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Robust Reduced-Rank Adaptive LCMV
Beamforming Algorithms Based on Joint
Iterative Optimization of Parameters

Rodrigo C. de Lamare

Abstract

This chapter presents reduced-rank linearly constrained minimum variance (LCMV)
algorithms based on the concept of joint iterative optimization of parameters. The
proposed reduced-rank scheme is based on a constrained robust joint iterative op-
timization (RJIO) of parameters according to the minimum variance criterion. The
robust optimization procedure adjusts the parameters of a rank-reduction matrix,
a reduced-rank beamformer and the diagonal loading in an alternating manner.
LCMV expressions are developed for the design of the rank-reduction matrix and
the reduced-rank beamformer. Stochastic gradient and recursive least-squares adap-
tive algorithms are then devised for an efficient implementation of the RJIO ro-
bust beamforming technique. Simulations for a application in the presence of uncer-
tainties show that the RJIO scheme and algorithms outperform in convergence and
tracking performances existing algorithms while requiring a comparable computa-
tional complexity.

Key words: Adaptive beamforming, constrained optimization, robust techniques,
reduced-rank methods, iterative methods.

1.1 Introduction

In the last decade, techniques have attracted a significant interest from researchers
and engineers, and found applications in radar, sonar, wireless communications and
seismology [1, 2]. The optimal linearly constrained minimum variance (LCMV)
beamformer is designed in such a way that it minimizes the array output power
while maintaining a constant response in the direction of a signal of interest (SoI)
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[1, 2, 3]. However, this technique requires the computation of the inverse of the in-
put data covariance matrix and the knowledge of the array steering vector. Adaptive
versions of the LCMV beamformer were subsequently reported with stochastic gra-
dient (SG) [4, 5] and recursive least squares (RLS) [7] algorithms. A key problem
with techniques is the impact of uncertainties which can result in a considerable per-
formance degradation. These mismatches are caused by local scattering, imperfectly
calibrated arrays, insufficient training and imprecisely known wave field propaga-
tion conditions [2].

In the last decades a number of robust approaches have been reported that ad-
dress this problem [8]-[31]. These techniques can be classified according to the ap-
proach adopted to deal with the mismatches: techniques based on diagonal loading
[8, 10, 13, 14], methods that estimate the mismatch or equivalently the actual steer-
ing vector [11, 12, 15], and techniques that exploit properties such as the constant
modulus of the signals [16, 17, 18] and the low-rank of the interference subspace
[9],[19]-[31]. Furthermore, beamforming algorithms usually have a trade-off be-
tween performance and computational complexity which depends on the designer’s
choice of the adaptation algorithm [3, 6]. A number of robust designs can be cast
as optimization problems which end up in the so-called second-order cone (SOC)
program, which can be solved with interior point methods and have a computational
cost that is super cubic in the number of parameters of the beamformer. This poses
a problem for beamforming systems that have a large number of parameter and op-
erate in time-varying scenarios, which require the beamformer to be recomputed
periodically.

A robust technique for short-data record scenarios is reduced-rank signal pro-
cessing [19]-[31], which is very well suited for systems with a large number of
parameters. These algorithms are robust against short data records, have the ability
to exploit the low-rank nature of the signals encountered in beamforming applica-
tions and can resist moderate steering vector mismatches. These methods include
the computationally expensive eigen-decomposition techniques [19]-[20] to alter-
native approaches such as the auxiliary-vector filter (AVF) [21],[26], the multistage
Wiener filter (MSWF) [22], [24], [25] which are based on the Krylov subspace,
and joint iterative optimization (JIO) approaches [23, 27, 28, 30, 29]. The JIO tech-
niques reported in [27, 28, 30] outperform the eigen-decomposition- and Krylov-
based methods and are amenable to efficient adaptive implementations. However,
robust versions of JIO methods have not been considered so far.

