
1Low-Complexity Adaptive Step Size

Constrained Constant Modulus SG Algorithms

for Adaptive Beamforming
Lei Wang, Rodrigo C. de Lamare, and Yun Long Cai

Communications Research Group, Department of Electronics, The University of York, York, YO10 5DD, UK

Abstract

This paper proposes two low-complexity adaptive step size mechanisms for adaptive beamforming that

employs stochastic gradient (SG) algorithms. The algorithms employ the constrained constant modulus

(CCM) criterion as the design approach. A complexity comparison is given and a convergence analysis

is developed for illustrating their properties. Theoretical expressions of the excess mean squared error

(EMSE), in both the steady-state and tracking phases, are derived for the proposed algorithms by em-

ploying the energy conservation approach. Simulation experiments are presented for both the stationary

and nonstationary scenarios, illustrating that the new algorithms achieve superior performance compared

with existing methods, and verifying the accuracy of the convergence and tracking analyses.

Key words–Adaptive beamforming techniques, spatial-division multiple access (SDMA), constrained

constant modulus (CCM), modified adaptive step size (MASS), time averaging adaptive step size (TAASS).

I. INTRODUCTION

Adaptive beamforming technology is a strategic and widely investigated technique for rejecting interfer-

ence and improving the performance in current and future communications systems [1]-[4], such as spatial-

division multiple access (SDMA) systems [5]-[6]. By employing little information of the desired signal,

e.g., direction of arrival (DOA), to form the array direction response towards the desired user, it deals

with interference cancellation, tracking of dynamic systems, robustness issues, and complexity reduction.

There have been numerous works in the literature on the performance of beamforming algorithms [7]-[9].
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DOA of the desired signal in this work can be located by DOA estimation methods, such as ESPRIT [10]

or ML [11].

The adaptive stochastic gradient (SG) method, which is commonly employed in the adaptive beamform-

ing area, is a well-known technique for solving optimization problems with different criteria, e.g., minimum

mean squared error (MMSE) [12], minimum variance (MV) [13], or constant modulus (CM) [14]-[17].

The results in [13] prove that the MV criterion leads to a computational efficient solution identical to

that obtained from the minimization of the mean squared error (MSE). The CM algorithm exploits the

low modulus fluctuation exhibited by communications signals using constant modulus constellations to

extract them from the array input. It is well known that the performance of the CM method is superior

to that of the MV [18] (hence we only consider the CM design here). However, the CM method may

converge to the local minima, and typical designs do not usually obtain the optimal solutions. Xu and Liu

[20] developed a SG algorithm on the basis of the CM criterion subject to a certain set of constraints to

circumvent the local minima problem. Unfortunately, the performance of these approaches is sensitive to

the step size. The small value of the step size will lead to slow convergence rate, whereas a large one will

lead to high misadjustment or even instability. For accelerating the convergence, recursive least squares

(RLS) algorithms were introduced in [21] using the CM approach for the performance improvement.

Nevertheless, the RLS-based beamformer cannot avoid complicated computations caused by the required

covariance matrix inversion.

A comparison of SG algorithms, which represent simple and low-complexity solutions but are subject

to slow convergence, with RLS methods, which possess fast convergence but high computational load,

suggests that it is preferable to adopt SG beamformers due to complexity and cost issues. However, its

performance (fixed step size (FSS)) is strongly dependent on the choice of the step size [22]. Actually,

the communication systems are nonstationary environments, which make it difficult to predetermine the

step size. The adaptive step size (ASS) mechanism [23], [24] was used for this aim. The requirement of

an additional update equation for the gradient of the weight vector with respect to the step size, which

increases the extra computational load, limits their applications.

This paper has two contributions, the first of which is the derivation of two SG beamforming algorithms

with the CCM approach, using two novel adaptive step size mechanisms. The origins of these mechanisms

can be traced back to the works of [25] and [26] where low-complexity adaptive step size mechanisms

were introduced for LMS algorithms. In contrast to the existing works, the mechanisms here are designed

for CCM algorithms. The additional number of operations of the proposed algorithms does not depend on

the number of sensor elements. In addition, the results are presented for the stationary and nonstationary

environments, different levels of interference, and subject to steering vector mismatch, highlighting that
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the new mechanisms achieve better performance and convergence behavior than those of previous ones

and exhibit an increased robustness.

The second contribution is in the study of characteristics of the proposed algorithms, including conver-

gence, the steady-state and tracking analyses. The condition of the step size for the convergence guarantee

of the weight vector is illustrated first. The mean and mean-square values of the step size, under the steady-

state condition, are calculated for the computation of the EMSE in the steady-state and tracking scenarios.

The EMSE here considers the effects of the additive white Gaussian noise (AWGN) and multiple access

interference (MAI) when multiple users are introduced in the system. Notice that the classical approaches

to the steady-state and tracking performance evaluation cannot be employed here since it is necessary to

determine the covariance matrix of the weight error vector, which becomes a burden for CCM algorithms

due to their inherent nonlinear updates [27]-[29]. Instead, the analyses in this paper exploit the energy-

preserving relation that holds not only just for CM algorithms but for a general class of adaptive filters

[30], [31]. This relation is carried out by a feedback structure that is composed of a lossless forward

block and a feedback path. Computer simulations are performed to confirm the accuracy of the analyses.

