient terms of (19) with respect to w∗ as
given by

∂J1(w)

∂w∗
= −rxd + Rxw + λsign (w) , (20)

where sign(·) is a component-wise sign function defined as

sign(x) =

{
x/|x| for x 6= 0

0 for x = 0
. (21)

Let us equate (20) to zero, and then we can get

w = R−1
x [rxd − λsign (w)] . (22)

This is a sufficient condition of the optimal filter weight
vector based on l1 regularized STAP. Comparing (22) with

the conventional optimal filter weight vector (11), we see that
there is an additional term in (22), which is due to the l1-
norm regularization. However, since the second term on the
right-hand side in (22) is a nonlinear function of w, it is not
a solution for the MV criterion. In this paper, under some
reasonable assumptions, a solution can be obtained by setting
an initial value of w and running an iterative procedure, which
will be shown in the following part.

B. l1-Based RLS STAP Algorithm

Generally, in RLS algorithms the noise-subspace data co-
variance matrix Rx and the cross-correlation vector rxd are
estimated by the time averaged recursions

Rx[i] =

i∑

n=1

βi−nx[n]xH [n] = βRx[i−1]+x[i]xH [i], (23)

rxd[i] =

i∑

n=1

βi−nx[n]d∗[n] = βrxd[i− 1] + x[i]d∗[i]. (24)

For convenience, let

g[i] = rxd[i]− λsign (w[i]) . (25)

Then, substituting (24) into the above equation, the g[i] term
can be described by a recursive equation, namely

g[i] = βg[i−1]+x[i]d∗[i]−[λsign (w[i])− βλsign (w[i− 1])] .
(26)

Assume that the sign of the weight values do not change
significantly in a single time step, which is reasonable because
we want the instantaneous error of the filter weight vector to
change slowly [34], hence, g[i] can be approximated by

g[i] ≈ βg[i− 1] + x[i]d∗[i] + λ(β − 1)sign (w[i− 1]) . (27)

Therefore, the optimal l1 regularized STAP filter weight vector
can be recursively described by

w[i] = R−1
x [i]g[i]. (28)

Since the matrix inversion R−1
x [i] is a potentially unstable

operation, especially when the matrix is ill-conditioned, in
practice, it is replaced by a regularized matrix (Rx[i] + εI)

−1,
where I is an identity matrix and ε is a small positive number
[37].

Denoting P[i] = R−1
x [i] and by employing the matrix

inversion lemma, we get

P[i] =
1

β

[
P[i− 1]− P[i− 1]x[i]xH [i]P[i− 1]

β + xH [i]P[i− 1]x[i]

]
. (29)

Defining the gain vector k[i] as

k[i] =
P[i− 1]x[i]

β + xH [i]P[i− 1]x[i]
, (30)

and thus we can rewrite P[i] recursively as

P[i] =
1

β

[
P[i− 1]− k[i]xH [i]P[i− 1]

]
, (31)
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where P[0] = δ−1I, where δ is a small positive constant.
Submitting (31), (27) into (28), we obtain the updating l1
regularized STAP filter weight vector w[i] as

w[i] = w[i− 1] + k[i]e∗[i] + λ(1− 1

β
)

×
[
I− k[i]xH [i]

]
P[i− 1]sign (w[i− 1]) ,(32)

where e[i] = d[i] − wH [i − 1]x[i] is the prediction error at
time i. Comparing the l1-based RLS weight update equation
with that of the conventional RLS algorithm, the former has
an additional element in the last term of (32), which attracts
the weight coefficients to zero for small weight coefficients
[28], [30].

The algorithm is summarized in Table I.

TABLE I
THE l1-BASED RLS ADAPTIVE ALGORITHM

Initialization:
P[0] = δ−1I,
w[0] = 0,[
U S V

]
= svd(rTt ),

B =
[
V(:, 2 : N)

]T
Recursion: For each snapshot i = 1, · · · , L
x[i] = Br[i],
d[i] = rHt r[i],
e[i] = d[i]−wH [i− 1]x[i],
v[i] = P[i− 1]x[i],
k[i] = v[i]

β+xH [i]v[i]
,

G[i] = P[i− 1]− k[i]vH [i],
P[i] = 1

β
G[i],

G′[i] = G[i]−P[i],
w[i] = w[i− 1] + k[i]e∗[i] + λG′[i]sign (w[i− 1]),
Output:
y[i] = d[i]−wH [i]x[i].