In this chapter, robust LCMV reduced-rank beamforming algorithms based on
constrained robust joint iterative optimization (RJIO) of parameters are developed.
The basic idea of the RJIO approach is to design a bank of robust adaptive beam-
formers which is responsible for performing dimensionality reduction, whereas the
robust reduced-rank beamformer effectively forms the beam in the direction of the
SoI and takes into account the uncertainty. Robust LCMV expressions for the design
of the rank reduction matrix and the reduced-rank beamformer are proposed that can
appropriately deal with array steering vector mismatches. SG and RLS algorithms
for efficiently implementing the method are then devised. An automatic rank adap-
tation algorithm for determining the most adequate rank for the RJIO algorithms is
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described. A simulation study of the proposed RJIO algorithms and existing tech-
niques is considered.

This chapter is organized as follows. The system and signals models are de-
scribed in Section 1.2. The full-rank and the reduced-rank LCMV filtering problems
are formulated in Section 1.3. Section 1.4 is dedicated to the RJIO method, whereas
Section 1.5 is devoted to the derivation of the adaptive SG and RLS algorithms,
the analysis of the computational complexity, and the rank adaptation technique.
Section 1.6 presents and discusses the simulation results and Section 1.7 gives the
concluding remarks.

1.2 System Model

Let us consider a sensor-array system equipped with a uniform linear array (ULA)
of M elements, as shown in Fig. 1. Assuming that the sources are in the far field of
the array, the signals of K narrowband sources impinge on the array (K < M) with
unknown directions of arrival (DOA) θl for l = 1,2, . . . ,K.
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Fig. 1.1 Block diagram of a sensor-array array system with interfering signals
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The input data from the antenna array can be organized in an M × 1 vector ex-
pressed by

r(i) = A(θ)s(i)+n(i) (1.1)

where
A(θ) = [a(θ1), . . . ,a(θK)]

is the M ×K matrix of signal steering vectors. The M × 1 signal steering vector is
defined as

a(θl) =

[
1,e−2π j ds

λc
cosθl , . . . ,e−2π j(M−1) ds

λc
cosθl

]T

(1.2)

for a signal impinging at angle θl , l = 1,2, . . . ,K, where ds = λc/2 is the inter-
element spacing, λc is the wavelength and (.)T denotes the transpose operation. The
vector n(i) denotes the complex vector of sensor noise, which is assumed to be
zero-mean and Gaussian with covariance matrix σ2I.

1.3 Problem Statement and Design of Adaptive Beamformers

In this section, the problem of designing algorithms against steering vector mis-
matches is stated. The design of robust full-rank and reduced-rank LCMV beam-
formers is introduced along with the modelling of steering vector mismatches. The
presumed array steering vector for the k-th desired signal is given by ap(θk) =
a(θk)+e, where e is the M×1 mismatch vector and a(θk) is the actual array steering
vector which is unknown by the system. By using the presumed array steering vec-
tor ap(θk), the performance of a conventional LCMV beamformer can be degraded
significantly. The problem of interest is how to design a beamformer that can deal
with the mismatch and minimize the performance loss due to the uncertainty.

1.3.1 Adaptive LCMV Beamformers

In order to perform beamforming with a full-rank LCMV beamformer, we linearly
combine the data vector r(i) = [r(i)1 r(i)2 . . . r(i)M ]T with the full-rank beamformer
w = [w1 w2 . . . wM]T to yield

x(i) = wHr(i) (1.3)

The optimal LCMV beamformer is described by the M × 1 vector w, which is
designed to solve the following optimization problem

minimize E[|wHr(i)|2] = wHRw

subject to wHa(θk) = 1
(1.4)

The solution to the problem in (1.4) is given by [3, 4]
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wopt =
R−1a(θk)

aH(θk)R−1a(θk)
) , (1.5)

where a(θk) is the steering vector of the SoI, r(i) is the received data, the covariance
matrix of r(i) is described by R = E[r(i)rH(i)], (·)H denotes Hermitian transpose
and E[·] stands for expected value. The beamformer w(i) can be estimated via SG
or RLS algorithms [3]. However, the laws that govern their convergence and tracking
behaviors imply that they depend on M and on the eigenvalue spread of R.