The remaining of this paper is organized as follows: In the next section, we outline a system model

for smart antennas. Based on this model, the adaptive CCM beamformer design using the SG method is

presented. Section III derives the proposed adaptive step size mechanisms. Section IV is dedicated to the

convergence, steady-state and tracking analyses of the new algorithms. Simulation results are provided

and discussed in Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Receiver Models

In order to describe the system structure, we assume that the sources are in the ”far field” to approx-

imate the spherically propagating wave with a plane wave and the propagation medium is lossless and

nondispersive to make the propagation speed uniform. Now, let us consider the adaptive beamforming

scheme in Fig. 1 and suppose that q narrowband signals impinge on the uniform linear array (ULA) of

m (q ≤ m) sensor elements. Note that the receiver model can be extended to arbitrary antenna arrays and

the ULA here is adopted for simplicity. The ith snapshot’s vector of sensor array outputs x(i) ∈ Cm×1

can be modeled as [32]

x(i) = A(θ)s(i) + n(i), i = 1, . . . , N (1)

where θ = [θ0, . . . , θq−1]T ∈ Cq×1 is the signal DOAs, A(θ) = [a(θ0), . . . ,a(θq−1)] ∈ Cm×q is the

matrix composed of the signal direction vectors a(θk) = [1, e−2πj d

λc
cosθk , . . . , e−2πj(m−1) d

λc
cosθk ]T ∈



4Cm×1, (k = 0, . . . , q − 1), where λc is the wavelength and d = λc/2 is the inter-element distance of

the ULA, s(i) ∈ Rq×1 is the source data with its entries are uncorrelated with each other. n(i) ∈ Cm×1

is the white sensor noise, which is assumed to be a zero-mean spatially and white Gaussian process, N

is the number of snapshots, and (·)T stands for the transpose. The output of a narrowband beamformer

is given by

y(i) = wH(i)x(i) (2)

where w(i) = [w1(i), . . . , wm(i)]T ∈ Cm×1 is the complex weight vector, and (·)H stands for the

Hermitian transpose.

B. Adaptive CCM Design Using the SG algorithm

The CCM criterion is a constrained derivation of the CM algorithm for minimizing the cost function

JCM = E[(|y(i)|p −Rp)2], i = 1, . . . , N (3)

where the constant Rp is suitably chosen in order to guarantee that the optimal weight solution is close

to the global minimum (see, e.g., [14]) and p ≥ 1 is an integer. The cost function, as it stands, is not

amenable to an optimal solution with respect to the desired signal since it is a high order cost function

if p ≥ 2, i.e., multiple local minima occurs. A constrained condition is added to handle this issue, which

is stated as

JCM = E[(|y(i)|2 − 1)2], i = 1, . . . , N subject to wH(i)a(θ0) = 1 (4)

where a(θ0) denotes the steering vector of the desired signal and is known at the receiver by employing the

DOA algorithms. For mathematical convenience, p = 2 is selected [14] and we consider the cost function

as the expected deviation of the squared modulus of the array output to a constant, say δp = 1. The

constrained optimization means that the technique minimizes the contribution of undesired interference

while maintaining the gain along the look direction to be constant.

With respect to the SG algorithm, the beamformer optimizes the Lagrangian cost function described

by

LCCM = E[(|y(i)|2 − 1)2] + λ(wH(i)a(θ0)− 1) (5)

where λ is a scalar Lagrange multiplier. The solution can be obtained by setting the gradient terms of (5)

with respect to w(i) equal to zero and using the constraint [13]. Thus, the weight estimate is given by
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w(i + 1) = w(i)− µ(i)(|y(i)|2 − 1)y∗(i)[I − a(θ0)aH(θ0)]x(i) (6)

where µ(i) is the step size, which is a constant for FSS and a variable value for ASS and (·)∗ denotes

complex conjugate. The coefficient in the second term on the right side is absorbed by µ(i) since it is

a very small value. The symbol I denotes the identity matrix of appropriate dimensions. Note that the

term a(θ0)aH(θ0) is normalized. Regarding ASS [23], [24], another step size recursion, for the sake of

following the change of the surrounding, need to be included by taking the gradient (6) in terms of µ(i)

equal to zero and then using again the SG recursion, which requires an additional number of operations

proportional to the number of sensor elements m. The difficulties encountered in both FSS and ASS

algorithms motivate the development in this paper of new algorithms to exhibit favorable performance of

the SG method.

III. PROPOSED ADAPTIVE STEP SIZE MECHANISMS

In this section, two novel adaptive step size methods are described for adjusting the step size in order

to track the change of the communication system. The additional computational complexity of these

mechanisms is shown in this section as well.

A. Modified Adaptive Step Size (MASS) Mechanism

The first proposed algorithm based on the MASS mechanism employs the prediction error and uses

the update rule

µ(i + 1) = αµ(i) + γ(|y(i)|2 − 1)2 (7)

where 0 < α < 1, γ > 0 and y(i) is the same as that in (2). The rationale for the MASS is that at early

stage of adaptation, the error is large due to the second term on the right side of (7), causing the step

size to increase, thus providing faster convergence rate. When the error decreases, the step size follows

this trend, yielding small misadjustment around the optimum. The parameter γ is an independent variable

for controlling the prediction error and scaling it at different levels. It is worth pointing out that the step

size µ(i + 1) should be restricted in a range as follows

µ(i + 1) =





µmax if µ(i + 1) > µmax

µmin if µ(i + 1) < µmin

µ(i + 1) otherwise

(8)
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where 0 < µmin < µmax. The constant µmin is chosen as a compromise between the satisfying level of

steady-state misadjustment and the required minimum level of tracking ability while µmax is normally

selected close to the point of instability of the algorithm for providing the maximum convergence speed.

The MASS is the result of several attempts to devise a simple and yet effective mechanism.

B. Time Averaging Adaptive Step Size (TAASS) Mechanism

The second mechanism, which is called TAASS, uses a time average estimate of the correlation of

(|y(i)|2 − 1) and (|y(i− 1)|2 − 1). The update rule is

µ(i + 1) = αµ(i) + γv2(i) (9)

where v(i) = βv(i− 1) + (1− β)(|y(i)|2 − 1)(|y(i− 1)|2 − 1) and 0 < β < 1. The limits on µ(i + 1), α

and γ are similar to those of the MASS algorithm. The exponential weighting parameter β governs the

averaging time constant, namely, the quality of the estimation. The quality v(i) in (9) contains information

that is useful to determine an accurate measure for the proximity of the adaptive beamformer coefficients

to the optimal value. Here, β should be close to 1. For nonstationary environments, the time averaging

window should be small for forgetting past data and leaving space for the current statistics adaptation,

so, β < 1.