C. Setting of the Penalty Parameter

In this section, we will consider the setting of the penalty
parameter λ of the proposed STAP algorithm. The SINR
steady-state performance of the proposed algorithm will be
analyzed and some useful comments of the setting of the
penalty parameter λ will be given (the derivation details are
seen in Appendix A).

Comment 1: Suppose that wopt is the conventional opti-
mum GSC-STAP filter weight vector with known interference
covariance matrix R by solving a MV estimation problem
described in Section II, uk, k = 1, 2, · · · , NM is the eigenvec-
tor corresponding to the eigenvalue γk, k = 1, 2, · · · , NM of
the interference covariance matrix, and wl1 is the steady-state
GSC-STAP filter weight vector of the proposed algorithm.
Furthermore, assume that γ1 ≥ γ2 ≥ · · · ≥ γNM . The SINR
steady-state performance of the proposed algorithm SINRl1 is
given by [35]

SINRl1 =
σ2
t

Ψopt + ∆Ψ
, (33)

where
Ψopt = κ̃ =

1

rHt R−1rt
, (34)

∆Ψ = λ2
NM∑

k=1

1

γk

(
1− κ̃

γk

)∥∥sign
(
wH
l1

)
Buk

∥∥2

2
. (35)

The quantities B and λ are defined in the previous sections.
From (33), we know that the SINR steady-state performance
will tend to zero with the value of λ approaching infinity,
which corresponds to a very bad SINR performance. On the
other hand, if the value of λ is close to zero, the steady-
state SINR performance will only depend on Ψopt, which
becomes the conventional STAP algorithm resulting in slow
SINR convergence speed. By considering a trade-off between
the SINR steady-state performance and the SINR convergence
speed, the value of λ should be set appropriately. In practical
applications, the exact interference covariance matrix can not
be obtained and the component Ψopt will be replaced by

1
rHt R̂−1RR̂−1rt

, where R̂ is the estimated interference covari-
ance matrix. When the number of secondary training data is
small, the eigenvalue spread of the interference covariance
matrix will be large. In this case, the component ∆Ψ will not
always be positive for each iteration. Thus, we may obtain
both a better SINR steady-state performance and a faster
convergence speed by setting λ properly. In fact, a range of
values of λ will lead to some SINR benefits, which will be
illustrated by the following simulations.

Comment 2: Assuming that κw denotes the number of
nonzero coefficients of the steady-state GSC-STAP filter
weight vector, σ2

n denotes the single-channel, single-pulse
thermal noise power, ξ is the interference-to-noise-ratio (INR),
χ denotes the rank of the interference covariance matrix, and
uk, k = 1, 2, · · · , χ represents the eigenvectors corresponding
to large eigenvalues of the interference covariance matrix. For
high INR (i.e., the interference is dominant ξ � 1), the ratio
∆Ψ
Ψopt

, which are defined by (34) and (35) respectively, is a key
point to describe the derivation between the SINR steady-state
performance of the proposed algorithm and the optimal SINR
performance and satisfies

∆Ψ

Ψopt
6 (χκw − 1)

λ2

σ4
n

χ∑

k=1

rHt uku
H
k rt. (36)

Offering a trade-off between the SINR steady-state perfor-
mance and convergence speed, one reasonable setting of the
penalty parameter λ is given by

λ = f

(
(χκw − 1)

σ4
n

χ∑

k=1

rHt uku
H
k rt

)
, (37)

where f(x) is a function of x. One of the simplest functions
is the proportional function, which is described as

λ =
µλσ

2
n√

(χκw − 1)
∑χ
k=1 r

H
t ukuHk rt

, (38)

where µλ is the proportionality factor which could be fixed
or variant. By inspecting (38), we draw that the setting of the
parameter λ should be proportional to the noise power, and
be inversely proportional to the rank of the interference co-
variance matrix. Although we can hardly determine the actual
values of κw (only know that κw < NM is a small integer
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due to the degree of sparsity of signal) and
∑χ
k=1 r

H
t uku

H
k rt,

(38) is still very useful for setting the penalty parameter λ.

D. Switched l1-Based RLS STAP Algorithms

Although some suggestions of setting the penalty parameter
λ are given, it is hard to decide the value of λ in a time
varying interference environment. In this section, we propose
two different switched schemes to adaptively select the proper
value of λ.

