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Abstract. Software safety cases encourage developers to carry out only
those safety activities that actually reduce risk. In practice this is not
always achieved. To help remedy this, the SSEI at the University of York
has developed a set of software safety argument patterns. This paper
reports on using the patterns in two real-world case studies, evaluating
the patterns’ use against criteria that includes flexibility, ability to reveal
assurance decits and ability to focus the case on software contributions
to hazards. The case studies demonstrated that the safety patterns can
be applied to a range of system types regardless of the stage or type of
development process, that they help limit safety case activities to those
that are significant for achieving safety, and that they help developers nd
assurance deficits in their safety case arguments. The case study reports
discuss the difficulties of applying the patterns, particularly in the case of
users who are unfamiliar with the approach, and the authors recognise in
response the need for better instructional material. But the results show
that as part of the development of best practice in safety, the patterns
promise signicant benets to industrial safety case creators.

1 Introduction

Providing a compelling software safety argument is a fundamental but challeng-
ing part of demonstrating that a system is safe. Part of the problem is providing
evidence for low-level argument claims, but there are also difficulties in structur-
ing the argument in an intelligible and maintainable way. To help with this latter
problem, we have developed a catalogue of software safety argument patterns
which guide engineers in structuring safety arguments.

The pattern catalogue is summarized in [1] and documented fully in Ap-
pendix B of [2]. The philosophy underpinning these patterns is that developers
must demonstrate assurance in the same fundamental safety claims for all soft-
ware used in a safety related role; the difference between arguments for different
systems is in the way in which these claims are ultimately supported. The pat-
terns we have created define the expected structure of a software safety argument
which supports all of the fundamental safety claims.



We intend for the patterns to provide benefits to several different stakehold-
ers. When a developer uses them during the earlier stages of a systems lifecycle,
they should find it easier to identify areas where the assurance of the system may
be weak. They can then make changes (to the system or its operating restric-
tions) to address these areas of concern. The patterns can also help reviewers of
a software system to identify where assurance deficiencies may exist, and provide
a common baseline for agreeing acceptability. In essence, the patterns attempt
to encourage best practice in creating and reviewing software safety arguments.

In order to check the effectiveness of the patterns in achieving these aims we
applied the patterns to a number of industrial case studies to determine their
effectiveness. In this paper we describe some of our experiences of applying the
patterns on two of these safety-critical software projects.

In particular, we wanted to assess the patterns in the software safety argu-
ment pattern catalogue against the following desirable criteria:

– The patterns should be easy to understand and apply by software develop-
ment teams.

– The patterns should be flexible enough to apply to any safety-critical soft-
ware system.

– The patterns should ensure that the resulting software safety argument is
explicitly focused on controlling the software contribution to system hazards.

– It should be easy to judge the sufficiency of an argument created using the
patterns.

In the next section we give an overview of the pattern catalogue. Sections 3
and 4 then describe our experiences in two case studies: a prototype autonomous
vehicle controller, and an aircraft avionics software system. Finally, Section 5
draws some conclusions from these experiences and outlines the future for the
pattern catalogue.

2 Software Safety Argument Pattern Catalogue

Prior to the development of our pattern catalogue, the main extant work in
the area was that of Weaver [3]. Weaver’s catalogue was unique in its time in
that, unlike that of Kelly [4], it was specifically aimed at software systems, and
specifically designed to connect its patterns together in order to form a single
coherent argument. However, Weaver’s catalogue has a number of weaknesses.
First, the patterns take a fairly narrow view of assuring software safety, in that
they focus on the mitigation of known failure modes in the design. Mitigation
of failure modes is important, but there are other aspects of software assurance
which should be given similar prominence. Second, issues such as safety require-
ment traceability and mitigation were considered at a single point in Weaver’s
patterns. This is not a good approach; it is clearer for the argument to reflect
the building up of assurance relating to traceability and mitigation over the de-
composition of the software design (see later discussion on the tiered approach).
Finally, Weaver’s patterns have a rigid structure that leaves little scope for any



alternative strategies that might be needed for novel technologies or design tech-
niques.

