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Abstract—This paper proposes a widely linear (WL)
constrained minimum variance beamforming algorithms based
on the set-membership filtering (SMF) framework. The proposed
SMF-WL algorithms have the advantages of the widely linear
processing concept and keep the computational cost low with the
SMF technique. We present two versions: one using least-mean
square (LMS) and another using recursive least squares (RLS)
recursions. It is shown that the proposed algorithms have
better steady state and convergence performances with a lower
computational cost when compared with existing methods.

Index Terms—adaptive beamforming, widely linear processing,
set-membership filtering, antenna array.

I. INTRODUCTION

Some modern electronic systems like radar, sonar, wireless

communication use antenna array and depend on adaptive

signal processing techniques [1], [2]. A great deal of research

has been done on modified versions of the optimal linearly

constrained minimum variance (LCMV) solution [1], [2], [3].

With standard LCMV algorithms, the second-order statistics

of the incoming data are extensively used. Widely-linear (WL)

processing [4], [5], [6] can improve the performance of the

LCMV based algorithms when the data are second-order non-

circular. However, the use of the WL techniques results in a

greater computational cost as compared to their conventional

linear counterparts due to the requirement of a larger number

of parameters in the design.

To face the extra computational cost of the WL solution

other techniques have been used. For example, the reduced-

rank algorithms [7]-[13]. In this case, a projection matrix is

used to reduce the dimension of the problem. The advantage

is appreciable, especially, when a large number of antennas

is used. However, the algorithm demands two inter-related

adaptations: the reduced-rank filter and the projection matrix.

Another way to reduce the computational cost is using the set-

membership filtering (SMF) techniques [17], [15], [16], [18],

[19]. In this case, an update is conducted if the estimation

error or the array output is greater than a predetermined bound.

The complexity of the bound computation is very low and is

conducted all the time, but the costly information evaluation

is done much less frequently, so the whole computation cost

is very low. Another advantage is the additional flexibility that

allows a designer to choose between a high performance and

a low computational cost.

This paper develops constrained adaptive algorithms by

combining widely linear processing and set-membership fil-

tering techniques. The first algorithm is based on a least-mean

square strategy and is called set-membership widely-linear

least-mean square (SMF-WL-LMS) algorithm. The second
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algorithm resorts to a least-squares type of adaptation and is

termed as set-membership widely-linear recursive least squares

(SMF-WL-RLS) algorithm. We study the performance of the

proposed algorithms via simulations and compare them against

existing algorithms in the literature.

This paper is structured as follows. Section II presents the

system and signal models of a sensor array processing system

and the mathematical model employed. Section III states the

beamforming design problem that we are interested in solving.

Section IV presents the main concepts of set-membership

widely-linear processing. Section V details the derivation of

the proposed SMF-WL-LMS and SMF-WL-RLS algorithms.

Section VI is devoted to the presentation and discussion of the

simulation results, whereas Section VII gives the conclusions

of this work.

II. SYSTEM AND SIGNAL MODELS

We consider a sensor array processing system equipped

with a uniform linear array (ULA) with M elements and

K narrow-band sources in the far field, as depicted in Fig.

1. The number of array elements is greater than the number

of sources (M > K). Each source has an unknown direction

of arrival (DOA). The vector of DOAs is expressed by θ =
[θ1, . . . , θK ]T and the steering vector of user l is represented
by

a(θl) =
[

1, e−2πj0 ds
λc

cos θl , . . . , e−2πj(M−1) ds
λc

cos θl
]T

∈ C
M

(1)

where ds = λc/2 is the inter-element spacing, λc is the

wavelength and T denotes the transpose operation.

The received vector from the linear array can be modeled

as

x = A(θ)s+ n ∈ C
M (2)

where A(θ) = [a(θ1), . . . ,a(θK)] ∈ CM×K is the matrix

with all steering vectors, s ∈ CK is the data vector from the

K sources and the vector n ∈ CM models the complex noise

of each sensor which is assumed to be zero-mean Gausian

with covariance matrix σ2I .

III. PROBLEM STATEMENT

The output of the array is the scalar y = wHx where

w = [w1, . . . , wM ]T ∈ CM is the weight vector and

x = [x1, . . . , xM ]T ∈ C
M is the snapshot from the array.

Assuming that the signal of interest has a DOA equal to θk,
the LCMV solution is the weight vector w that solves the

following equation:

minimize E[|wH
x|2] = w

H
Rxw

subject to w
H
a(θk) = 1

(3)

where Rx = E[xxH ] ∈ CM×M is the covariance matrix of

the received data and H indicates the Hermitian operator . This
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Fig. 1. Array processing system with a ULA with M sensors and K signals.

problem has a well-known solution. For example [3] and [20]

give the following answer:

wopt =
Rx

−1
a(θk)

aH(θk)Rx
−1

a(θk)
(4)

Using adaptive techniques the filter weights w can be esti-

mated with well known algorithms such as least-mean square

(LMS) or recursive least squares (RLS). The convergence and

tracking performance depend on M and on the eigenvalue

spread of Rx.