The first switched scheme (called scheme I) is shown in
Fig.3(a). In this proposed scheme, we constrain the penalty
parameter λ within a range of appropriate values (the can-
didates space of the penalty parameter is presented by Ω =
{λk|k = 1, 2, · · · ,K}). Then, in each iteration, we compute
the filter weight vector for each λk, k = 1, 2, · · · ,K in
an independent parallel way just as the approach of the l1-
based RLS algorithm with fixed penalty parameter. Thus, there
will be K independent outputs {wk[i]|k = 1, · · · ,K} from K
branches. In particular, we present a method for automatically
selecting the filter weight vector from K branches based on
the exponentially weighted a posteriori least-squares type cost
function, described by

Ck[i] =

i∑

n=1

βi−n
∥∥d[n]−wH

k [n]x[n]
∥∥2

2
, (39)

where k = 1, 2, · · · ,K, β is the forgetting factor, and wk[n]
is computed by the kth branch using λk. Ck[i] also can be
represented in a recursive way given by

Ck[i] = βCk[i− 1] +
∥∥d[i]−wH

k [i]x[i]
∥∥2

2
. (40)

Finally, the proposed scheme that chooses the best filter weight
vector wopt[i] for each iteration is given by

wopt[i] = arg min
wk[i],k=1,2,··· ,K

Ck[i]. (41)

Scheme I is summarized in Table II.
However, scheme I has a much higher computational com-

plexity than the l1-based RLS algorithm since it needs to
calculate K branches independently in one iteration, especially
when K is large. In the following, we propose another
switched scheme (called scheme II, as shown in Fig.3(b)),
which has a lower computational complexity than scheme I. In
this scheme, we also constrain the penalty parameter λ within
the candidates space Ω. However, unlike scheme I, there is a
feedback from the output of the selected filter weight vector
in scheme II, which will be used to calculate the new filter
weights for all λ ∈ Ω and for every snapshot. All the candidate
filter weight vectors are computed based on the selected filter
weight vector with different values of λk, k = 1, 2, · · · ,K
according to the approach of the l1-based RLS algorithm
with fixed penalty parameter. Thus, it only needs to calcu-
late the prediction error e[i] = d[i] − wH

opt[i − 1]x[i] once
for all K branches, where wopt is the selected best filter
weight vector obtained from the feedback of the selection
box. Similarly, there will be K outputs {wk[i]|k = 1, · · · ,K}
from K branches. The proposed scheme II for automatically

TABLE II
THE SWITCHED l1-BASED RLS ADAPTIVE ALGORITHM FOR SCHEME I

Initialization:
P[0] = δ−1I,
wk[0] = 0,Ck[0] = 0, k = 1, · · · ,K,
Ω = {λ1, λ2, · · · , λK},[
U S V

]
= svd(rTt ),

B =
[
V(:, 2 : N)

]T
Recursion: For each snapshot i = 1, · · · , L
x[i] = Br[i],
d[i] = rHt r[i],
v[i] = P[i− 1]x[i],
k[i] = v[i]

β+xH [i]v[i]
,

G[i] = P[i− 1]− k[i]vH [i],
P[i] = 1

β
G[i],

G′[i] = G[i]−P[i],
For λk ∈ Ω k = 1, · · · ,K

ek[i] = d[i]−wH
k [i− 1]x[i],

wk[i] = wk[i− 1] + k[i]e∗[i] + λkG
′[i]sign (wk[i− 1]),

Ck[i] = βCk[i− 1] +
∥∥d[i]−wH

k [i]x[i]
∥∥2

2
,

End
wopt = arg minwk[i],k=1,2,··· ,K Ck[i],
Output:
y[i] = d[i]−wH

opt[i]x[i].

selecting the filter weight vector based on the instantaneous
least-squares type cost function C ′k[i], is given by

C ′k[i] = ‖d[i]−wH
k [i]x[i]‖22. (42)

Then we select the best filter weight vector wopt[i] relying on
minimizing the cost function C ′k[i] in each iteration, which is
given by

wopt[i] = arg min
wk[i],k=1,2,··· ,K

C ′k[i], (43)

where wk[i] is computed using λk and the selected filter
weight vector wopt[i − 1] by the kth branch. Scheme II is
summarized in Table III.

Seen from the previous discussions, two aspects should be
noted. The first one is that one of the important differences
of both proposed schemes lies in the fact that scheme II has
a lower computation complexity, but more complex structure
since it requires the feedback from the selection box, compared
with scheme I. That is to say scheme I is more convenient
for realizing with nowadays parallel processors. Therefore,
both scheme I and scheme II have their own advantages to
adaptively select a proper value of λ and which one is better
relies on the requirements of practical applications. The second
one is that it requires some prior knowledge to decide the
range of λ in both proposed schemes. A drawback of the
proposed schemes is that it may not guarantee to select an
optimal λ, if the range of λ could not be determined properly.
The development of alternative and effective methods for
automatic adjustment of λ remains an interesting open area
for investigation.