The other relevant existing patterns are those developed by Fan Ye [5] specifi-
cally to consider arguments about the safety of systems including COTS software
products. Ye’s patterns provide some interesting developments from Weaver’s,
including patterns for arguing that the evidence is adequate for the assurance
level of the claim it is supporting. Although we do not necessarily advocate the
use of discrete levels of assurance, the patterns are useful as they support argu-
ing over both the trustworthiness of the evidence and the extent to which that
evidence supports the truth of the claim.

The patterns we created were deliberately constructed such that they make
no assumptions about project, application or domain specific details. For exam-
ple they are designed to be applicable for any software development process, any
software design methodology, diverse types of system-level hazards and diverse
software requirements.

The key organizing assumption for the patterns was that as the software
system moves through the development lifecycle there are numerous assurance
considerations against which evidence must be provided. Jaffe et al [8] proposed
an extensible model of development which captures the relationship between
components at different “tiers” (a set of tiers for one project might be for example
the software architecture, the software high-level and low-level designs, and the
source code). For our purposes we can note that at each tier, different assurance
considerations arise. Our patterns are explicitly based on a view of software
development as this process of refinement through tiers, and they consider the
relationship between the design information at various tiers and the resulting
assurance considerations. The number and type of tiers used in the specific
design process being used is irrelevant, so long as the assurance considerations
are sufficiently addressed at each tier.

Figure 1 summarises the assurance considerations that are repeated at each
tier of a software development lifecycle. At each tier, the pattern instantiator
must provide evidence which is sufficient to address each of these considerations,
and they must provide a compelling argument which explains how the evidence
addresses each assurance consideration. It follows that as software development
progressed through more detailed design tiers, more assurance evidence is gen-
erated.

From Figure 1, the assurance considerations defined for each tier can be seen
to be:

1. The safety requirements placed upon the software have been met.
2. Those safety requirements are appropriate for the design at this tier and are

traceable to higher tiers.
3. Hazardous errors have not been introduced into design at this tier.
4. Hazardous failure behaviour has been assessed — it has been determined

what could go wrong at this tier and how it is mitigated.

If a safety argument is to be compelling, then it is crucial that the high-level
structure of the argument is correct. This requires that the argument focuses ex-



Design Tiers
Safety Assurance Considerations

(defined by patterns)

Software design tier n+1

Safety requirements are satisfied

S/w design tier n

Safety Assurance Considerations
(defined by patterns)

Safety requirements are appropriate for
this tier and traceable to higher tiers

Safety requirements are appropriate for
this tier

Hazardous design errors have not been
introduced

Hazardous behaviour assessed and
mitigated

Safety requirements are satisfied

Hazardous design errors have not been
introduced

Hazardous behaviour assessed and
mitigated

Fig. 1. System safety requirements

plicitly on how the software can contribute to system level hazards. Our patterns
provide this structure by forcing users to consider each system hazard in which
software may play a role and to identify the specific software behaviour which
may contribute to the hazard. This might involve, for example, working system-
atically over the base events in fault tree. If an argument creator understands
the specific functions or properties of the software in which assurance is required,
then they can focus the argument and evidence on those things. This structured
approach should help to discourage spurious information being included in the
safety argument “just in case”.

2.1 Identifying Assurance Deficits

There will be aspects of all safety-related software systems for which assurance
is not demonstrated with complete certainty; there will always be things relating
to the behaviour of the software system which remain unknown or unclear. We
refer to such uncertainties as assurance deficits since they can undermine the
assurance that can be demonstrated. It is important to note that assurance
deficits do not necessarily correspond to faults or defects in the system, but
instead to an inability to demonstrate complete certainty in each safety claim in
the argument.

For example, it may be known that the compiler being used has some unde-
fined behaviour. It may be known that a design model used may not accurately
represent certain real environmental features or that a component has not been
exhaustively tested. Or it may be known that an assumption that has been made
about partitioning of some software modules may not actually hold in all cases.

The argument patterns can help identify where such assurance deficits exist.
These assurance deficits may relate to the safety evidence generated or to the
safety argument itself. It is through managing assurance deficits that the required
assurance can be achieved.