A reduced-rank algorithm must extract the most important features of the pro-
cessed data by performing dimensionality reduction. This mapping is carried out by
a M×D rank-reduction matrix SD on the received data as given by

r̄(i) = SH
Dr(i) (1.6)

where, in what follows, all D-dimensional quantities are denoted with a ”bar”. The
resulting projected received vector r̄(i) is the input to a beamformer represented by
the D vector w̄ = [w̄1 w̄2 . . . w̄D]

T . The filter output is

x̄(i) = w̄H r̄(i) (1.7)

In order to design a reduced-rank beamformer w̄ we consider the following opti-
mization problem

minimize E
[
|w̄H r̄(i)|2

]
= w̄H R̄w̄

subject to w̄H ā(θk) = 1
(1.8)

The solution to the above problem is

w̄opt =
R̄−1ā(θk)

āH(θk)R̄
−1ā(θk)

=
(SH

DRSD)
−1SH

Da(θk)

aHSD(θk)(SH
DRSD)−1SH

Da(θk)
,

(1.9)

where the reduced-rank covariance matrix is R̄ = E[r̄(i)r̄H(i)] = SH
DRSD and the

reduced-rank steering vector is ā(θk)= SH
Da(θk). The above development shows that

the choice of SD to perform dimensionality reduction on r(i) is very important, and
can lead to an improved convergence and tracking performance over the full-rank
beamformer. A key problem with the full-rank and the reduced-rank beamformers
described in (1.5) and (1.9), respectively, is that their performance is deteriorated
when they employ the presumed array steering vector ap(θk). In these situations
it is fundamental to employ a robust technique that can mitigate the effects of the
mismatches between the actual and the presumed steering vector.
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1.3.2 Robust Adaptive LCMV Beamformers

An effective technique for is the use of diagonal loading strategies [8, 10, 13, 14].
In what follows, robust full-rank and reduced-rank LCMV beamforming designs
are described. A general approach based on diagonal loading is employed for both
full-rank and reduced-rank designs.

A robust full-rank LCMV beamformer represented by an M×1 vector w can be
designed by solving the following optimization problem

minimize E[|wHr(i)|2]+ ε2||w||2 = wHRw+ ε2wHw

subject to wHa(θk) = 1,
(1.10)

where ε2 is constant that needs to be chosen by the designer. The solution to the
problem in (1.10) is given by

wopt =
(R+ ε2IM)−1ap(θk)

aH
p (θk)(R+ ε2IM)−1ap(θk)

) (1.11)

where ap(θk) is the presumed steering vector of the SoI and ID is an M-dimensional
identity matrix. It turns out that the adjustment of ε2 needs to be obtained numeri-
cally by an optimization algorithm.

In order to design a robust reduced-rank LCMV beamformer w̄ we follow a sim-
ilar approach to the full-rank case and consider the following optimization problem

minimize E
[
|w̄HSH

Dr(i)|2
]
+ ε2||SDw̄||2 = w̄HSH

DRSDw̄

+ ε2w̄HSH
DSDw̄

subject to w̄HSH
Dap(θk) = 1,

(1.12)

The solution to the above problem is

w̄opt =
(SH

DRSD + ε2ID)
−1SH

Dap(θk)

aH
p SD(θk)(SH

DRSD + ε2ID)−1SH
Dap(θk)

(1.13)

where the tuning of ε2 requires an algorithmic approach as there is no closed-form
solution and ID is a D-dimensional identity matrix.

1.4 Robust Reduced-Rank Beamforming Based on Joint
Iterative Optimization of Parameters

In this section, the principles of the robust reduced-rank beamforming scheme based
on joint iterative optimization of parameters, termed RJIO, is introduced. The RJIO
scheme, depicted in Fig. 2, employs a rank-reduction matrix SD(i) with dimensions
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M ×D to perform dimensionality reduction on a data vector r(i) with dimensions
M × 1. The reduced-rank beamformer w̄(i) with dimensions D× 1 processes the
reduced-rank data vector r̄(i) in order to yield a scalar estimate x̄(i). The rank-
reduction matrix SD(i) and the reduced-rank beamformer w̄(i) are jointly optimized
in the RJIO scheme according to the MV criterion subject to a robust constraint that
ensures that the beamforming algorithm is robust against steering vector mismatches
and short data records.

r(i) Dimensionality
Reduction

Reduced-Rank
Beamforming

r̄(i)

M × 1 D × 1

M ×D D × 1

x̄(i)

SD(i) w̄(i)