E. Complexity Analysis
We detail the computational complexity per snapshot of

the conventional loaded sample matrix inversion (LSMI) algo-
rithm, the conventional RLS algorithm, the proposed l1-based
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Fig. 3. Switched l1-based RLS STAP schemes.

TABLE IV
COMPUTATIONAL COMPLEXITY FOR PER SNAPSHOT

Algorithm Additions Multiplications
LSMI O

(
(NM − 1)3

)
+ 3(NM)2 − 4NM + 1 O

(
(NM − 1)3

)
+ 4(NM)2 − 4NM + 1

RLS 3(NM)2 − 3NM 4(NM)2 − 2NM − 1
l1-based RLS 5(NM)2 − 7NM + 2 5(NM)2 − 3NM − 1
Switched l1-based RLS I (4 +K)(NM)2 + (K − 7)NM −K + 3 (4 +K)(NM)2 + (2K − 4)NM −K + 1
Switched l1-based RLS II 5(NM)2 + (2K − 8)NM − 2K + 3 5(NM)2 + (2K − 4)NM −K

TABLE III
THE SWITCHED l1-BASED RLS ADAPTIVE ALGORITHM FOR SCHEME II

Initialization:
P[0] = δ−1I,
wopt[0] = 0,
C′k[0] = 0, k = 1, · · · ,K,
Ω = {λ1, λ2, · · · , λK},[
U S V

]
= svd(rTt ),

B =
[
V(:, 2 : N)

]T
Recursion: For each snapshot i = 1, · · · , L
x[i] = Br[i],
d[i] = rHt r[i],
v[i] = P[i− 1]x[i],
k[i] = v[i]

β+xH [i]v[i]
,

G[i] = P[i− 1]− k[i]vH [i],
P[i] = 1

β
G[i],

G′[i] = G[i]−P[i],
e[i] = d[i]−wH

opt[i− 1]x[i],
w′[i] = wopt[i− 1] + k[i]e∗[i],
For λk ∈ Ω k = 1, · · · ,K

wk[i] = w′[i] + λkG
′[i]sign (wopt[i− 1]),

C′k[i] = ‖d[i]−wH
k [i]x[i]‖22,

End
wopt[i] = arg minwk[i],k=1,2,··· ,K C

′
k[i],

Output:
y[i] = d[i]−wH

opt[i]x[i].

RLS algorithm and the switched l1-based RLS algorithms
as shown in Table IV. The computational requirements are
described in terms of the number of complex arithmetic
operations, namely, additions and multiplications. From the
table, we note that the complexity of the proposed l1-based
RLS algorithm is at the same level as the conventional RLS
algorithm (O

(
(NM)2

)
), but much lower than that of the

conventional LSMI algorithm (O
(
(NM)3

)
). The computa-

tional complexity of the proposed switched l1-based RLS
schemes depends on the candidate size K of λ. However,
the computational complexity of scheme II is lower than that
of scheme I, and is only a little higher than that of the l1-
based RLS algorithm with fixed penalty parameter (in fact
only 2(NM)2 + (2K − 5)NM − 2K + 2 additions and
(NM)2 + 2(K − 1)NM − K + 1 multiplications). As for
scheme I, it is more convenient for realizing with nowadays
parallel processors because of no feedback requirement.

IV. SIMULATION RESULTS

In this section, we assess the proposed l1-based RLS adap-
tive algorithms using simulated radar data. The parameters
of the simulated radar platform are shown in Table V. In
the following examples, we assume the forgetting factor is
β = 0.9998, use zero vectors for the initialization of filter
weight vectors and δ−1I for the initialization of the inverse of
the interference covariance matrix for the proposed algorithms
and the RLS algorithm, where δ is a small constant. The
blocking matrix B is computed by the SVD operation on
a matrix composed by the space-time steering vectors. All
presented results are averaged over 100 independent Monte
Carlo runs.