3 Case Studies

The next two sections describe case studies where the software safety case pat-
terns were used on real products. The first is the control software for a prototype
autonomous vehicle and the second for an aircraft avionics system. Each of the
case studies highlights different ways that using the patterns can benefit the
production of safety case arguments by indicating where those arguments are
either missing evidence to back up safety claims or failing to identify clearly the
software contribution to the hazards being considered. The case studies differ
in the stage of technology readiness, the type of software deployment and the
derivation of safety properties. They also differ in terms of the level of experience
of the engineers creating the safety case. Despite these differences, the patterns
were sufficiently flexible to be used and provide benefits to both safety cases.

3.1 Prototype Autonomous Vehicle Case Study

As part of a SEAS DTC [9] project on safety of autonomous systems we craeted
a safety argument for an autonomous system drawn from the SEAS DTC Ex-
emplar 2 scenario [10]. The system chosen was a prototype Unmanned Ground
Vehicle (UGV) that formed part of a larger System of Systems (SoS), including
an Unmanned Aerial Vehicle (UAV) and ground control units. As a high-level
hazard and safety analysis for the SoS had already been completed using pre-
viously developed techniques [11], we decided to construct a partial safety ar-
gument that would start at a system level hazard for the UGV and end with
arguments justifying the safety of software that could contribute to that hazard.
The UGV in question is an adapted all-terrain vehicle (the Wildcat) produced
by the Advanced Technology Centre of BAE Systems. The current prototype is
able to operate without a driver, to follow an off-road GPS waymarked route by
calculating the best path within the waymarked corridor and is able to avoid
static objects. As with many UGVs it is heavily reliant on GPS signals for
their autonomous operation. However, in cases where the GPS signal is lost or
jammed, the vehicle is able to continue to plan its path by taking measurements
from the Inertial Measurement Unit (IMU) in conjunction with other on-board
sensors (such as LIDAR). Unfortunately the IMU measurements (and therefore
estimates of the vehicle’s position) are subject to drift over time, giving an el-
lipse of uncertainty with regard to the vehicle’s true position that can grow in
an unbounded fashion in some scenarios (e.g. after entering a long tunnel). This
could result in the vehicle colliding with objects or the side of the road as it
miscalculates its position.

While there are many potential collisions that could be described, the ap-
proach adopted was first to identify potential accidents and the hazards that
could lead to those accidents occurring. Based on the hazards, we next iden-
tified a set of top level system safety requirements. These requirements were
then further decomposed using techniques derived from the Goal-Oriented Re-
quirements Engineering (GORE) approach of Lamsweerede and others [12]; this
proved fairly straightforward and intuitive.



The act of decomposing the system safety requirements gave rise to safety
requirements over the software that form the starting point for instantiating the
software safety case patterns discussed in this paper. Our intention was not to
conduct an exhaustive safety review of a particular hazard and its mitigation;
instead we chose to restrict ourselves to a particular aspect of one hazard (object
collision after loss of GPS signal, see Table 1, safety requirement SR2-4) and to
follow the instantiation of a software safety case pattern to the point at which
evidence would normally be presented to meet the software safety requirements
defined at the lowest levels. This naturally excluded much peripheral work that
would have been essential to a full safety case, as either the technical information
was not to hand or we felt it was not directly related to the part of the safety
case we were covering.

Table 1. System safety requirements

Safety 
requirement 

Description Notes System or 
software 
components 

SR2 – top 
level 

While moving, the UGV avoids 
collisions with objects. 

Top level SR2 depends on 
availability of GPS, sensor 
ranges and quality of their 
data, path planning and 
vehicle driver functions. 

All of UGV 

SR2-1 

Vehicle restricts speed such that 
stopping is possible before collision 
occurs with objects. 

Stopping can be affected by 
traction, gradient, steering, 
hardware or vehicle damage. 

Sensors. 

Actuators. 

SW: Driver. 

SR2-2 

Vehicle restricts speed such that it 
can manoeuvre to avoid objects in 
its path before collision occurs. 

Steering can be affected by 
speed, camber, traction, rate 
of turn or hardware and 
vehicle damage. 

Sensors. 

Actuators. 

SW: Pilot, 
Driver. 

SR2-3 

Vehicle restricts speed such that it 
can plan a new path to avoid 
objects. 

Sufficient time is allowed for 
vehicle to plan new path even 
in complex environments. 

Sensors. 

SW: Planner. 

 

SR2-4 

In cases where GPS is lost or 
blocked, vehicle to maintain last 
good path until GPS signal is re-
established. 

