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Abstract. Some of the complex systems with which the CoSMoS project
is concerned are safety-critical, and if such systems are ever to be built
and operated then they will need to be certified safe to operate. By
looking at how conventional safety-critical systems are developed, we
can find basic principles for safety-critical complex systems — this may
be harder or easier than non-safety-specialists expect. In this paper, we
outline current safety engineering methods and illustrate them using an
artificial platelet case study. We also summarise our previous work on us-
ing simulation in safety engineering, and make some observations about
applying simulation to very small systems.

1 Introduction

The CoSMoS project [1] is concerned with the engineering of complex systems.
Some proposed complex systems are safety-critical — they have the potential to
cause human injury or loss of life. Engineers developing safety-critical systems
must meet a range of legal requirements, and to achieve this they must use
considerable safety-specific technical knowledge. To outsiders (used to the en-
gineering, particularly software engineering, of non-safety-critical systems) the
methods used in safety-critical systems engineering may seem arcane, and in
places even primitive or backwards. Nevertheless, failing to follow these meth-
ods may lead to the development of systems that can never be used because of
safety concerns.

Sections 2 and 3 of this paper provide a primer in current safety-critical
systems thinking for complex system researchers and developers. This is not a
complete solution to safety concerns, or a cookbook approach to safety engineer-
ing. It does, however, provide the non-safety-expert with a starting point for
appreciating the specific challenges that safety-critical complex systems pose.
Equally, it should provide some insight into what is not needed under current
safety regimes, and thereby open up avenues that may have seemed impractical
before.

In Section 4, we have taken the Artificial Platelet (AP) system used as a case
study by the TUNA project [2] and performed an initial hazard identification



on the concept. We then use this to illustrate a number of the safety engineering
issues raised in the previous section, and to highlight some of the problems that
complex systems present.

To supplement the above, and with particular relevance to the simulation
aspects of the CoSMoS project, Section 5 reviews previous work by some of
the authors on simulation-based analysis of complex Systems of Systems (SoS).
This illustrates how simulation techniques can move engineered systems from
the unmanageable to the potentially tractable. Some of the extant challenges
faced by this work will be equally (or more) salient to the CoSMoS project.

Finally, Section 6 discusses some of the unique aspects of engineering and
simulation for very small artefacts.

The emphasis throughout is on the practical implications for complex sys-
tem engineering (in terms of practical needs) and research (in terms of research
objectives).

2 The Need for Safety Engineering

Safety engineering is relevant to a great many endeavours; specifically, any situ-
ation where human injury or death is possible. In the UK, the legal requirement
to perform safety activities stems from the Health and Safety Executive and the
1974 Health and Safety at Work act [3]. For example, the HSE imposes a duty
of care on employers with respect to the safety of their staff.

Certain industries, such as air transport and nuclear energy, are explicitly
requlated, and specific legal duties are imposed on manufacturers and operators.
These go beyond the common requirements imposed by the HSE; for the most
part, the regulations are concerned with preventing major accidents. A recent
overview of the relevant safety regulations for a number of different industries
can be found in Jones [4]. A common theme is that before an installation or
product can be operated or sold, it must be certified — an independent safety
assessor must agree that it appears to be adequately safe.

Safety in regulated industries is governed by safety standards — documents
that lay down what procedures must be followed in order to claim adequate safety
(and thereby achieve certification). These standards are (generally) industry
specific. For example, DO-178B [5] covers the safety of aircraft software, while
Def Stan 00-56 [6] sets safety requirements for all UK military equipment.

Traditionally, most standards were prescriptive; they laid down a set of pro-
cedures to follow and processes to perform. If a product developer followed the
process, they could claim an adequate safety effort. For example, a software-
related standard might mandate code reviews, MC/DC test coverage, and the
use of a programming language subset designed to eliminate common coding
errors. Examples of prescriptive, process-based standards are DO-178B and the
obsolete Def Stan 00-56 Issue 2 [7].

Prescriptive standards are problematic for two reasons. First, they present
a safety problem: there is not particularly strong reason to believe that merely
following any given process to the letter will necessarily lead to a safe system.



Second, they strongly restrict the technologies (e.g. algorithms and hardware)
that can be certified as safe. This second problem would prevent the certification
of the complex systems with which the CoSMoS project is concerned.