The difference between (7) and (9) is that in the presence of the instantaneous error energy, MASS

does not perform as well as expected in the presence of measurement noise. A zero-mean independent

disturbance associated with the error energy can not be deleted in the expression of the expectation of the

step size (see [26]). As a result, the variation of the step size cannot reflect accurately the adaptation state

before or after convergence. Besides, close to the optimum, this disturbance results in large fluctuations of

the solution around this optimum. TAASS operates in a large µ(i) when the algorithm works far from the

optimum with µ(i) reducing as it approaches the optimum even under this instantaneous error condition.

The term v2(i) in (9) is introduced to achieve this task. There are two objectives for using v(i) here.

First, it rejects the effect of the uncorrelated noise sequence on the step-size update [26]. In the beginning,

because of scarcity of transmitters’ information, the error correlation estimate v2(i) is large and so µ(i)

is large to increase the convergence rate and track the change of input data. As the system approaches

the steady-state, the recovered signal y(i) → 1 and v2(i) is very small , resulting in a small step size for

ensuring low misadjustment near optimum. Second, the error correlation is generally a good measure of

the proximity to the optimum. It is clear from (9) that the update of µ(i) is not affected by the independent

disturbance noise but dependent on how far from the optimum. The experiments later demonstrate this

superiority.
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ADDITIONAL COMPUTATIONAL COMPLEXITY OF ADAPTIVE STEP SIZE ALGORITHMS

Algorithms Number of operations per snapshot

Additions Multiplications

ASS 5m− 1 4m + 3

MASS 1 3

TAASS 2 6

C. Computational Complexity

It is well known that addition and multiplicity complexities of the CCM-SG method [17] are 3m and

3m + 4, respectively, and of the CCM-RLS method [21] are 2m2 + m and 3m2 + 5m + 5, respectively.

Also, the computational complexity of the ASS algorithm is a linear monotonic increasing function of

the number of sensor elements in AWGN model (see Table I). Therefore, the computational complexity

becomes very large if the array size is big.

An important feature of the proposed algorithms is that they only require a few fixed number of

operations for updating the step size. The additional computational complexity of the proposed adaptive

step size mechanisms is listed in Table I for comparison with the existent ASS method. We remark that

the number of arithmetic operations is estimated by taking into account the number of complex additions

and multiplications required in the mechanisms (“additional” means that the complexity is considered

with the exception of the weight update equation in each method).

IV. ANALYSIS OF THE PROPOSED ALGORITHMS

The characteristics of the proposed algorithms are investigated in this section. Firstly, a necessary

condition for the stability of the developed algorithms is studied. Then, the derivations of the mean and

the mean-square values of the step size in the steady-state scenario are given for the convergence analysis.

On the basis of the optimum step size values, the steady-state EMSE is calculated by using the energy

conservation relation originally developed in [33]. Finally, in a similar way, the tracking analysis of the

new methods is represented to study their ability to track time variations under nonstationary environment.

It is worth noting that for the analyses, several assumptions are taken to simplify them.

A. Convergence Analysis

1) Condition for Stability: In view of (6), the stability of the SG algorithm is determined by two

factors, namely, the step size parameter µ(i) and the input vector x(i). For further analysis, we bring

forth one assumption.
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Assumption 1: we assume that µ(i) varies slowly around its mean value.

This assumption is approximately true if γ is small and α close to one, which will be shown in the

simulations. Under this condition, we have

E{µ(i)[|y(i)|2 − 1]y∗(i)[I − a(θ0)aH(θ0)]x(i)} = E[µ(i)]E{[|y(i)|2 − 1]y∗(i)[I − a(θ0)aH(θ0)]x(i)}
(10)

and

E{µ(i)[|y(i)|2 − 1]x(i)xH(i)}w(i) = E[µ(i)]RCCMw(i) (11)

where RCCM = E{[|y(i)|2 − 1]x(i)xH(i)} ∈ Cm×m.

Now, (6) can be written as

w(i + 1) = {I − µ(i)[|y(i)|2 − 1]u(i)xH(i)}w(i) (12)

where u(i) = [I − a(θ0)aH(θ0)]x(i) ∈ Cm×1.

By defining the weight error vector w̃(i) and substituting (12) into the expression, we get

w̃(i + 1) = wopt −w(i + 1)

= {I − µ(i)[|y(i)|2 − 1]u(i)xH(i)}w̃(i) + µ(i)[|y(i)|2 − 1]u(i)xH(i)wopt

(13)

where wopt denotes the weight vector optimum solution.

By employing Assumption 1 and taking expectations on both sides of (13), we have

E[w̃(i + 1)] = {I − E[µ(i)]Rux(i)}E[w̃(i)] (14)

where Rux(i) = E{[|y(i)|2 − 1]u(i)xH(i)} = [I − a(θ0)aH(θ0)]RCCM and Ruxwopt = 0 [34].

Therefore, E[w(i)] → wopt or equivalently, limi→∞E[w̃(i)] = 0 represents the stable condition if

and only if
∏∞

i=0{I − E[µ(i)]Rux} → 0. Following the idea of the eigenstructure [22] with respect to

the covariance matrix Rux, the sufficient condition for (14) to hold implies that

0 ≤ E[µ(∞)] ≤ 2
λux

max

(15)

where λux
max is the maximum eigenvalue of Rux.

Obviously, the stability condition in (15) is applicable to both MASS and TAASS algorithms.
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2) Steady-State Step Size Value for MASS: We consider E[µ(i)] and E[µ2(i)] to be the first-order and

second-order expectations of the step size of the proposed MASS mechanism. By taking expectations on

both sides of (7), under Assumption 1,

E[µ(i + 1)] = αE[µ(i)] + γE[(|y(i)|2 − 1)2] (16)

Also, by making the square of (7) and taking expectations,

E[µ2(i + 1)] = α2E[µ2(i)] + 2αγE[µ(i)]E[(|y(i)|2 − 1)2] + γ2E[(|y(i)|2 − 1)4]

≈ α2E[µ2(i)] + 2αγE[µ(i)]E[(|y(i)|2 − 1)2]
(17)

where the third term on the right side of the first expression of (17) is negligible as compared to the other

terms in the second approximation since γ2 and E[(|y(i)|2 − 1)4] are small in the steady-state condition.