A. Setting of the Penalty Parameter

In our first experiment, we will examine the SINR perfor-
mance of our proposed l1-based RLS algorithm with different
values of the l1-norm penalty parameter λ. We assume that the
number of antenna elements is M = 8, the number of pulses
in one CPI is N = 8, and the penalty parameter λ is set to
λ = 0, 1, 5, 10, 20, 50, 100, respectively. The evaluation of the
SINR performance against snapshots with different values of
λ is shown in Fig.4, where the algorithm is simulated over



8

TABLE V
RADAR SYSTEM PARAMETERS

Parameter Value

Antenna array sideway-looking array
Antenna array spacing λ/2
Carrier frequency 450MHz
Transmit pattern Uniform
Mainbeam azimuth 0◦

PRF 300Hz
Platform velocity 50m/s
Platform height 9000 m
Thermal noise power 10−2

Clutter-to-noise-ratio (CNR) 30dB
Jammer-to-noise-ratio (JNR) 30dB
Jammer azimuth 60◦ and −45◦

Signal-to-noise-ratio (SNR) 0dB
Target Doppler 100Hz
Target azimuth 0◦

Antenna elements number 8
Pulse number in one CPI 8

L = 500 snapshots. The result indicates that: (i) the value of
λ is crucial to the SINR performance, and there is a range of
values of λ for the proposed algorithm, which can improve
the SINR steady-state performance and convergence speed,
e.g. 1 ≤ λ ≤ 50; (ii) the SINR steady-state performance is
even worse than that of the conventional RLS algorithm when
λ is too large since the STAP filter weights will be shrunk to
zero; (iii) the SINR steady-state performance and convergence
speed will not improve much when λ is too small. In this case,
it has nearly the same SINR performance as the conventional
RLS algorithm.
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Fig. 4. SINR performance against snapshot with λ =
0, 1, 5, 10, 20, 50, 100, δ = 8× 10−2 and σ2

n = 10−2.

In the next experiment, we evaluate the relationship between
the penalty parameter λ and the thermal noise power σ2

n. We
assume that the parameters of the simulated radar platform are
the same as those in the first experiment except for the thermal
noise power, which is σ2

n = 10−1. From the first example, we

know that the SINR performance and convergence speed are
both satisfactory when λ = 20. In order to have a further
evaluation of the setting of λ, we consider two cases, which
are λ = 20 and λ = 200. The result is shown in Fig.5. It can
be seen from this figure that the setting of the parameter λ
should be proportional to the thermal noise power, otherwise
it will result in a worse SINR performance.
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Fig. 5. SINR performance against snapshot with L = 500 snapshots,
λ = 20, 200, δ = 2× 10−1 and σ2

n = 10−1.

In this experiment, we focus on the SINR performance of
the switched l1-based RLS STAP algorithms. It is seen from
the second experiment that the SINR performance depends
on the value of λ, which is sensitive to the thermal noise
power. In practice, the thermal noise power is time varying
and its covariance is also time-varying. And we do not know
the exact value of the thermal noise power covariance, but
know a range of that. Thus, according to this, we could
choose a number of reasonable values of λ, which is set to
λ = 0, 5, 10, 20, 30, 40, 50 in this experiment. Assume that the
thermal noise power covariance is σ2

n = 2.25 × 10−2, which
is different from the above two experiments. In Fig.6, we see
that the SINR performance of the proposed switched l1-based
RLS algorithms is always the best, compared with others with
fixed value of λ. And we know that it is no longer the best
choice to set the λ = 10 or λ = 20.

Moreover, compared with the RLS algorithm, the curves
in Fig.6 show an excellent steady-state SINR performance
and a faster SINR convergence speed versus snapshot by the
proposed algorithms (not only the switched l1-based RLS
algorithms, but also the l1-based RLS algorithm with fixed
values of λ). In the following experiments, in order to have a
clear presentation of the simulation results, we will not draw
all the curves (but only one of them) computed by the l1-based
RLS algorithm with fixed values of λ in each figure. This is
also because it has been shown that the proposed switched
l1-based RLS algorithms provide better performance than the
l1-based RLS algorithm with fixed values of λ in Fig.6.
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Fig. 6. SINR performance against snapshot with L = 500 snapshots,
δ = 8 × 10−2 and σ2

n = 2.25 × 10−2. The candidates of switched
l1-based RLS schemes are λ = 0, 5, 10, 20, 30, 40, 50.

B. Comparison With the RLS Algorithm

In the fourth experiment, as shown in Fig.7, we present the
PD versus SNR performance for our proposed algorithms and
the RLS algorithm using 100 snapshots as the training data.
The false alarm rate Pfa is set to 10−6 and we suppose the
target is injected in the boresight (0◦) with Doppler frequency
100Hz. The other parameters are the same as the third ex-
periment. The figure illustrates that the proposed algorithms
provide suboptimal detection performance using small support
data, but remarkably, obtain much higher detection rate than
the conventional RLS algorithm at an SNR level from 0dB
to 11dB. Note that the detection performance of the proposed
switched l1-based RLS algorithms are better than that of the
l1-based RLS algorithm with fixed values of λ.
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Fig. 7. Probability of detection performance versus SNR with L =
100 snapshots, Pfa = 10−6, δ = 8 × 10−2 and σ2

n = 2.25 ×
10−2. The candidate space of switched l1-based RLS schemes is
Ω = 0, 5, 10, 20, 30, 40, 50.