Robust
Algorithm

Fig. 1.2 Block diagram of the RJIO scheme

In order to describe the RJIO method, let us first consider the structure of the
M×D rank-reduction matrix

SD(i) = [ s1(i) | s2(i) | . . . |sD(i) ] (1.14)

where the columns sd(i) for d = 1, . . . , D constitute a bank of D robust beamform-
ers with dimensions M×1 as given by

sd(i) = [s1,d(i) s2,d(i) . . . sM,d(i)]T

The output x̄(i) of the RJIO scheme can be expressed as a function of the input
vector r(i), the matrix SD(i) and the reduced-rank beamformer w̄(i):

x̄(i) = w̄H(i)SH
D(i)r(i) = w̄H(i)r̄(i) (1.15)

It is interesting to note that for D = 1, the RJIO scheme becomes a robust full-rank
LCMV beamforming scheme with an addition weight parameter wD that provides
an amplitude gain. For D > 1, the signal processing tasks are changed and the robust
full-rank LCMV beamformers compute a subspace projection and the reduced-rank
beamformer provides a unity gain in the direction of the SoI. This rationale is funda-
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mental to the exploitation of the low-rank nature of signals in typical beamforming
scenarios.

The robust LCMV expressions for SD(i) and w̄(i) can be computed via the fol-
lowing optimization problem

minimize E
[
|w̄H(i)SH

D(i)r(i)|2
]
+ ε2||SD(i)w̄(i)||2 =

w̄H(i)SH
D(i)RSD(i)w̄(i)+ ε2w̄H(i)SH

D(i)SD(i)w̄(i)

subject to w̄H(i)SH
D(i)ap(θk) = 1

(1.16)

In order to solve the above problem, we resort to the method of Lagrange multipliers
[3] and transform the into an unconstrained one expressed by the Lagrangian

L (SD(i), w̄(i),ε2(i)) = E
[
|w̄H(i)SH

D(i)r(i)|2
]

+ ε2(i)w̄H(i)SH
D(i)SD(i)w̄(i))

+ [λ (w̄H(i)SH
D(i)ap(θk)−1],

(1.17)

where λ is a scalar Lagrange multiplier, ∗ denotes complex conjugate. By fixing
w̄(i), minimizing (1.17) with respect to SD(i) and solving for λ , we get

SD(i) =
(R+ ε2(i)IM)−1ap(θk)w̄H(i)R̄−1

w̄

w̄H(i)R̄−1
w̄ w̄(i)aH

p (θk)(R(i)+ ε2(i)IM)−1ap(θk)
, (1.18)

where R = E[r(i)rH(i)] and R̄w̄ = E[w̄(i)w̄H(i)]. By fixing SD(i), minimizing (1.17)
with respect to w̄(i) and solving for λ , we arrive at the expression

w̄(i) =
(R̄(i)+ ε2(i)SH

D(i)IDSD(i))−1āp(θk)

āH
p (θk)(R̄(i)+ ε2(i)SH

D(i)IDSD(i))−1āp(θk)
, (1.19)

where R̄(i) = E[SH
D(i)r(i)r

H(i)SD(i)] = E[r̄(i)r̄H(i)], āp(θk) = SH
D(i)ap(θk). Note

that the filter expressions in (1.18) and (1.19) are not closed-form solutions for w̄(i)
and SD(i) since (1.18) is a function of w̄(i) and (1.19) depends on SD(i). Thus,
it is necessary to iterate (1.18) and (1.19) with initial values to obtain a solution.
The key strategy lies in the robust joint optimization of the beamformers. The rank
D and the diagonal loading parameter ε2(i) must be adjusted by the designer to
ensure appropriate performance or can be estimated via another algorithm. In the
next section, iterative solutions via adaptive algorithms are sought for the robust
computation of SD(i), w̄(i), the diagonal loading ε(i) and the rank adaptation.

1.5 Adaptive Algorithms

In this section, adaptive SG and RLS versions of the RJIO scheme are developed
for an efficient implementation. The important issue of determining the rank of the
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scheme with an adaptation technique is considered. The computational complexity
in arithmetic operations of the RJIO-based algorithms is then detailed.