New plans can be formed 
relying on IMU data but this 
carries significant risk. 

Sensors. 

Actuators. 

SW: Planner, 
Platform 
Manager. 

SR2-5 

On re-establishing a GPS, the 
vehicle converges path differences 
between estimated position and true 
position in a safe manner. 

Convergence carries 
significant risk, as the degree 
of positional error is 
impossible to predict and 
object avoidance may be 
impossible if vehicle needs to 
“teleport” to true position. 

Sensors. 

SW: Planner. 

SR2-6 

If vehicle is unable to maintain a 
planned path, vehicle is brought to 
emergency stop  

Ability to plan a new path is 
limited by CPU processing 
and sampling speeds, current 
speed of vehicle and 
complexity of environment.   

Sensors. 

SW: Pilot, 
Driver, 
Platform 
Manager. 

 



The software safety case patterns require that the software contributions to
the hazard in question have been identified. There are various ways this top
level contribution can be obtained; for example, it might occupy one node in a
causal model, such as a fault tree analysis. For the instantiations of the software
safety case pattern to be as easily as possible, it is important that the high level
software contribution to the hazard is clearly understood and defined, as this
forms the starting point of the software safety case and defines the context in
which the case is made.

The first thing that the use of the patterns helped to do was to highlight that
the top level software contribution to the hazards had not been clearly identified
for the prototype UGV. The reason for this is that safety requirements are not
typically expressed by describing how the system or software can contribute to
a hazard. Instead, safety requirements tend to be framed in language that states
the requirement as “necessary to mitigate” the hazard. Thus from our system
safety requirements we have SR2 decomposed to SR2-4 (see Table reftab2, note
have selected just that which is related to the loss of GPS signal referred to
above):

System Safety Requirements
SR2
While moving, the UGV avoids collisions with objects.
SR2-4
In cases where GPS is lost or blocked, vehicle maintains last good path
until GPS signal is re-established.

Neither of these explicitly defines the hazard or mentions the software contribu-
tion to it. In fact SR2-4 does not specify how the vehicle should maintain a good
path; it could be through hardware, software or a combination of both. The use
of the patterns highlights the importance of making the software contributions
to hazards explicit. Note that for our purposes, we are only concerned with the
software contribution with regards to loss of the GPS signal (there are other
software contributions we do not define here). We were able to transform the
requirement above into the following expression of a contribution to a hazard.

Hazard described in SR2
UGV collides with static object.
Software contribution to Hazard in SR2
Software fails to plan safe path for vehicle when GPS signal is lost or
blocked.

This rewriting of SR2-4 gives a clear starting point from which to construct a
safety argument using the patterns. From this point downward in the decom-
position we can refer to safety requirements over the software, as shown by the
software safety requirements extract in Table 2 that decomposes SR2-4 by ap-
portioning software safety responsibilities (note that the full decomposition is



much more detailed and goes down to the level of individual program functions
and variable declarations).

Table 2. Transistion from system to software safety requirements

Software 
Safety 

requirement 

Description Notes / mitigation in design / other 
risks. 

Risks / hazards 
introduced as a 

function of 
design decision 

SR2-4 

In cases where GPS 
is lost or blocked, 
vehicle to maintain 
last good path until 
GPS signal is re-
established. 

New paths can be formed using IMU 
data but this carries unspecified levels 
of risk. 

 

SR2-4-1 

Where GPS signal is 
momentarily lost, 
software takes 
positional input from 
IMU to continue 
planning new paths 
until GPS signal is re-
established. 

Paths planned without GPS data 
become increasingly inaccurate. 

If vehicle starts to skid or loses traction, 
IMU data becomes unreliable. 

Positional “drift” 
can grow in an 
unbounded 
fashion during 
loss of GPS 
signal, therefore 
vehicle could 
collide with an 
object it knew 
about and had 
planned to avoid. 

SR2-4-2 

If vehicle experiences 
loss of GPS signal for 
longer than 30 
seconds, software 
brings vehicle to halt. 

Bringing vehicle to halt within a GPS 
“tunnel” may result in vehicle being 
unable to continue mission. 

Vehicle falls into 
enemy hands or 
becomes “lost” to 
accompanying 
UAV.   