IV. SET-MEMBERSHIP WIDELY-LINEAR PROCESSING

TECHNIQUES

It has been shown in [4], [5] that widely-linear processing

algorithms can be used to improve the performance of the

LCMV solution when non-circular data are processed. In some

cases such as BPSK the improper modulation results in non-

circularity. That means, the covariance matrix R = [xxH ]
cannot describe all the second-order statistics of the received

signal x. This is reason why the pseudo-covariance matrix

R = [xxT ] is taken in account. A simple way to do that is to

use a transformation τ that augments the original vector with

its own complex conjugate as indicated by

x
τ
→ xa : xa = [xT ,xH ]T ∈ C

2M (5)

where
τ
→ denotes the bijective transformation for the WL

algorithm. For the two complex vectors w and x and their

augmented versions wa and xa it is important to note that

wH
a xa = xT

aw
∗

a = 2R{xHw} where ∗ indicates the complex

conjugate. It is clear that because of the bijective transfor-

mation, the WL filter has to deal with vectors with double

the size when compared with the linear one. This means more

computational cost and may also result in a slow convergence.

To overcome the extra computational cost resulting from

WL technique a set-membership filtering (SMF) solution may

be used [7], [9], [10]. In this case, a new solution wa is

computed only when the output error or the array output is

greater than a previously predetermined bound δ. That means,
the solution wa is updated only when the bound condition

|y|2 ≤ |δ|2 is not matched. The SMF algorithm has two

steps: 1) information evaluation and computation of the bound

and 2) update of the weight wa if the bound is exceeded.

The information evaluation does not usually require much

complexity and if the update of the wa is not so frequent,

the whole computational cost is substantially reduced.

The parameter space (space solution) consists of all possible

values of {wa}. At each time instant i several values of {wa}
are consistent with the bound: |y(i)|2 ≤ |δ(i)|2. For that

reason, the solution to the proposed SMF-WL is a set in this

parameter space and it receives the name: constraint set. We

use Si to represent this set as:

Si = {wa ∈ C
2M : |wH

a xa(i)|
2 ≤ |δi|

2}. (6)

Some elements of Si may be consistent with the bound even

for different instants of time i, that means, for different data
xa(i). Therefore, we define the feasibility set, designed by Fi

as the intersection of the constraint set for a period of time

(l = 1, ..., i), stated as

Fi =

i
⋂

l=1

Sl. (7)

The feasibility set is defined for all possible data pairs D =
{θk,xa}, where θk is the DOA of the signal of interest. The

goal is to develop an adaptive algorithm that updates the

parameter wa, while keeping it within the feasibility set. In an

ideal case, Fi would include all solutions wa that satisfy the

constraint with i → ∞. In pratice, the larger the observation

data space xa, the smaller is the feasibility set. By taking this

into account, as a practical set for the proposed algorithm, we

define the membership set Mi as:

Mi =

i
⋂

l=1

Sl. (8)

with i kept under an adequate upper limit, that means, i is
finite. Of course Fi is the limiting set for Mi. In other words,

Mi converge to Fi as the data pairs {θk,xa} traverse D
completely.

V. PROPOSED ALGORITHMS

The block diagram for the proposed SMF-WL solutions is

presented in Fig. 2. The received data vector x(i) ∈ CM is

augmented by the operator
τ
→ resulting in the augmented data

xa(i) ∈ C2M . The output y(i) is generated with the use of the
augmented vector of weights wa(i) ∈ C2M in the following

way: y(i) = wH
a (i)xa(i). The adaptive algorithm using the

criterion defined by the SMF updates the weights wa(i).

τ
Operator Filter

ya(i)

SMF-WL
Adaptive
Algorithm

xa(i)x (i) wa(i)

Fig. 2. Block diagram for the SMF-WL proposed solution.



In order to solve the beamforming problem for the user of

interest which has a DOA equal to θk we propose the widely-

linear LCMV optimization, stated as:

minimize E[|y|2] = E[|wH
a xa|

2] = w
H
a Raxwa

subject to w
H
a aa(θk) = 1

(9)

where the augmented steering vector in the direction of interest

is aa(θk) = [aT (θk),a
H(θk)]

T ∈ C2M . The covariance

matrix is augmented to Rax and has a block structure as

depicted below:

Rax = E[xa(i)x
H
a (i)] =

[

Rx Rcx

R
∗

cx R
∗

x

]

∈ C
2M×2M (10)

where Rcx = E[xxT ]. If the data are modelled by equation

(2), then Rx = AA
H + Iσ2

n and Rcx = AA
T .