The relations limi→∞E[µ(i)] = limi→∞E[µ(i+1)] = E[µ(∞)] and limi→∞E[µ2(i)] = limi→∞E[µ2(i+

1)] = E[µ2(∞)] hold if we consider the steady-state values. Before proceeding to the steady-state step

size, one approximation should be given.

Approximation 1: limi→∞E[(|y(i)|2 − 1)2] = ξmin + ξex(∞)

where ξmin = |d(i)|2 − pHR−1p [22] is the minimum mean square error (MMSE), p = E[x(i)d∗(i)]

denotes the cross correlation between the input vector x(i) and the desired response d(i), and ξex(∞) is

the excess mean square error (EMSE) associated with the CM cost function. Here, R = E[x(i)xH(i)]

represents the covariance matrix of the input vector.

This approximation is reasonable under the assumption that the CM algorithm converges to the optimum

solution that is close to that of the actual MMSE design. The theorem stating that the optimal CM algorithm

(CMA) minima roughly correspond to the MMSE minima was conjectured in [14] and then was thoroughly

scrutinized by Zeng et al. in [35]. Since the MMSE criterion is achieved by minimizing the MSE of the

estimation error, which is defined by the difference between d(i) and y(i), after rearrangement, the cost

function of the MMSE design (see, e.g., [22]) becomes

J(i) = Jmin + Jex(i) (18)

where Jmin and Jex(i) are the MMSE and the EMSE correlated with the MMSE criterion. This method-

ology is similar to that of the CMA, which employs the constant modulus property to subtract it from

the array output. Following this idea, the approximation is built up as i →∞.

Using Approximation 1 to (16) and (17), we have

E[µ(∞)] =
γ[ξmin + ξex(∞)]

1− α
(19)
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E[µ2(∞)] =
2αγ2[ξmin + ξex(∞)]2

(1− α)2(1 + α)
(20)

Further simplified formulations of (19) and (20) are more efficient if the inconvenient term ξex(∞) can

be ignored. In doing so, we consider another assumption.

Assumption 2: (ξmin + ξex(∞)) ≈ ξmin and (ξmin + ξex(∞))2 ≈ ξ2
min if ξmin À ξex(∞).

We claim that this assumption is true if the SG algorithm operates in the steady-state, which is exactly

the same condition we are working now. Therefore, it leads to

E[µ(∞)] ≈ γξmin

1− α
(21)

E[µ2(∞)] ≈ 2αγ2ξ2
min

(1− α)2(1 + α)
(22)

Note that (21) and (22) can be used for computing the EMSE of the proposed algorithm. The following

analysis will show their application.

3) Steady-State Step Size Value for TAASS: The same method above can be employed to derive the

step size value for TAASS with a little more complicated procedure. Using Assumption 1 for (9) and

setting expectations, we get

E[µ(i + 1)] = αE[µ(i)] + γE[v2(i)] (23)

Also, we take the square and then expectations on both sides of (9) to obtain

E[µ2(i + 1)] = α2E[µ2(i)] + 2αγE[µ(i)]E[v2(i)] + γ2E[v4(i)]

≈ α2E[µ2(i)] + 2αγE[µ(i)]E[v2(i)]
(24)

where both γ2 and E[v4(i)] of the third term are small in the steady-state compared with the second on

the right side.

From the definition of v(i) in (9), an alternative way of v(i) is written as

v(i) = (1− β)
i−1∑

n=0

βn[|wH(i− n)x(i− n)|2 − 1][|wH(i− n− 1)x(i− n− 1)|2 − 1] (25)

and

v2(i) = (1− β)2
i−1∑

n=0

i−1∑

j=0

βnβj [|wH(i− n)x(i− n)|2 − 1][|wH(i− n− 1)x(i− n− 1)|2 − 1]

· [|wH(i− j)x(i− j)|2 − 1][|wH(i− j − 1)x(i− j − 1)|2 − 1]

(26)
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We assume that the algorithm has converged in respect that the analysis is under the steady-state

condition. At this point, the term {|wH(i)x(i)|2 − 1, i = 1, . . . , N} is treated as uncorrelated, i.e.,

E[(|wH(i− n)x(i− n)|2 − 1)(|wH(i− j)x(i− j)|2 − 1)] = 0 ∀n 6= j. Therefore, expectations of (26)

can be simplified as

E[v2(i)] = (1−β)2
i−1∑

n=0

β2nE[(|wH(i−n)x(i−n)|2−1)2]E[(|wH(i−n−1)x(i−n−1)|2−1)2] (27)

Taking into account the relation limi→∞E[v2(i)] = E[v2(∞)] and invoking Approximation 1 and

Assumption 2 for (27) brings on

E[v2(i)] =
(1− β)(ξmin + ξex(∞))2

1 + β

≈ (1− β)ξ2
min

1 + β

(28)

where the elaborate derivation is given in Appendix.

In the steady-state environment, considering again the relations limi→∞E[µ(i)] = limi→∞E[µ(i +

1)] = E[µ(∞)] and limi→∞E[µ2(i)] = limi→∞E[µ2(i + 1)] = E[µ2(∞)], substituting (28) into (23)

and (24), respectively, we have the following

E[µ(∞)] ≈ γ(1− β)(ξmin + ξex(∞))2

(1− α)(1 + β)
(29)

E[µ2(∞)] ≈ 2αγ2(1− β)2(ξmin + ξex(∞))4

(1 + α)(1− α)2(1 + β)2
(30)

Assumption 2 can be employed for (29) and extended to (ξmin + ξex(∞))4 ≈ ξ4
min in the steady-state

for (30)

E[µ(∞)] ≈ γ(1− β)ξ2
min

(1− α)(1 + β)
(31)

E[µ2(∞)] ≈ 2αγ2(1− β)2ξ4
min

(1 + α)(1− α)2(1 + β)2
(32)

It is observed that the first-order and second-order step size values associated with the TAASS approach

are more complicated than those of the MASS method due to the presence of v2(i) in (9). Note that (31)

and (32) can be used for computing the EMSE of the proposed TAASS algorithm.
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B. Steady-State Analysis

The customary techniques are not suitable to figure out the proposed algorithms here due to their

nonlinear update [28], [29], presenting difficulties for determining the covariance matrix of the weight

error vector. Instead, we adopt an energy flow framework [27], [30], [33] to bypass the difficulties incurred

in obtaining the steady-state result. The approach creates an energy-preserving connection, relying on

a fundamental error variance relation, between adjacent iterations, to avoid the weight error variance.