1.5.1 Stochastic Gradient Algorithm

In this part, we present a low-complexity SG adaptive reduced-rank algorithm for
an efficient implementation of the RJIO method. The basic idea is to employ an
alternating optimization strategy to update SD(i), w̄(i) and the diagonal loading ε2(i)
By computing the instantaneous gradient terms of (1.17) with respect to SD(i), w̄(i)
and ε2(i), we obtain

∇LMV S∗D(i)
= x̄∗(i)r(i)w̄H(i)+ ε2(i)SD(i)w̄(i)w̄H(i)+2λ ∗ap(θk)w̄H(i)

∇LMV w̄∗(i) = x̄∗(i)SH
D(i)r(i)+ ε2(i)SH

D(i)SD(i)w̄(i)+2λ ∗SH
D(i)ap(θk)

∇LMV ε2(i) = 2ε(i)wH(i)SH
D(i)SD(i)w̄(i)

(1.20)

By introducing the positive step sizes µs, µw and µε , using the gradient rules SD(i+
1) = SD(i)− µs∇LMV S∗D(i)

, w̄(i+ 1) = w̄(i)− µw∇LMV w̄∗(i) and ε(i+ 1) = ε(i)−
µw∇LMV ε(i), enforcing the constraint and solving the resulting equations, we obtain

SD(i+1) = SD(i)−µs
[
x̄∗(i)r(i)w̄H(i)+ ε(i)SD(i)w̄(i)w̄H(i)

−
(
aH

p (θk)ap(θk)
)−1ap(θk)w̄H(i)(x̄∗(i)aH

p (θk)r(i)+ ε(i))
]
,

(1.21)

w̄(i+1) = w̄(i)−µw
(
x̄∗(i)SH

D(i)r(i)+ ε(i)SH
D(i)SD(i)w̄(i)

+(aH
p (θk)ap(θk))

−1(x̄∗(i)rH(i)SD(i)SH
D(i)ap(θk)

+ ε(i)wH(i)SH
D(i)SD(i)SH

D(i)ap(θk)
)
,

(1.22)

ε(i+1) = ε(i)−µε w̄H(i)SH
D(i)SD(i)w̄(i), (1.23)

where x̄(i) = w̄H(i)SH
D(i)r(i). The RJIO scheme trades-off a full-rank beamformer

against one rank-reduction matrix SD(i), one reduced-rank beamformer w̄(i) and
one adaptive loading recursion operating in an alternating fashion and exchanging
information.

1.5.2 Recursive Least Squares Algorithms

Here, an RLS algorithm is devised for an efficient implementation of the RJIO
method. To this end, let us first consider the Lagrangian
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LLS(SD(i), w̄(i),ε(i)) =
i

∑
l=1

α i−l∣∣w̄H(i)SH
D(i)r(l)

∣∣2
+ ε2(i)w̄H(i)SH

D(i)SD(i)w̄(i)

+λ
(
w̄H(i)SH

D(i)ap(θk)−1
) (1.24)

where α is the forgetting factor chosen as a positive constant close to, but less than
1.

Fixing w̄(i), computing the gradient of (1.24) with respect to SD(i), equating the
gradient terms to zero and solving for λ , we obtain

SD(i) =
P(i)ap(θk)aH

p (θk)SD(i−1)
aH

p (θk)P(i)ap(θk)
(1.25)

where we defined the inverse covariance matrix P(i) = R−1(i) for convenience of
presentation. Employing the matrix inversion lemma [3], we obtain

k(i) =
α−1P(i−1)r(i)

1+α−1rH(i)P(i−1)r(i)
(1.26)

P(i) = α−1P(i−1)−α−1k(i)rH(i)P(i−1)+ ε2(i)IM (1.27)

where k(i) is the M×1 Kalman gain vector. We set P(0) = δ IM to start the recursion
of (1.27), where δ is a positive constant.