 

Case Study Findings Before the patterns were used to guide the development
of the safety case argument an explicit distinction had not been made between
the system level safety requirements and the software contribution to the haz-
ard. This led to some confusion when first instantiating the patterns, as the
patterns require that the software contributions to hazards are identified. This
is a strength of the software safety argument patterns, as they encourage the
derivation of the software contributions and this represents good practice for
software safety. The diagram in Figure 2 illustrates how the patterns force this
distinction to be made - at the different design tiers, it must be demonstrated
that the safety requirements are appropriate for that tier and are traceable to
higher tiers. It can be seen that as the design tiers become more detailed and
more software-specific, so the safety requirements for that tier must do also.
Figure 2 shows how clear traceability can thus be established up to the system
hazards.

We should note, here, that the system in this case study was a prototype
product whose design is yet to be finalised. Perhaps we should not expect such
a product to have something as specific as a fault tree (which would isolate
the software contribution to the hazard in language that is more suited to the
pattern);this type of safety analysis is more common on products with a higher



Design Tiers Safety Assurance Considerations
(defined by patterns)

System architecture

Software System

Software Architecture

Requirements capture explicit definition of
software contribution

Safety requirements are appropriate for
this tier and traceable to higher tiers

Requirements capture system hazards

Requirements capture specific behaviours
associated with hazard

System Hazards

Could contribute to

Hazard associated with
software

Specific software
behaviour

Could contribute to

Fig. 2. Transistion from system to software safety requirements

level of technology readiness. Here, we carried out a fairly intuitive system to
software safety requirements decomposition - given our prototype’s operational
scenario, and the fact it is undergoing further development, this is probably not
inconsistent with real industrial practice. If this is the case, then care needs to be
taken to explicitly define both the hazard and the top level software contribution
to it, perhaps outside the main decomposition tables. Indeed, whether using the
patterns or not, it is beneficial to carry this exercise out so as to have a clear
understanding of the software contribution across the system. As everything
below this point in the decomposition will be a safety requirement on the software
rather than the system, the software safety requirements can be inserted into
the corresponding tiers of the pattern alongside the evidence selected to meet
those requirements.

It should be noted that this Wildcat UGV case study was carried out by
researchers who had no prior experience of using the patterns and limited ex-
perience with safety cases in general. Despite this, implementing the patterns
was relatively easy, and helped ensure we had adequately covered the neces-
sary assurance considerations. The patterns themselves provide a well structured
framework within which to document design rationale regarding mitigation of
hazards and justification of evidence. By tying this to tiers within the software
architecture, the patterns make it obvious where to locate arguments about de-
sign decisions at a particular level. This, in turn, ties argument claims closely
to specific elements in specific design or implementation artefacts, which helps
argument assessors judge the sufficiency of the resulting argument.



3.2 Aircraft Safety Critical Software System Case Study

The system considered in this case study was a safety critical aircraft avionics
system. The system comprised of a single line replacement item; the software for
this was the subject of the case study.

The potential safety hazards associated with the system are partially miti-
gated by means of hardware safety interlocks independent of the system software.
This approach minimises the contribution to safety from the software. Software
involved hazards can also be addressed by ensuring that the integrity of the
CPU commands to the hardware is sufficient to mitigate these hazards. This
was achieved by the use of a high integrity Safety Monitor component within
the main application software. The application software is split into two compo-
nents, the Controller and the Safety Monitor. The Controller implements all of
the actual system functionality, but all critical outputs are routed as requests to
the Safety Monitor. The Safety Monitor sees the same set of real world inputs
as the Controller and continuously calculates the safety state of the system. All
critical outputs which are passed from the Controller to the Safety Monitor are
checked against defined System Level Safety Properties, and the Safety Monitor
vetos any outputs which would infringe any of the safety properties. Any safe’
outputs (those which are determined not to infringe any safety properties) are
routed by the Safety Monitor onto the software device drivers.

The system level safety properties are the necessary conditions under which
the behaviour of the system is considered to be safe. The properties were iden-
tified from the system hazards during system Preliminary Hazard Identification
and Analysis. A formal definition (using the Z specification language) of the
safety properties was provided in order to state the necessary conditions pre-
cisely and unambiguously.