Furthermore, this approach allows for an unified treatment of a large class of algorithms [31].

Consider the noisy measurements

d(i) = wH
optx(i) + n(i) (33)

where wopt, as mentioned before, is the unknown optimum weight vector and n(i) accounts for measure-

ment noise, which is stochastic in nature.

In the classic MSE measure,

MSE = lim
i→∞

E[|e(i)|2] = lim
i→∞

E[|w̃H(i)x(i) + n(i)|2] (34)

where e(i) = d(i)−wH(i)x(i) denotes the output estimation error and w̃(i) = wopt−w(i) is the weight

error vector.

Under a realistic assumption [36],

Assumption 3: The noise term n(i) is independent and identically distributed (i.i.d.) and statically inde-

pendent of the input vector x(i). The MSE is equivalent to

MSE = σ2
n + lim

i→∞
E[|w̃H(i)x(i)|2] (35)

where σ2
n represents the variance of the measurement noise.

Now, we associate the following so-called a priori and a posteriori estimation errors

ea(i) = w̃H(i)x(i), ep(i) = w̃H(i + 1)x(i). (36)

Thus, MSE in (35) can be expressed by

MSE = σ2
n + ζs (37)

where ζs = limi→∞E[|ea(i)|2] denotes the EMSE corresponding to the MSE measure in the steady-state.

It is straightforward that calculating ζs is equivalent to finding the MSE.
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Recall from (6) for compactness of notation

w(i + 1) = w(i) + µ(i)u(i)Fe(i) (38)

where z(i) = |wH(i)x(i)|2 − 1 and Fe(i) = −y∗(i)z(i).

By subtracting both sides of (38) from wopt, taking transpose, and multiplying by x(i) from the right,

we find

ep(i) = ea(i)− µ(i)F ∗
e (i)uH(i)x(i) (39)

We notice that uH(i)x(i) = xH(i)(I − a(θ0)aH(θ0))x(i) = uH(i)u(i). So, an alternative way of

(39) is

ep(i) = ea(i)− µ(i)F ∗
e (i)‖u(i)‖2 (40)

Substituting (40) into the weight vector error update equation from (38) and rearranging the outcome,

we have

w̃(i + 1) = w̃(i)− u(i)
‖u(i)‖2

[e∗a(i)− e∗p(i)] (41)

Recombining (41) and squaring it, we obtain the energy evaluation

‖w̃(i + 1)‖2 + µ̄(i)|ea(i)|2 = ‖w̃(i)‖2 + µ̄(i)|ep(i)|2 (42)

where µ̄(i) = 1/‖u(i)‖2.

This is an exact energy conservation relation that illustrates the energies of the weight error vectors

between two successive time instants and which correspond to the energies of the a priori and a posteriori

estimation errors. It is achieved by a closed loop configuration that is split into a feedforward path and

a feedback path (see, [27]). Note that (42) is obtained without any assumptions.

In the steady-state condition (i.e., as i →∞), we can assume that E[‖w̃(i+1)‖2] = E[‖w̃(i)‖2]. Now,

by taking expectations on both sides of (42), cancelling the effect of the weight error vector and using

(40), we get

E[µ̄(i)|ea(i)|2] = E[µ̄(i)|ea(i)− µ(i)
µ̄(i)

F ∗
e (i)|2] (43)

Substituting Fe(i) = [1− |y(i)|2]y∗(i) into (43), we have
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E{µ(i)e∗a(i)y(i)[1− |y(i)|2]}+ E{µ(i)ea(i)y∗(i)[1− |y(i)|2]} = E{µ2(i)
µ̄(i)

|y(i)|2[1− |y(i)|2]2} (44)

The next step is to consider the MAI and AWGN in the system model, which will affect the array

output. Therefore, the output estimation can be defined as

y(i) = [wopt − w̃(i)]Hx(i)

= wH
optx(i)− ea(i)

= s0(i) + M(i) + n(i)− ea(i)

(45)

where s0(i) denotes the transmitted symbol of the desired source at time instant i, M(i) =
∑q−1

k=1 wH
optsk(i)a(θk)

is the output residual MAI caused as multiple users appear in the system, where sk(i) denotes the

transmitted symbol of users with the exception of the desired one, and n(i) = wH
optn(i) is the processed

AWGN.

Before making use of (45), we provide the properties [37], approximation and assumptions for this

definition. We write more compactly by dropping time index i and using s to present s0(i).

Properties:{s,M, n, ea} are zero-mean random variables, and {s,M, n} are mutually independent. The

random sources are independent and the processed noise n is Gaussian random variable.

Approximation 2: The residual MAI M is Gaussian and holds well [38].

Assumption 4: {s,M, n, ea} are mutually independent [37], which is realistic under Properties condition

since the blind algorithms works independently of the transmitted signals.

Now, in a concise way, we make a LP and a RP terms to represent the left part and the right part of

(44), respectively.