We then evaluate the SINR performance against the target
Doppler frequency at the main beam look angle for the RLS
algorithm and our proposed algorithms, which is illustrated in
Fig.8. The potential Doppler frequency space from −100Hz
to 100Hz is examined and L = 100 snapshots are used to
train the filter and the other parameters are the same as the
third experiment. The plots show that the proposed algorithms
provide a suboptimum SINR performance, but they outperform
the conventional RLS algorithm in most of the Doppler bins,
and form a deeper null to cancel the main beam clutter than
the conventional RLS algorithm. The same conclusion can be
obtained from the plot showing the SINR against Doppler
frequency of the proposed switched l1-based RLS algorithms,
which are better than that of the l1-based RLS algorithm with
fixed values of λ.
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Fig. 8. SINR performance against Doppler frequency with L = 100
snapshots, Doppler frequency space from −100 to 100Hz, δ = 8×
10−2 and σ2

n = 2.25 × 10−2. The candidate space of switched l1-
based RLS schemes is Ω = 0, 5, 10, 20, 30, 40, 50.

C. Comparison With Other Algorithms

In this section, we will evaluate the SINR performance
against the number of snapshots L of our proposed algorithms
with the recently developed CS-STAP algorithm, the conven-
tional LSMI algorithm, and the conventional RLS algorithm
in another scenario, which is adopted in [20]. The basic idea
of the CS-STAP is firstly to estimate the clutter spectrum α
by solving the following minimization problem

α = arg min ‖α‖1 s.t. min ‖r−Hα‖2 ≤ ε, (44)

where ε is the noise allowance, and H is a MN ×NsNd (the
space angle and Doppler frequency axes are discretized into
Ns = ρsM,Nd = ρdN, ρs, ρd > 1 grids in the angle-Doppler
domain to obtain the clutter spectrum with high resolution),
defined as following

H = [h (fd,1, fs,1) , · · · ,h (fd,1, fs,Ns
) ,

· · · ,h (fd,Nd
, fs,1) , · · · ,h (fd,Nd

, fs,Ns
)] , (45)
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where h (fd,i, fs,i) is the NM × 1 space-time steering vector
with the normalized Doppler frequency fd,i and the normal-
ized spatial frequency fs,i. The above l1 norm minimization
can be carried out via convex optimization tools [20], [38].
Finally, the space-time adaptive filter is computed by the con-
ventional method and the clutter covariance matrix estimation
is given by

R̂sr =

NsNd∑

i=1

∣∣¯̂αi
∣∣2 h (fd,i, fs,i)h (fd,i, fs,i)

H
+ δsrI, (46)

where δsr is a small loading factor, and ¯̂αi denotes the ith
element of the averaged clutter spectrum ¯̂α, which can be
calculated by multiple snapshots, given by

∣∣¯̂αi
∣∣2 =

1

L

L∑

n=1

|α̂i[n]|2 . (47)

Let us now consider two scenarios: (i)case I, one jammer
with azimuth 30◦; (ii) case II, one jammer with azimuth 10◦.
All of them assume that the azimuthal extent of the clutter
distribution is between 30◦ ∼ 50◦, and the other parameters of
the simulated radar platform are the same as those in Table V.
Moreover, we set the number of snapshots to L = 100. In the
CS-STAP algorithm, consider two different sizes of the angle-
Doppler plane, one is discretized into Ns = 2M + 1 by Nd =
2N + 1, and the other is Ns = 4M + 1 by Nd = 4N + 1. The
clutter covariance matrix loading factor is δsr = 10−3 for case
I, and δsr = 10−4 for case II. The noise allowances for both
cases are set to ε = 10−4. In the LSMI algorithm, the diagonal
loading factor is δsmi = 3× 10−1. In the RLS algorithm and
the proposed algorithms, β = 0.9998 for both cases, δ = 0.15
for case I and δ = 0.1 for case II. In the switched l1-based
RLS algorithms, the λ space is Ω = [0, 5, 10, 20, 30, 40, 50].