This case study was undertaken at a fairly early point in the software de-
velopment lifecycle. However, even at this early stage enough information was
available about the design and development of the software, and plans in place
for the later stages of the development, that a detailed software safety argu-
ment could be formed using the software safety argument patterns as guidance,
particularly for the aspects of the argument relating to the Safety Monitor

Case Study Findings The use of the software safety argument patterns high-
lighted a number of potential assurance deficits associated with the software.
Thus identified, the significant assurance deficits could be dealt with. If the pat-
terns had not been used then the assurance deficits may well not have been
discovered until later in the development process, increasing the cost and pos-
sibly causing schedule slips of the system. Here, we will focus our discussion
on one particular deficit, which relates the provision of sufficient evidence for
certain safety properties.

The issue is illustrated in Figure 3. The left-hand side of the figure shows the
tiers of design for the Safety Monitor software, while the right-hand side shows
one of the safety assurance considerations at that tier (as determined from the
patterns) and how that consideration is met. The argument patterns demand



that direct evidence of satisfaction of safety properties is provided. The diagram
shows the way in which this evidence was provided for the software at each
design tier.

It can be seen that at the software system level, evidence is generated by per-
forming system tests that check the behaviour of the software is as defined by the
safety properties specification. At the level of the software architecture, a sep-
arate specification is defined for each architectural element (module). Evidence
can be generated at this tier through module testing against the specification
for each module. Note that this evidence is not directly checking the behaviour
of the module against that defined by the safety properties specification. This
is acceptable as long as the safety properties required of the safety monitor
module have been correctly captured in the safety monitor specification. The
patterns highlight the importance of demonstrating that the safety properties
are adequately interpreted for the Safety Monitor module.

For the class design of the safety monitor module there can be seen to be no
evidence which can directly show that the classes behave in accordance with the
safety properties. Although unit testing is performed, this is evidence only that
the Safety Monitor behaves according to the design specification. In order for
unit testing to meet the safety assurance consideration, we also need assurance
that the class design correctly captures the required high-level safety properties.
Again, the patterns highlighted the importance of adequately interpreting the
safety properties for each of the classes in the safety monitor module design.

Finally in Figure 3, it can be seen that static analysis is provided as evidence
at the level of the source code. The analysis was conducted using SPARK proof
annotations [6] included in the safety monitor code. Again, for this evidence to be
effective from an assurance perspective, it must be demonstrated that the proof
annotations completely and correctly capture the required safety properties.

Design Tiers Safety Argument Assurance
(defined by patterns)

Software System

Software Architecture

Class Design

Source Code

Safety Properties (Z spec)

Safety Monitor Z spec

Captured in

Module testing

Direct evidence of satisfaction of safety
properties

Unit testing

SPARK proof annotations

Demonstrate
equivalence to

Static analysis

System testing

UML
Models

SPARK
ADA

Fig. 3. Transistion from system to software safety requirements



This example illustrates how, by encouraging the developer to consider ex-
plicit assurance claims relating to the required safety properties at every tier of
design decomposition, the software safety patterns highlighted the potential pit-
falls of any “gap” between the safety properties themselves and the tier against
which evidence is provided. The patterns identified that the most effective strat-
egy from an assurance perspective would be to explicitly interpret the required
safety properties at each level of design decomposition.

Other potential assurance deficits were highlighted by the use of the patterns
in this case study. A lack of assurance regarding potential hazardous failures at
each design tier was identified. Every time there is a decomposition in the design,
there is the potential to introduce erroneous behaviour into the design which
could manifest itself as a hazardous software failure. There had been analysis
conducted to identify new or additional failure modes of the software at the
architecture level (although this was fairly unstructured), but application of the
patterns highlighted a need to perform similar analysis at other levels of design.

4 Conclusions

The case studies we have undertaken have given us confidence that they have
the desirable criteria defined at the start of this paper:

– The patterns should be easy to understand and apply by software develop-
ment teams.

– The patterns should be flexible enough to apply to any safety-critical soft-
ware system.

– The patterns should ensure that the resulting software safety argument is
explicitly focused on controlling the software contribution to system hazards.

– It should be easy to judge the sufficiency of an argument created using the
patterns.

It is clear that the patterns are fairly easy to understand. This has been
demonstrated through the relative ease with which they were applied to the
autonomous system by people completely unfamiliar with the patterns.