LP = E[µe∗ay(1− |y|2)] + E[µeay
∗(1− |y|2)]

RP = E[
µ2

µ̄
|y|2(1− |y|2)2]

(46)

Using (45) into (46) and employing Approximation 2 and Assumption 1, 4, (46) becomes

LP = 2E[µ|ea|2(|s|2 + |M |2 + |n|2 + |ea|2 − 1)]

RP = E[
µ2

µ̄
(J1 + J2 + J3 + J4|ea|2)]

(47)

where

J1 = |s|6+3|s|4|M |2+3|s|4|n|2−2|s|4+|s|2+3|s|2|M |4+3|s|2|n|4−4|s|2|M |2−4|s|2|n|2+6|s|2|M |2|n|2;

J2 = |M |6 + |n|6 − 2|M |4 − 2|n|4 + |M |2 + |n|2 + 3|M |4|n|2 + 3|M |2|n|4 − 4|M |2|n|2;
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J3 = |ea|6 − 2|ea|4 + 3|M |2|ea|4 + 3|s|2|ea|4 + 3|n|2|ea|4;

J4 = 6|s|2|n|2 + 6|M |2|n|2 + 6|s|2|M |2 − 4|M |2 − 4|n|2 + 3|s|4 − 4|s|2 + 3|n|4 + 3|M |4 + 1.

Define σ2
0 = E[|s|2], σ2

n = E[|n|2], and σ2
M = E[|M |2] as the desired signal power, the processed

noise variance, and the residual MAI variance, respectively. In the steady-state scenario, we have E[|s|4] =

(E[|s|2])2 = σ4
0 and E[|s|6] = (E[|s|2])3 = σ6

0 . Similarly, E[|n|4] = σ4
n and E[|n|6] = σ6

n; E[|M |4] = σ4
M

and E[|M |6] = σ6
M .

It is reasonable to assume that the higher order of E[|ea|2] can be neglected since it is relatively small

if i →∞. Under this condition, J3 in (47) can be cancelled. Thus, we obtain

LP ≈ 2K1E[µ]E[|ea|2]

RP ≈ E[µ2]
E[µ̄]

(K2 + K3 + K4E[|ea|2])
(48)

where

K1 = σ2
0 + σ2

M + σ2
n − 1;

K2 = σ6
0 + 3σ4

0σ
2
M + 3σ4

0σ
2
n − 2σ4

0 + σ2
0 + 3σ2

0σ
4
M + 3σ2

0σ
4
n − 4σ2

0σ
2
M − 4σ2

0σ
2
n + 6σ2

0σ
2
Mσ2

n;

K3 = σ6
M + σ6

n − 2σ4
M − 2σ4

n + σ2
M + σ2

n + 3σ4
Mσ2

n + 3σ2
Mσ4

n − 4σ2
Mσ2

n;

K4 = 6σ2
0σ

2
n + 6σ2

Mσ2
n + 6σ2

0σ
2
M − 4σ2

M − 4σ2
n − 4σ2

0 + 3σ4
0 + 3σ4

n + 3σ4
M + 1.

Remind LP = RP from (44) and rearrange (48), we get

ζs ≈
E[µ2]
E[µ̄] (K2 + K3)

2E[µ]K1 − E[µ2]
E[µ̄] K4

=
E[µ2]E[‖u‖2](K2 + K3)

2E[µ]K1 − E[µ2]E[‖u‖2]K4
(49)

where E[‖u‖2] =
∑q−1

k=1 σ2
k{aH(θk)a(θk) − [aH(θk)a(θ0)aH(θ0)a(θk)/(aH(θ0)a(θ0))]} + σ2(m − 1)

[37], where σ2
k denotes the kth user power with the exception of the desired one, and the noise term

at the output is a Gaussian random variable of type n ∼ N (0, σ2
n), where σn = ‖wopt‖σ. The term

σM =
√

q − 1wH
optσka(θk) for k 6= 0. It is worth noting that all the terms in (49) are relevant to the

steady-state i → ∞. Substituting (21) and (22) into (49) corresponds to the MASS algorithm, whereas

(31) and (32) corresponds to the TAASS algorithm.

The steady-state analysis of (49) can be further simplified if we impose that σ2
0 = 1. In most cases,

the residual MAI power σ2
M at the output is significantly lower than the output noise power σ2

n [37], i.e.,

σ2
M ¿ σ2

n, and thus, an even simpler expression can be given by

ζs ≈ E[µ2]E[‖u‖2]K5

2σ2
nE[µ]− E[µ2]E[‖u‖2]K6

(50)

where K5 = σ4
n + σ6

n and K6 = 2σ2
n + 3σ4

n.
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Hence, we can substitute (21) and (22) into (50) to calculate ζs for the MASS, which after arrangement

is given by

ζMASS
s ≈ αγξminE[‖u‖2]K5

σ2
n(1− α2)− αγξminE[‖u‖2]K6

(51)

or substitute (31) and (32) into (50) to calculate ζtaass for the TAASS, which is given by

ζTAASS
s ≈ αγ(1− β)ξ2

minE[‖u‖2]K5

σ2
n(1− α2)(1 + β)− αγ(1− β)ξ2

minE[‖u‖2]K6
(52)

The accuracy of the approximation is analyzed via simulations later.

C. Tracking Analysis

The energy-preserving relation has been verified to provide the tracking analysis in a nonstationary

environment [31]. The derivation in this section is specific for the proposed algorithms and to the best of

the author’s knowledge, did not exist in the literature. It is processed on the foundation of the steady-state

result and introduces further assumptions.

In the nonstationary surrounding, the optimum weight coefficients are not constant but assumed to vary

following the model wopt(i + 1) = wopt(i) + q(i), where q(i) denotes a random perturbation [22], [36].

This perturbation is introduced by the time variations of the system in the nonstationary condition. This

update formulation is invoked to track the variation. Therefore, the weight vector error recursion can be

expressed

w̃(i + 1) = w̃(i) + q(i)− µ(i)u(i)Fe(i) (53)

By squaring (53), we get the energy evaluation

‖w̃(i + 1)‖2 + µ̄(i)|ea(i)|2 = ‖w̃(i) + q(i)‖2 + µ̄(i)|ep(i)|2 (54)

The further analysis relies on the assumption following

Assumption 5: The sequence {q(i)} is a stationary sequence of independent zero-mean vectors with

positive definite covariance matrix Q = E[q(i)qH(i)]. It is independent of the sequence {u(i)} and

{n(i)}.