As shown in Fig.9(a), the plots depict that the SINR
performance and the SINR convergence speed of our proposed
algorithms outperform the conventional LSMI algorithm, and
the conventional RLS algorithm. Although the SINR conver-
gence speed of CS-STAP algorithm is faster than that of our
proposed algorithms, the SINR steady-state performance of
our proposed algorithms is better than that when the number of
snapshots is larger than 20 for Ns = 2M+1 by Nd = 2N+1,
and 50 for Ns = 4M + 1 by Nd = 4N + 1. Note that a better
SINR steady-state performance and a faster SINR convergence
speed of the CS-STAP algorithm are obtained by increasing a
much larger size of angle-Doppler plane, which will lead to
a much higher computational complexity. From Fig.9(b), we
see that the SINR steady-state performance and convergence
speed of the CS-STAP algorithm are seriously reduced when
the jammer locates near the target, but those of our proposed
algorithms almost keep the same SINR level and perform
better than the other algorithms. This is because the estimation
of the clutter spectrum via convex optimization in the CS-
STAP algorithm is not sufficiently accurate in this situation.
Furthermore, it is also shown that the proposed switched l1-
based algorithms could adaptively select the best λ and achieve
a better SINR performance than the l1-based RLS algorithm
with fixed values of λ.

The computational complexity of the CS-STAP algorithm
is very high. The clutter spectrum recovery (requiring com-
putation O((NsNd)

3)) is the additional computation com-
pared with the LSMI, whose computational complexity is
O((NM)3). To have an assessment of the computational com-
plexity of all algorithms, we count the flops required by the
analyzed algorithms of this experiment using the Lightspeed
Matlab toolbox [40] in Fig.10. The computational complexity
curves show that the CS-STAP algorithm has a much higher
complexity than the other algorithms, which makes it hard
to implement in practice. The complexity of our proposed
algorithms is a little higher than that of the conventional RLS
algorithm, but much lower than that of the LSMI algorithm and
the CS-STAP algorithm. Furthermore, the CS-STAP algorithm
needs to determine the appropriate size of the angle-Doppler
plane, which has a serious effect on the SINR performance.
The larger the size of angle-Doppler plane, much higher the
computational complexity required. Therefore, our proposed
algorithms have a relative low complexity and are more
practical.
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Fig. 10. The computational complexity of all algorithms against the
size of system DOFs per snapshot with the size of λ space K = 7. In
the CS-STAP algorithm, the angle-Doppler plane is discretized into
two different sizes, one Ns = 2M + 1 by Nd = 2N + 1, and the
other Ns = 4M + 1 by Nd = 4N + 1.

V. CONCLUSIONS

In this paper, we have proposed novel l1-regularized STAP
algorithms with GSC architecture for airborne radar systems.
This proposed method exploits the sparsity of the received
data and the STAP filter weights, and imposes a sparse regu-
larization (l1-norm) to the MV criterion. In order to solve this
mixed l1-norm and l2-norm problem, we have developed an l1-
based RLS adaptive algorithm. The computational complexity
of the proposed l1-based RLS algorithm is a little higher
than that of the conventional RLS algorithm. However, it
has much lower computational complexity than the LSMI
algorithm and the CS-STAP algorithm. To overcome the
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Fig. 9. The SINR performance against snapshot with L = 100 snapshots. Consider two scenarios: (i) case I, one jammer with azimuth
30◦; (ii) case II, one jammer with azimuth 10◦. Assume that the azimuthal extent of the clutter distribution is between 30◦ ∼ 50◦. In the
CS-STAP algorithm, the angle-Doppler plane is discretized into two different sizes, one Ns = 2M + 1 by Nd = 2N + 1, and the other
Ns = 4M + 1 by Nd = 4N + 1.

time-varying environment, two switched schemes have been
proposed to adaptively select the proper penalty parameter for
l1-based RLS algorithms. The simulation results have shown
that the proposed algorithms outperform the conventional RLS
algorithm in terms of the SINR steady-state performance and
convergence speed, and have a much lower complexity than
the CS-STAP and the LSMI algorithms.