Assuming SD(i) is known and taking the gradient of (1.24) with respect to w̄(i),
equating the terms to a null vector and solving for λ , we obtain the D×1 reduced-
rank beamformer

w̄(i) =
P̄(i)SH

D(i)ap(θk)

aH
p (θk)SD(i)P̄(i)SH

D(i)ap(θk)
(1.28)

where P̄(i) = R̄−1
(i) and R̄(i) = ∑i

l=1 α i−l r̄(l)r̄H(l) is the reduced-rank input co-
variance matrix. In order to estimate P̄(i), we use the matrix inversion lemma [3] as
follows

k̄(i) =
α−1P̄(i−1)r̄(i)

1+α−1r̄H(i)P̄(i−1)r̄(i)
(1.29)

P̄(i) = α−1P̄(i−1)−α−1k̄(i)r̄H(i)P̄(i−1)+ ε2(i)ID (1.30)

where k̄(i) is the D×1 reduced-rank gain vector and P̄(i) = R̄−1
(i) is referred to as

the reduced-rank inverse covariance matrix. Hence, the covariance matrix inversion
R̄−1

(i) is replaced at each step by the recursive processes (1.29) and (1.30) for reduc-
ing the complexity. The recursion of (1.30) is initialized by choosing P̄(0) = δ̄ ID,
where δ̄ is a positive constant. The last recursion adjusts the diagonal loading ac-
cording to the following update equation

ε(i+1) = ε(i)−µε w̄H(i)SH
D(i)SD(i)w̄(i), (1.31)
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The RJIO-RLS algorithm trades-off a full-rank beamformer with M coefficients
against one matrix recursion to compute SD(i), given in (1.25)-(1.27), one D× 1
reduced-rank adaptive beamformer w̄(i), given in (1.28)-(1.30), and one recursion
to adjust the diagonal loading described in (1.31) in an alternating manner and ex-
changing information.

1.5.3 Complexity of RJIO Algorithms

Here, we evaluate the computational complexity of the RJIO and analyzed LCMV
algorithms. The complexity expressed in terms of additions and multiplications is
depicted in Table I. We can verify that the RJIO-SG algorithm has a complexity that
grows linearly with DM, which is about D times higher than the full-rank LCMV-
SG algorithm and significantly lower than the remaining techniques. If D << M
(as we will see later) then the additional complexity can be acceptable provided
the gains in performance justify them. In the case of the RJIO-RLS algorithm the
complexity is quadratic with M2 and D2. This corresponds to a complexity slightly
higher than the one observed for the full-rank LCMV-RLS algorithm, provided D is
significantly less than M, and lower than the algorithms WC-SOC [10] and WC-ME
[11].

Table 1.1 Computational complexity of LCMV algorithms

Algorithm Additions Multiplications
LCMV-SG [4] 3M+1 3M+2

LCMV-RLS [7] 3M2 −2M+3 6M2 +2M+2

RJIO-SG 3DM+4M 5DM+2M
+2D−2 +5D+2

RJIO-RLS 3M2 −M+3 7M2 +3M
+3D2 −7D+3 +7D2 +10D

SMI [24] 2/3M3 +3M2 2/3M3 +5M2

In order to illustrate the main trends in what concerns the complexity of the
proposed and analyzed algorithms, we show in Fig. 3 the complexity in terms of
additions and multiplications versus the number of input samples M. The curves
indicate that the RJIO-RLS algorithm has a complexity lower than the WC-ME [11]
and the WC-SOC [10], whereas it remains at the same level of the full-rank LCMV-
RLS algorithm. The RJIO-SG algorithm has a complexity that is situated between
the full-rank LCMV-RLS and the full-rank LCMV-SG algorithms.
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Fig. 1.3 Computational complexity in terms of arithmetic operations against M

1.5.4 Rank Adaptation

The performance of the algorithms described in the previous subsections depends on
the rank D. This motivates the development of methods to automatically adjust D on
the basis of the cost function. Differently from existing methods for rank adaptation
which use MSWF-based algorithms [24] or AVF-based recursions [26], we focus
on an approach that jointly determines D based on the LS criterion computed by
the filters SD(i) and w̄D(i), where the subscript D denotes the rank used for the
adaptation. In particular, we present a method for automatically selecting the ranks
of the algorithms based on the exponentially weighted a posteriori least-squares
type cost function described by