It has been shown that the patterns are very flexible. The two case studies
reported here were on very different types of software system, but the patterns
proved to be equally applicable. This was particularly reassuring in the case of
the prototype autonomous vehicle, which is a novel system at an early stage of
development.

Both case studies made it clear that the resulting safety assurance argument is
very focused on demonstrating how the software contributions to system hazards
are controlled. This is an advantage over the unfocussed safety arguments that
are often produced. It was seen in the case of the aircraft software system that the
development team noted how the structure of the generated argument helped
to clearly highlight to them which of their software safety and development
activities were most important from a safety assurance perspective. In particular,
they commented that the case study revealed that many of the things that they



focus their attention on are general assurance activities, rather than activities
that explicitly help to address specific software contributions. This could help
to focus attention on the activities which are most important to software safety
assurance. In addition, it makes it easier to judge the sufficiency of the resulting
argument, since the relationship between the generated evidence and the safety
of the system was clear and explicit.

Most importantly, the case studies have shown that applying the patterns
can identify potential assurance issues, which can then be addressed as early as
possible. If left unidentified, such issues could lead to safety problems during
operation.

The case studies have also identified areas where more work on the pat-
terns would be beneficial. In particular we think that clearer guidance is re-
quired on the process of instantiating the patterns for a particular application.
This would seem to be particularly required when creating large, complex safety
cases. For such large complex software systems, it would also be beneficial to
provide guidance on how to group arguments with respect to the corresponding
design elements in order to keep a clear relationship between the software design
structures, and the structure of the argument.

The argument structures in the software safety argument patterns discussed
in this paper are broadly in line with the new “assured safety case” structure
presented by Hawkins et al in [7]. The patterns will be reviewed to ensure they
are completely consistent with that structure. The constraints in this new format
for safety cases have the potential to further focus software safety arguments on
those claims and evidence that matter the most.

5 Acknowledgements

The authors would like to thank the Systems Engineering for Autonomous Sys-
tems Defence Technology Centre (SEAS DTC) and the Software Systems En-
gineering Initiative (SSEI), both funded by the UK Ministry of Defence, which
supported the two case studies described in this paper.

References

1. Hawkins R., Kelly T.: A Systematic Approach for Developing Software Safety Argu-
ments. In Proceedings of the 27th International System Safety Conference, Huntsville,
AL (2009).

2. Menon C., Hawkins R., McDermid J.: Interim standard of best practice on software
in the context of DS 00-56 Issue 4. Technical Report SSEI-BP-000001. Software
Systems Engineering Initiative, York. https://ssei.org.uk/documents/ (2009).

3. Weaver R. A.: The safety of Software - Constructing and Assuring Arguments. PhD
thesis, Department of Computer Science, The University of York (2003).

4. Kelly T.: Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD
thesis, Department of Computer Science, The University of York (1998).

5. Ye F.: Justifying the Use of COTS Components within Safety Critical Applications.
PhD thesis, Department of Computer Science, The University of York (2005).



6. Barnes J.: High Integrity Ada - The SPARK Approach. Addison Wesley (1997).
7. Hawkins R., Kelly T., Knight J., Graydon P.: A New Approach to Creating Clear

Safety Arguments. In Proceedings of the Nineteenth Safety-Critical Systems Sympo-
sium (SSS ’11), Southampton (2011)

8. Jaffe M., Busser R., Daniels D., Delseny H., Romanski G.: Progress Report on
Some Proposed Upgrades to the Conceptual Underpinnings of DO178B/ED-12B. In
Proceedings of the 3rd IET International Conference on System Safety (2008).

9. Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre
(DTC) http://www.seasdtc.com/

10. Bardo B.: Autonomous Systems — A New Partnership Between Man and Ma-
chine. Presentation to SEAS DTC (2010). http://www.innovate10.co.uk/uploads/
BillBardo-theSEASDTC.pdf.

11. Alexander R., Herbert N., et al.: Deriving Safety Requirements for Autonomous
Systems. Proceedings of the 4th SEAS DTC Technical Conference, Edinburgh (2009).

12. Lamsweerde A.: Goal-Oriented Requirements Enginering: A Roundtrip from Re-
search to Practice. Proceedings of the Requirements Engineering Conference, 12th
IEEE International (2004).