The problem presented in (9) can be solved [3], [20]

using Lagrange Multipliers which transform the constrained

optimization into an unconstrained one:

L(wa(i), λl) = E
[

|wH
a (i)xa(i)|

2
]

+ 2<[λl(w̄
H
a (i)aa(θk)− 1]

(11)

where λl is a scalar Lagrange multiplier and the <[.] selects
the real part of its arguments. The solution to this problem is

given by [3], [20] as:

wa−opt =
R

−1
axaa(θk)

aH
a (θk)R

−1
axaa(θk

) (12)

A. The Proposed SMF-WL-LMS Algorithm

In this section we present a low-complexity set member-

ship (SMF) widely linear (WL) least mean squares (LMS)

algorithm. The instantaneous gradients of (11) with respect to

w∗

a and λl are

∇Lw∗
a
= Raxwa + 2aa(θk)λ

∗

l

∇Lλl
= 2(wH

a + 2aa(θk)− 1).
(13)

To construct the LMS adaptation [3] we use the gradient

as wa(i + 1) = wa(i) − µ∇Lw∗
a
where µ is the step size.

Solving the equations and using the constraint, the result for

the WL-LMS solution is given by

wa(i+1) = wa(i)−µy∗(i)
(

I−
aa(θk)a

H
a (θk)

aH
a (θk)aa(θk)

)

xa(i) (14)

It is clear that the widely-linear solution has doubled the

dimension of the problem, that is wa ∈ C2M . To mitigate

this disadvantage, we propose the use of SMF techniques as

depicted by the fluxogram in Fig 3.

As can be seen, the solution wa is not updated at each

snapshot, but only when |y|2 > |δ|2. It is possible to choose

between performance and computacional cost by tuning the

bound parameter δ. The greater the update rate, the better

is the performance and the higher is the computational cost.

The choice of the bound parameter is not so simple. A static

bound, may be a problem because of the risk of underbounding

or overbounding. Therefore, we propose a variable bound as

shown below:

Compute

|y|2and|δ|2

Compute next
wa and µ

Yes

No

Next
Snapshot

|y|2 ≤ |δ|2

?

Fig. 3. Fluxogram for the SMF-WL proposed solution.

δ(i) = βδ(i − 1) + (1− β)
√

α||wa||2σ̂2
n (15)

where α and β are constants and σ̂2
n is an estimate of the noise

power. The positive constant α is used as a tuning parameter

and has a direct impact on the update rate and convergence.

The positive constant β is usually close to 1, but lower than

1, in general β = 0.99, and it guarantees the proper time-

average of the evolution of the solution wa. The equation

(15) provides a smooth evaluation for δ and avoids too high

or too low values of ||wa||
2.

Since the solutionwa is not computed for each snapshot, the

convergence is a problem because it may become slow. This

can be a big problem if wa is not computed for a large period

of time. To compensate that and to garantee a fast convergence,

the step size µ is adjusted before each update of wa. The

following equation for the step size µ offers a good trade of

between convergence and misadjustment:

µ(i+ 1) =







1−
δ(i)

|ya(i)|

xH
a (i)

(

I−
aa(θk)aH

a (θk)

a
H
a (θk)aa(θk)

)

xa(i)
if |y|2 > δ2,

0 if |y|2 ≤ δ2.
(16)

B. The Proposed SMF-WL-RLS Algorithm

In this section we present a low-complexity set-membership

(SMF) widely linear (WL) recursive least squares (RLS)

algorithm [3]. The proposed constrained problem in (9) is

transformed into an unconstrained one with the method of

Lagrange multipliers and can be written in the following way

L(wa(i), µl) =

i
∑

j=1

αi−j
l

∣

∣w
H
a (i)xa(j)

∣

∣

2

+2<[λl

(

w
H
a (i)aa(θk)− 1

)

]

(17)

where αl is the forgetting factor. It must be positive and close

to 1, but less than 1. By considering the multiplier λl constant,

it is easy to compute the gradient of (17) with respect to wa.

Equating this gradient to a zero vector and solving for λl, we

obtain the filter solution as:



wa(i) =
R̂

−1

ax (i)aa(θk)

aH
a (θk)R̂ax

−1
(i)aa(θk)

(18)

where the R̂ax(i) =
∑i

j=1 α
i−j
l (i)xa(j)x

H
a (j) is the instan-

taneous input covariance matrix. Using the matrix inversion

lemma [21], [3], R−1
ax can be estimated as follows:

R
−1
ax (i) = α−1(i)R−1

ax (i− 1)−α−1(i)G(i)xH
a (i)R−1

ax (i− 1)
(19)

G(i) =
R

−1
ax (i)xa(i)

α(i) + xH
a (i)R−1

axxa(i)
(20)

where G(i) is the gain vector at instant i. As can be seen, the
inversion of the matrix Rax(i) is replaced by the recursive

process in (19) and (20). The recursion of (19) can be started

with R
−1
ax (0) = CI2M , where C is a positive constant and

I2M is the 2M × 2M identity matrix.