C (SD(i−1), w̄D(i−1)) =
i

∑
l=1

α i−l∣∣w̄H
D(i−1)SD(i−1)r(l)|2, (1.32)

where α is the forgetting factor and w̄D(i − 1) is the beamformer with rank D.
For each time interval i, we can select the rank Dopt which minimizes C (SD(i−
1), w̄D(i − 1)) and the exponential weighting factor α is required as the optimal
rank varies as a function of the data record. The key quantities to be updated are
the rank-reduction matrix SD(i), the beamformer w̄D(i), the associated presumed
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reduced-rank steering vector āp(θk) and the inverse of the reduced-rank covariance
matrix P̄(i) (for the RJIO-RLS algorithm). To this end, we define the following
extended rank-reduction matrix SD(i) and the extended reduced-rank beamformer
weight vector w̄D(i) as follows:

SD(i) =

 s1,1 s1,2 . . . s1,Dmin . . . s1,Dmax
...

...
...

...
. . .

...
sM,1 sM,2 . . . sM,Dmin . . . sM,Dmax

 and w̄D(i) =



w1
w2
...

wDmin
...

wDmax


(1.33)

The extended rank-reduction matrix SD(i) and the extended reduced-rank beam-
former weight vector w̄D(i) are updated along with the associated quantities ā(θk)
and P̄(i) (only for the RLS) for the maximum allowed rank Dmax and then the rank
adaptation algorithm determines the rank that is best for each time instant i using
the cost function in (1.32). The rank adaptation algorithm is then given by

Dopt = arg min
Dmin≤d≤Dmax

C (SD(i−1), w̄D(i−1)) (1.34)

where d is an integer, Dmin and Dmax are the minimum and maximum ranks allowed
for the reduced-rank beamformer, respectively. Note that a smaller rank may provide
faster adaptation during the initial stages of the estimation procedure and a greater
rank usually yields a better steady-state performance. Our studies reveal that the
range for which the rank D of the proposed algorithms have a positive impact on the
performance of the algorithms is limited, being from Dmin = 3 to Dmax = 8 for the
reduced-rank beamformer recursions. These values are rather insensitive to the sys-
tem load (number of users), to the number of array elements and work very well for
all scenarios and algorithms examined. The additional complexity of the proposed
rank adaptation algorithm is that it requires the update of all involved quantities
with the maximum allowed rank Dmax and the computation of the cost function in
(1.32). This procedure can significantly improve the convergence performance and
can be relaxed (the rank can be made fixed) once the algorithm reaches steady state.
Choosing an inadequate rank for adaptation may lead to performance degradation,
which gradually increases as the adaptation rank deviates from the optimal rank.

1.6 Simulations

In this section, the performance of the RJIO and some existing beamforming algo-
rithms is assessed using computer simulations. A sensor-array system with a ULA
equipped with M sensor elements is considered for assessing the beamforming al-
gorithms. In particular, the performance of the RJIO scheme with SG and RLS al-
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gorithms is compared with existing techniques, namely, the full-rank LCMV-SG [4]
and LCMV-RLS [7], and the robust techniques reported in [10], termed WC-SOC,
and [11], called Robust-ME, and the optimal linear beamformer that assumes the
knowledge of the covariance matrix and the actual steering vector [2]. In particular,
the algorithms are compared in terms of the signal-to-interference-plus-noise ratio
(SINR), which is defined for the schemes as

SINR(i) =
w̄H(i)SH

D(i)RsSD(i)w̄(i)
w̄H(i)SH

D(i)RISD(i)w̄(i)
, (1.35)

where Rs is the covariance matrix of the desired signal and RI is the covariance
matrix of the interference and noise in the environment. Note that for the full-rank
schemes the SINR(i) assumes SH

D(i) = IM . For each scenario, 200 runs are used
to obtain the curves. In all simulations, the desired signal power is σ2

d = 1, and the

signal-to-noise ratio (SNR) is defined as SNR=
σ2

d
σ2 . The beamformers are initialized

as w̄(0) = [1 0 . . . 0] and SD(0) = [IT
D 0T

D×(M−D)], where 0D×M−D is a D× (M−D)
matrix with zeros in all experiments.