Because of the problems with prescriptive standards, there has been an in-
creasing move towards goal-based safety standards. Such standards define the
measure of safety that is required (for example, expected lives lost per operating
hour), and the evidence of safety that must be supplied, then require system
developers to present a structured argument that their system will meet the re-
quired level of safety. Rather than mandating processes or technology choices,
goal-based standards set the bar for safety achievement and put the onus on
system developers to provide evidence of safety. Provision of such evidence for
complex systems is of obvious relevance to the CoSMoS project. Examples of
goal-based standards include Def Stan 00-56 Issue 4 [6], which is particularly
clear and straightforward.

Safety thinking, particularly in its goal-based form, is making inroads into
other domains. For example, the ISO is developing an Assurance Case standard
which will lay down standards for arguing non-safety properties of software sys-
tems. In the long term, it may be that standards for arguing dependability (the
umbrella term that includes safety, security and other attributes — see Despotou
in [8]) become widespread across many engineering domains.

3 The Basics of Safety Engineering

In this section, we give an overview of how a system developer can perform
safety engineering and end up with a system that is safe to operate. It is written
with the assumption that there is a goal-based safety standard in place that the
developer must meet, but we feel that this overall approach is a strong one even
where there is no legal requirement to follow it. We can only give a very general
outline here — anyone performing safety engineering will need to use (or develop)
a lot of other domain-specific guidance.

3.1 Hazards and Risk

At the very core of safety engineering is concept of the hazard. In its simplest
sense, a hazard is a state which it is dangerous for the system to be in. Def
Stan 00-56 defines a hazard as “A physical situation or state of a system, often
following from some initiating event, that may lead to an accident.” [6].

An example hazard for a car is “Loss of steering control”. An example for
a chemical plant is “Tank temperature exceeds flash point of contents”. There is
no hard rule for when one hazard is sufficiently distinct from another — hazards
are a view that we impose on a system in order in order to manage the huge
numbers of possible accidents and causes of those accidents (see Figure 1 for an
illustration of this).

The process of identifying hazards is called hazard identification, and the
process of deriving causes and consequences (accidents) for hazards is known
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Fig. 1. Causes, Hazards and Accidents (reproduced from [9])

as hazard analysis. These activities need to happen early in any safety-critical
engineering project, and should be updated throughout the lifecycle (even dur-
ing operation). A variety of techniques exist for guiding engineers through this
process, such as Functional Failure Analysis (FFA) (see Pumfrey in [9]) and
HAZOP (see Kletz in [10]).

3.2 Predictive Analysis

Once hazards have been identified, we need to determine how often they will
occur and what (how severe) the consequences will be if they do. The severity of
each hazard needs to be measured in some standard way — several classification
systems exist, but many can be seen in terms of mathematical expectation of
loss of life (or a combination of that and the expectation of monetary cost).
The combination of probability and severity is known as the risk posed by the
hazard, and the combined risk from all hazards provides the total system risk.

A convincing prediction of hazard probability and severity is critical for safety
certification. As noted in Section 2, certification requires that a developer show
that the risk posed by the system is acceptable, and prediction of hazard risk is
the centre of that.

3.3 Safety Requirements

In many cases, the inherent hazards in a system will make it unacceptably dan-
gerous in its “naked man” (no safety measures) form. From hazard analysis,
engineers will have to derive a number of additional system requirements that, if
met, will reduce the risk posed by a hazard. These safety requirements then drive
later safety engineering activity, and obviously have knock-on effects as they in-
teract with requirements from other sources (e.g. the system’s basic functional
and performance requirements).



Safety requirements may be qualitative ( “If a wheel locks, then the anti-lock
braking system must engage”) or may be quantitative (“The probability of a
pressure relief valve jamming shut must be no more than 1 x 10™* per operating
hour”).

In a goal-based safety regime, how safety requirements are met is up to the
developer. The key, however, is that the developer must provide evidence that
the requirements are adequate (that they really will provide the desired increase
in safety) and that they have actually been achieved in the implemented system.
The level of confidence needed will depend on the level of risk posed by the
system’s identified hazards — more dangerous systems require correspondingly
better evidence.