Under this assumption, using E[w̃H(i)q(i)] = 0 [39] and E[‖w̃(i + 1)‖2] = E[‖w̃(i)‖2] if the system

operates in the steady-state condition and taking expectations, the energy equation (54) can be written as

E[µ̄(i)|ea(i)|2] = Tr(Q) + E[µ̄(i)|ea(i)− µ(i)
µ̄(i)

F ∗
e (i)|2] (55)



17
In view of (55), it can be regarded as an extension of (43) with an addition of the system nonstationary

contribution Tr(Q). This is a useful advantage of the energy conservation approach over many classic

methods since it allows us to reach tracking analysis by analyzing the stationary case results.

In a similar way as that in the study of the steady-state case, substituting Fe(i) = −y∗(i)z(i) and (45)

into (55), the extension can be obtained in a compact way

LP ≈ 2K1E[µ]E[|ea|2]

RP ≈ Tr(Q) +
E[µ2]
E[µ̄]

(K2 + K3 + K4E[|ea|2])
(56)

and

ζt ≈ Tr(Q) + E[µ2]E[‖u‖2](K2 + K3)
2E[µ]K1 − E[µ2]E[‖u‖2]K4

(57)

where ζt denotes the EMSE corresponding to the tracking condition, the terms K1, K2, K3 and K4 are

the same as those in (48) and it is assumed that q(i) is independent of {s,M, n, ea}, and higher orders of

{|ea|2} are ignored. Note that (57) is applicable to the analyses for both MASS and TAASS by inserting

different values of first-order and second-order step sizes.

If σ2
0 = 1 and σ2

M ¿ σ2
n are imposed on (56), we can have a simpler expression

ζt ≈ Tr(Q) + E[µ2]E[‖u‖2]K5

2σ2
nE[µ]− E[µ2]E[‖u‖2]K6

(58)

where K5 and K6 are the same as those in (50). It supports again that the tracking analysis can be

received by inspection from the stationary results, which indicates the superiority of the energy-preserving

configuration.

Substituting (21)-(22) and (31)-(32) into (58), respectively, we can express the tracking analysis ζMASS
t

for the MASS and ζTAASS
t for the TAASS as

ζMASS
t ≈ (1− α)2(1 + α)Tr(Q) + 2αγ2ξ2

minE[‖u‖2]K5

2σ2
n(1− α2)γξmin − 2αγ2ξminE[‖u‖2]K6

(59)

and

ζTAASS
t ≈ (1− α)2(1 + α)(1 + β)2Tr(Q) + 2αγ2(1− β)2ξ4

minE[‖u‖2]K5

2σ2
n(1− α2)(1− β2)γξ2

min − 2αγ2(1− β)2ξ4
minE[‖u‖2]K6

(60)
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V. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of the proposed algorithms over existing methods

through simulations and verify the accuracy of the analyses of the MASS and TAASS mechanisms. The

experiments are carried out under stationary and nonstationary scenarios to assess the performance. All

simulations are performed by an ULA containing m = 16 sensor elements with half-wavelength spacing.

The noise is spatially and temporally white Gaussian noise. For each scenario, K = 1000 iterations are

used to get each simulated curve. In all experiments, the desired signal power is σ2
0 = 1. The BPSK

modulation scheme is employed to modulate the signals.

A. BER Performance

Fig. 2 compares the proposed MASS and TAASS algorithms with the FSS, AAS, and RLS methods

by showing the BER versus the input SNR. 1000 snapshots are considered. There are five interferers in

the system, one interferer with 4dB above the desired user’s power level, one with the same power level

of the desired one and three with power 0.5dB lower than that of the desired user. Note that the actual

spatial signature of the desired source is known exactly. We set the first element of the initial weight

vector w(0) equals to the corresponding element of the steering vector a(θ0) of SOI. Other parameters

are optimized with α = 0.98, γ = 10−3, µ0 = 10−5, µmax = 10−4 and µmin = 10−6 for MASS and

α = 0.98, β = 0.99,γ = 10−3, µ0 = 10−4, µmax = 3 × 10−4 and µmin = 10−6 for TAASS. The

parameters for the existing methods are tuned in order to optimize the performance, allowing for a fair

comparison with the proposed algorithms. It is observed that under low input SNR condition, the BER

behaviors of all methods are worse, compared with those under high SNR condition. However, MASS

and TAASS exhibit better performance than existent algorithms, especially for TAASS, which converges

rapidly and approaches the RLS as SNR increases.

B. Steady-State Performance

Fig. 3 and Fig. 4 compare the proposed MASS and TAASS steady-state analysis with simulation results,

separately. Fig. 3 corresponds to the MASS algorithm and includes two experiments. Fig. 3(a) works with

3 interferers with 0.5dB lower than the desired user’s power and Fig. 3(b) runs with 1 interferer 2dB

above the power level of the desired one, 1 interferer with the same power level of the desired user

and 2 interferers with 0.5dB below the desired power. Both of them work with the input SNR= 20dB.

It is evident that the proposed algorithms reach the steady-state quickly in the first situation and the

simulation result is very close to the theoretical expression, which is calculated by using (51), where

p = E[x(i)d∗(i)] = a(θ0), wopt = R−1p = R−1a(θ0), and ξmin = 1 − aH(θ0)R−1a(θ0). The fact
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that the number or/and the power level of the interferers increase, deteriorates the performance of both

simulation and theory. However, the experiment results are still in good match with the analytical values.

The fluctuation of the curve is due to the system noise and the users’ status (e.g., power level and the

number). The ignored terms in (51) due to the higher order effect do not affect the accuracy of the results.

The same conclusion can be drawn in the view of Fig. 4, which works in the same scenarios as that in

Fig. 3 by using (52). Compared with Fig. 3, the steady-state performance in both experiments are better

than those of MASS since it is not affected by the independent disturbance.