In order to assess the performance of the RJIO and other existing algorithms in
the presence of uncertainties, we consider that the array steering vector is corrupted
by local coherent scattering

ap(θk) = a(θk)+
4

∑
k=1

e jΦk asc (θk) , (1.36)

where Φk is uniformly distributed between zero and 2π and θk is uniformly dis-
tributed with a standard deviation of 2 degrees with the assumed direction as the
mean. The mismatch changes for every realization and is fixed over the snapshots
of each simulation trial. In the first two experiments, we consider a scenario with
7 interferers at −60o, −45o, 30o −15o, 0o, 45o, 60o with powers following a log-
normal distribution with associated standard deviation 3 dB around the SoI’s power
level. The SoI impinges on the array at 30o. The parameters of the algorithms are
optimized.

We first evaluate the SINR performance of the analyzed algorithms against the
rank D using optimized parameters (µs, µw and forgetting factors λ ) for all schemes
and N = 250 snapshots. The results in Fig. 1.4 indicate that the best rank for the
RJIO scheme is D = 4 (which will be used in the second scenario) and it is very
close to the optimal full-rank LCMV beamformer that has knowledge about the
actual steering vector. An examination of systems with different sizes has shown that
D is relatively invariant to the system size, which brings considerable computational
savings. In practice, the rank D can be adapted in order to obtain fast convergence
and ensure good steady-state performance and tracking after convergence.

We display another scenario in Fig. 1.5 where the robust adaptive LCMV beam-
formers are set to converge to the same level of SINR. The parameters used to obtain
these curves are also shown. The curves show an excellent performance for the RJIO
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Fig. 1.4 SINR performance of LCMV algorithms against rank (D) with M = 32, SNR = 15 dB,
N = 250 snapshots

scheme which converges much faster than the full-rank-SG algorithm, and is also
better than the more complex WC-SOC [10] and Robust-ME [11] schemes.

In the next example, we consider the design of the RJIO-SG and RJIO-RLS al-
gorithms equipped with the rank adaptation method described in Section V.D. We
consider 5 interferers at −60o, −30o, 0o, 45o, 60o with equal powers to the SoI,
which impinges on the array at 15o. Specifically, we evaluate the rank adaptation
algorithms against the use of fixed ranks, namely, D = 3 and D = 8 for both SG
and RLS algorithms. The results show that the rank adaptation method is capa-
ble of ensuring an excellent trade-off between convergence speed and steady-state
performance, as illustrated in Fig 1.6. In particular, the algorithm can achieve a sig-
nificantly faster convergence performance than the scheme with fixed rank D = 8,
whereas it attains the same steady state performance.

In the last experiment, we consider a non-stationary scenario where the system
has 6 users with equal power and the environment experiences a sudden change at
time i= 800. The 5 interferers impinge on the ULA at −60o, −30o, 0o, 45o, 60o with
equal powers to the SoI, which impinges on the array at 15o. At time instant i = 800
we have 3 interferers with 5 dB above the SoI’s power level entering the system
with DoAs −45o, −15o and 30o, whereas one interferer with DoA 45o and a power
level equal to the SoI exits the system. The RJIO and other analyzed algorithms
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Fig. 1.5 SINR performance of robust LCMV algorithms against snapshots with M = 32, SNR= 15
dB

are equipped with rank adaptation techniques and have to adjust their parameters
in order to suppress the interferers. We optimize the step sizes and the forgetting
factors of all the algorithms in order to ensure that they converge as fast as they
can to the same value of SINR. The results of this experiment are depicted in Fig.
1.7. The curves show that the RJIO algorithms have a superior performance to the
existing algorithms considered in this study.

1.7 Conclusions

We have investigated robust reduced-rank LCMV beamforming algorithms based on
robust joint iterative optimization of beamformers. The RJIO reduced-rank scheme
is based on a robust constrained joint iterative optimization of beamformers accord-
ing to the minimum variance criterion. We derived robust LCMV expressions for
the design of the rank-reduction matrix and the reduced-rank beamformer and de-
veloped SG and RLS adaptive algorithms for their efficient implementation along
with a rank adaptation technique. The numerical results for an application with a
ULA have shown that the RJIO scheme and algorithms outperform in convergence,
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steady state and tracking the existing robust full-rank and reduced-rank algorithms
at comparable complexity. The proposed algorithms can be extended to other array
geometries and applications.
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