APPENDIX A
PROOF OF SECTION III-C

Proof: The output SINR of proposed STAP strategy SINRl1

is

SINRl1 = E

[
σ2
t∥∥rHt r−wH
l1
Br
∥∥2

2

]
, (48)

where wl1 is the filter weight vector computed by the proposed
STAP strategy and the denominator can be rewritten as

Ψ =
∥∥rHt r−wH

l1Br
∥∥2

2

= rHt Rrt − 2<
{
wH
l1BRrt

}

+ wH
l1BRBHwl1 . (49)

Substituting (22) into (16), (49) can be obtained as

Ψ = Ψopt + ∆Ψ, (50)

where Ψopt denotes the noise output power of the conventional
STAP strategy, and ∆Ψ is the deviation between the proposed
STAP strategy and conventional STAP strategy, respectively
given by

Ψopt = rHt Rrt − rHt RBH
(
BRBH

)−1
BRrt, (51)

∆Ψ = λ2sign
(
wH
l1

) (
BRBH

)−1
sign (wl1) . (52)

Usually, using the eigenvalue decomposition, the interfer-
ence covariance matrix R can be presented as [36]

R =

NM∑

k=1

γkuku
H
k , (53)

where γ1 > γ2 > · · · > γNM is the eigenvalues of the inter-
ference covariance matrix, uk is eigenvector corresponding to
γk, k = 1, 2, · · · , NM . In a data adaptive mode of operation,
the steady-state performance of the GSC STAP processor and
the direct-form STAP processor based on linearly constrained
minimum variance (LCMV) criterion are identical [35]. The
optimal weight vector of the direct-form STAP processor can
be described by

wdfp =

(
rt −

NM∑

k=1

(
1− κ̃

γk

)
uku

H
k rt

)
, (54)

where

1

κ̃
= rHt R−1rt

=

NM∑

k=1

1

γk
rHt uku

H
k rt. (55)

The total optimal weight vector of the GSC STAP processor
can be obtained from (11), which is

wgsc =
(
rt −BH

(
BRBH

)−1
BRrt

)
. (56)

Comparing (56) with (55), we have

BH
(
BRBH

)−1
BR =

NM∑

k=1

(
1− κ̃

γk

)
uku

H
k , (57)
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With some matrix transformations, we can obtain
(
BRBH

)−1

from the above equation, described as

(
BRBH

)−1
=

NM∑

k=1

1

γk

(
1− κ̃

γk

)
Buku

H
k BH . (58)

In the above equation, we use the fact that BBH = I [39].
Therefore, inserting (53), (57) and (58) in (51) and (52), we
get

Ψopt =

NM∑

k=1

γkr
H
t uku

H
k

[
I−

NM∑

k=1

(
1− κ̃

γk

)
uku

H
k

]
rt

=

NM∑

k=1

κ̃rHt uku
H
k rt

= κ̃

NM∑

k=1

∥∥rHt uk
∥∥2

2

= κ̃, (59)

∆Ψ = λ2
NM∑

k=1

1

γk

(
1− κ̃

γk

)
sign

(
wH
l1

)
Buku

H
k BHsign (wl1)

= λ2
NM∑

k=1

1

γk

(
1− κ̃

γk

)∥∥sign
(
wH
l1

)
Buk

∥∥2

2
. (60)

In (59), we use the normalization condition rHt rt = 1. Let σ2
n

denotes the single-channel, single-pulse noise power, ξ denotes
the INR, and χ denotes the rank of the interference covariance
matrix (i.e. the number of large eigenvalues). For high INR
(i.e., the interference is dominant ξ � 1), then γmin = σ2

n,
and 1

κ̃ in (55) can be simplified as

1

κ̃
≈ 1

γmin

NM∑

k=χ+1

rHt uku
H
k rt

=
1

γmin

[
1−

χ∑

k=1

rHt uku
H
k rt

]

=
1

σ2
n

[
1−

χ∑

k=1

rHt uku
H
k rt

]
. (61)

Thus, the ratio ∆Ψ
Ψopt

, defined by (59) and (60), is computed
by

∆Ψ

Ψopt
= λ2

NM∑

k=1

1

γk

(
1

κ̃
− 1

γk

)∥∥sign
(
wH
l1

)
Buk

∥∥2

2

≈ λ2

γmin

(
1

κ̃
− 1

γmin

)[
1−

χ∑

k=1

∥∥sign
(
wH
l1

)
Buk

∥∥2

2

]

=
λ2

σ4
n

χ∑

k=1

rHt uku
H
k rt

×
[

χ∑

k=1

∥∥sign
(
wH
l1

)
Buk

∥∥2

2
− 1

]
. (62)

Using the Cauchy-Schwarz inequality to (62), we obtain

∆Ψ

Ψopt
6

λ2

σ4
n

χ∑

k=1

rHt uku
H
k rt

×
[

χ∑

k=1

∥∥sign
(
wH
l1

)
B
∥∥2

2
‖uk‖22 − 1

]

= (χκw − 1)
λ2

σ4
n

χ∑

k=1

rHt uku
H
k rt, (63)

where κw denotes the number of nonzero coefficients of the
steady-state GSC-STAP filter weight vector.
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