Fig. 5 demonstrates the accuracy of the expression for MASS analysis by employing (51), compared

with TAASS analysis by using (52) instead. In this figure, the EMSE is expressed as a function of SNR

for a 3 interferers system with lower power level of interferers (all 0.5dB lower than that of the desired

power) and SNR= 20dB. The step size is truncated between µmin = 1× 10−5 and µmax = 1× 10−3 for

MASS and µmin = 5×10−5 and µmax = 1×10−3 for TAASS. The experiment confirms the steady-state

analysis for the proposed algorithms that the EMSE decreases monotonically with SNR. A reasonable

explanation is that as the SNR increases the system works in a favorable state to direct the main beam

towards the desired user for eliminating the effects of interferers and making the processed noise approach

zero. As this occurs, the cost function approaches zero at convergence and so, the steady-state EMSE

approaches zero.

Clearly, the simulation accords greatly with the theory as shown in Fig. 5. Furthermore, if input SNR

increases, the curves of the simulation are more and more close to the trends of the analyses, which

corroborates the explanation above. We notice that the simulation result for TAASS at the initial stage

may be inferior to that for MASS due to a little more complexity of the former, which impacts the

convergence rate of the algorithm.

Fig. 6 shows the result in a more severe condition ,where there are 4 interferers with one 3dB above the

desired user’s power, one with the same power level of the desired one and two others with 0.5dB lower

than that of the desired signal. Compared with Fig. 5, the EMSE performance is worsen by the increase

of the interferers, both in the number and power level. Under this condition, it is immediately observed

that the TAASS algorithm displays a better performance over the MASS method, especially in high SNR

condition. In other words, the EMSE analysis for MASS underestimates the real theoretical result since

the independent disturbance by using the instantaneous error energy as a measure. Nevertheless, it is

better to select MASS if the cost is considered in priority due to its less complex load. The proposed

TAASS algorithm adapts to some harsh environments in the light of the performance.

The mismatch (steering vector error) condition is considered in Fig. 7, which includes two experiments.

Fig. 7(a) shows the BER of each method versus the number of snapshots. The system model is the same
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as that in the first experiment. The results illustrate that the proposed algorithms converge faster and have

better performance than the existing SG-Type methods and also close to that of the RLS method. The

steering vector mismatch scenario is shown in Fig. 7(b). The assumed DOA of the SOI is a constant

value 1o away from the actual direction. Compared with Fig. 7(a), Fig. 7(b) indicates that the mismatch

problem leads to a worse performance for all the solutions. The convergence rate of all the methods

reduces whereas the devised algorithms are more robust to this mismatch, especially for the TAASS

approach, reaching the steady-state rapidly with much lower complexity than the RLS algorithm.

C. Nonstationary Scenario Performance

In this part, we will evaluate the performance of the proposed MASS and TAASS algorithms in

nonstationary environment, namely, when the number of users changes.

In Fig. 8, The system starts with 4 interferers, two of which have the same power as that of the desired

signal and the rest of them with the power 0.5 dB lower than the desired one. Two more users with one

of them 2 dB above the desired user’s power level and the other 0.5 dB lower than that of the desired

user, enter the system at 1000 symbols. In this condition, the parameters are set to the same values as

those in Fig. 2 except µmax = 3×10−3 for MASS and µmax = 5×10−3 for TAASS due to optimization.

As can be seen from the figure, SINRs of all the methods reduce at the same time. It is clear that the

performance degradation of the proposed ones is much less significant than those of the others (FSS

and ASS). In addition, MASS and TAASS can quickly track the change and recover to a steady-state,

just a little slower than the RLS method. This figure demonstrates that the proposed algorithms have

fast convergence even though they are less complex. The experiment shows that the proposed techniques

exhibit satisfied performance after an abrupt change, in a nonstationary environment where the number

of users/interferers suddenly changes in the system.

Fig. 9 depicts the step size values of the proposed algorithms as a function of the received symbols

in a nonstationary setup corresponding to Fig. 8. It verifies that both MASS and TAASS mechanisms

behave faster convergence improvement that tracks the system change rapidly and then reaches to the

steady-state performance.

VI. CONCLUDING REMARKS

This paper proposed two adaptive CCM SG algorithms by employing low-complexity variable step size

mechanisms for the beamforming technique to improve the performance. We compared the computational

complexity of the new algorithms with the existent methods and further investigated the characteristics

of the new mechanisms via analyses of the convergence, steady-state and tracking performance. The

theoretical expressions were derived, in terms of EMSE, using the energy-preserving approach for both
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stationary and nonstationary scenarios. Considering the effects of MAI and AWGN in the array output

makes the analysis more accurate and suitable to the practical application. Simulation experiments were

conducted to verify the analytical results. The signature mismatch and users’ number change conditions

were emulated for comparing the proposed algorithms with the classic methods in order to show their

robustness. The computer experiments illustrate that the new algorithms are superior to the existent SG

methods in terms of convergence behavior and output performance in both stationary and nonstationary

scenarios even though they are less complex. The proposed algorithms have demonstrated excellent

performance and can be used for beamforming design of SDMA systems and other smart antenna systems.

APPENDIX

DERIVATION OF (28)

Since we make the derivation in the steady-state condition, that means, i → ∞, so by defining B =

ξmin + ξex(∞) and employing Assumption 1, we get

E[v2(i)] = (1− β)2[B2 + β2B2 + . . . + β2(i−1)B2] (61)

In a compact way, we also define C = [B2 + β2B2 + . . . + β2(i−1)B2]. By multiplying β2 on both

sides, we obtain

β2C = β2B2 + β4B2 + . . . + β2(i−1)B2 + β2iB2 (62)

With 0 < β < 1, if i →∞, β2i can be ignored in (62) and then we have

β2C = C −B2 (63)

Rearranging (63) to get C in the form of B and β,

C =
B2

1− β2
(64)

Substituting (64) into (61) and using Assumption 2, we find

E[v2(i)] =
(1− β)2B2

1− β2

=
(1− β)(ξmin + ξex(∞))2

1 + β
≈ (1− β)ξ2

min

1 + β

(65)
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