Even if a requirement is actually adequate and is actually met (from the per-
spective of some hypothetical all-seeing observer), it may still be that the system
developer cannot convincingly show this. This is particularly likely for novel sys-
tems and novel technologies. The simulation and analysis methods proposed by
the CoSMoS project are clearly relevant here.

3.4 The Safety Case

A safety case is a document that presents a compelling structured argument
that a system is safe, for some explicit definition of “safe”. It is on the basis of
the safety case that a regulator (or other independent safety assessor) approves
a system for safety certification. For example, the required standard of safety
might be expressed in terms of “Expected loss of life per operating hour”.

There are several ways to structure and express a safety case. A plain natural
language presentation can be used, or a tabular format, although there is increas-
ing use of explicit argument structure notations such as the Goal Structuring
Notation (GSN) (see Kelly in [11]).

Below the level of notation, a safety case must be organised in some system-
atic way so that the completeness and adequacy of the argument can be assessed.
Several different safety argument patterns are presented in [11]. Perhaps the sim-
plest structure is a breakdown by identified hazards — such a case would argue
that all hazards had been identified, that all hazards had been adequately mit-
igated, and that the combined risk from all mitigated hazards was acceptable.
The rest of this paper will assume such a structure.

The standard of argument in a safety case is informal, in the manner de-
scribed by Toulmin in [12]. Formal notations and formal proof are emphatically
not required — indeed, we are a very long way from a formal language that could
adequately express all the diverse aspects of a safety case. Rather than proof,
a safety case seeks to establish adequate confidence that the safety argument
is sound. Specifically, it needs to provide evidence that the safety requirements
derived from hazard analysis are met.

The level of confidence required for any particular claim depends on the sys-
tem and the claim. Def Stan 00-56 makes this explicit: the required confidence
depends on the risk posed by the system, its complexity and the degree of nov-
elty (either in terms of technology or application). Specifically, it states: “The



quantity and quality of the evidence shall be commensurate with the potential risk
posed by the system and the complexity of the system” [6] — the novelty issue is
presented in an additional diagram (the “McDermid Square”). “Complexity”
here is not in the CoSMoS sense — rather, it means merely “complicatedness”.
(In any case, this is contingent on the developer’s ability to understand and
manipulate the system; it is in some sense “analysability”.)

One part of any safety case will be the claim that the derived safety re-
quirements are adequately complete. Typically, the developer will assert that
all hazards have been identified, and that the set of requirements derived from
each is adequate. Such claims can be difficult because they involve assertions
about the (absence of) the unknown. They are, nevertheless, absolutely essen-
tial — if there is a missing hazard (or a missing cause of a known hazard) then
the estimated total system risk could be very wrong.

In particular, a simple claim of adequate effort in hazard analysis is not
sufficient — if the system being argued about is extremely complicated, and uses
technologies that are poorly understood, then it may not be possible to make
an adequate completeness claim. It may, therefore, not be possibly to certify the
system — the developer may have to go back to the drawing board, changing the
design or concept until it is tractable to analysis.

3.5 Operational Safety Management

Once a system has a safety case, has been certified, and is in active use, it still
needs active management if it is to remain safe. The safety level of the system
needs to be monitored and maintained. This operational safety management
is critical because this is the point where prior safety-related modelling and
analysis encounters the reality of the system in its real operating environment.
The practical evidence coming from real operation has far higher confidence than
the evidence from prior models or pre-operation tests.

System operators can and should track the accident and incident rates for
the system. This can be used to estimate the actual safety risk of the system.
Such safety performance management allows us to assess whether the risk levels
claimed in the safety case are accurate. When a discrepancy is found, the devel-
oper must re-assess the safety of the overall system in the light of this change,
and may need to change the design or operational procedures to restore an ad-
equate level of safety. When this happens, the safety case should be updated; a
safety case should be a living document.

3.6 Conservatism

A common theme throughout safety engineering (and indeed, throughout all
safety-critical industries) is conservatism. Safety-critical systems are built using
well-established technologies, methods and tools, often after similar non-safety
developers have moved on. System developers are often extremely reluctant to
change their development processes, architectural assumptions or even program-
ming languages. In some sectors it is difficult or impossible to certify systems



using technologies that have been accepted for decades in non-safety domains
(for example, it is currently difficult to use software control in a UK nuclear
energy system because the regulators will not accept it).