As stated in the previous section, the solution wa ∈ C2M

has twice the computational complexity of the the linear

solution. So, in order to minimize the problem, the SMF

technique is used again, as shown in Fig 3. This is equivalent

to performing an update whenever the condition |y|2 ≤ δ2 is

not satisfied. The bound δ is the same as stated in (15). The

forgetting factor needs to be updated to guarantee the speed of

the convergence. To this end, we propose the following update

for α:

α(i) =

{

a
H
a (θk)R

−1
ax (i)[δ(i)aa(θk)−xa(i)]

aH
a (θk)G(i)xa(i)R

−1
ax (i)[δ(i)aa(θk)−xa(i)]

if |y|2 > δ2,

0 if |y|2 ≤ δ2.
(21)

In summary, the above solution offers a good convergence and

a low computation cost.

VI. SIMULATIONS

In this section, we present computer simulations to illus-

trate the performance of the proposed algorithms: SMF-WL-

LMS and SMF-WL-RLS. These algorithms are compared

with LMS, WL-LMS, RLS, and WL-RLS algorithms. It is

assumed that in all simulations there is only one desired user

and its DOA is perfectly known. Therefore, the DOA of the

user of interest was used to initialize the vector wa(0). The
environment has a uniform linear array with 8 elements, 1

desired user plus 2 interferers with the same power. Their

DOAs are 20, 50, −30 degrees, and the first one is the user

of interest. The noise is modeled as AWGN with zero mean

and variance σ2. Fig 4 evaluates the signal-to-interference-

plus-noise (SINR) versus snapshots to show the quality of the

convergence and the steady state performance. The SINR is

calculated by

SINR(i) =
wH

a (i)Raswa(i)

wH
a (i)Raiwa(i)

, (22)

where Ras is the augmented autocorrelation matrix of the

desired signal and Rai is the augmented cross-correlation

matrix of the interferers plus noise. In Fig. 4, it is clear

the good convergence and steady-state performance of the

proposed algorithms, when compared with other algorithms.

The SMF-WL-RLS presented a performance a little better

than the SMF-WL-LMS. Is this figure, the optimums linear

Lopt and widely linear WLopt cases are shown as straight

horizontal lines. The solutions, as expected, are asymptotic to

the optimum cases.
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Fig. 4. SINR performance of algorithms against snapshots with 8 sensors,
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Fig. 5 shows the behaviour of the algorithms using a

SINR× SNR plot. This figure shows, for each SNR value,

the SINR after 1000 snapshots. To avoid flutuations, instead

of using the very last value of SINR, we used the average

over the last 50 values of SINR. It can be seen the good

performance of the proposed algorithms. The optimum cases,

Lopt and WLopt, are shown as almost straight lines.
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Fig. 6 shows the compromise between the update rate and

the performance for the SMF-WL-LMS. Since the update

rate is directly linked to the computational cost, this figure

illustrates the correlation between the performance and the

computational cost. The percentage rate was computed over

the 500 snapshots. Of course, the high update rate at the

beginning has a big contribution. It is clear that an update rate



near 20% is enough for a good performance while it offers

a great computational cost reduction. Update rates over 30%
may be inefficient. Simulations have shown that at steady state

the update rate can be as low as 10%. The SMF-WL-RLS

algorithm has similar results.
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Fig. 6. Performance versus update rate with 8 sensors, 1 user and 2 interferers
(σ2=0.1).

To illustrate the beamformer pattern, Fig. 7 shows the case

with one user and 2 interferers using the SMF-WL-LMS.

Vertical dashed lines indicate the DOAs of the interferers

and the solid line the DOA of interest. Three patterns are

shown, namely, the pattern due to initialization of wa(0), the
optimum pattern, and the pattern at the end of simulation, i.

e., the pattern after convergence. It is obvious that the final

pattern generated by the proposed algorithm is very close to

the optimum.
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VII. CONCLUSIONS

We have proposed two novel algorithms using widely linear

and set-membership filtering techniques: SMF-WL-LMS and

SMF-WL-RLS. The second-order statistics are fully exploited

with the widely linear techniques, resulting in a better steady-

state and convergence performances. Nevertheless, widely-

linear processing increases the computational cost and in order

to address this problem we have used the SMF technique. By

tuning the SMF parameters it is possible to choose a trade-off

between performance and computational cost.
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