Conservatism in terms of technology is often motivated by the practicality of
convincing analysis or by perceived protection from human error. Determinism
is also a factor — if it is hard for an engineer to predict the precise behaviour of
a system component at a critical time, then it is hard for them to claim that it
meets any associated safety requirement.

As an example of conservatism and its motivation, consider memory man-
agement in software. Many software developers working in non-safety industries
use languages such as Java and platforms such as the Java Virtual Machine that
provide garbage collection, and therefore automatically reclaim dynamically-
allocated memory. By contrast, software developers who are working on safety-
critical software are generally unable to dynamically allocate memory at all (it is
prohibited by the MISRA C subset [13] and simply not supported by the SPARK
language [14].) They are, in a sense, two whole paradigms behind.

It is not true that dynamic memory allocation is fundamentally incompat-
ible with safety. It is, however, a notorious source of programmer errors and
very difficult to statically analyse. In particular, it is difficult to assert that the
memory needed by the software will never exceed the amount that is available.
By contrast, if a software program only uses static memory allocation, it is easy
to determine how much memory is required.

Garbage collection provides some protection from programmer error (the
classic case of losing all pointers to an allocated memory block before releasing
it, thereby causing an unrecoverable “memory leak”) but does nothing to bound
the worst-case memory usage of a program. In addition to this, most garbage
collection schemes are non-deterministic; it is impossible to predict exactly when
the garbage collector will be called or how long it will take.

Conservatism will be a major obstacle to the creation of safety-critical com-
plex systems. This will be both in its intuitive, “gut-feeling” form (complex sys-
tems are strange architectures implemented using strange algorithms on strange
substrates) and in its well-reasoned form (if we can’t predict the worst case be-
haviour of a particular emergent algorithm, then we may be forced to eschew it
in favour of a conventional, centralised algorithm that we can understand — even
if the average performance is much worse).

4 Safety of Complex Systems

To illustrate some safety activities in the context of a complex system, we will
use the Artificial Platelet (AP) system. The AP system was used as a case study
by the TUNA project (see [15] and [16]). It provides a set of artificial platelets
that can be injected into a patient’s blood stream to speed up wound clotting
(for example after a serious accident). Obviously, this has inherent safety risk,
so safety engineering is essential.



Section 4.1 gives an initial identification of accidents and hazards for the AP
system concept, and Section 4.2 discusses the architectural implications of some
of these hazards. Section 4.3 then shows how a safety case could be developed
from this starting point.

4.1 Initial Accident and Hazard Identification for the AP Concept

As noted in Section 3.4, it is critical that safety engineers identify all the hazards
that a system can exhibit. The set of hazards is unique to the particular system
being developed — it may not be shared with other systems using the same
technologies or approaches.

For well-established types of systems (such as cars and chemical plants) the
types of accidents that can occur are well understood (e.g. crashes and explosive
reactions). We can therefore move straight to indentifying hazards. The AP
system is highly novel, however, and the set of possible accidents is not obvious.
We must, therefore, identify a set of accident scenarios before we can identify all
hazards.

Tables 1 and 2 show the output of an initial accident and hazard identi-
fication for the AP concept, developed by brainstorming between the authors
(two academics specialising in safety engineering and a medical doctor). This
method (safety engineers brainstorming with domain experts) is a common and
important way to start the identification of hazards.

The accident scenarios presented in Table 1 are events occuring at a relatively
large scale, and are events that we care about directly (they are events that
have very direct consequences for the survival and future health of patients).
The hazards in Table 2 are events at the level of the AP system that are not
necessarily of immediate concern, but which could lead to one or more of the
identified accident scenarios. In particular, they could lead to accidents without
anything else going wrong. Note how one hazard may lead to multiple accident
scenarios. Indeed, it is often possible to group many similar accidents under a
smaller number of hazards; this may help to keep the safety case manageable
(this was shown diagramatically in Figure 1).

A note on immune response: Hazard H2 and accident scenario A5 may be
caused by an immune response, and because the immune system learns this may
become worse over time. If an immune response did occur, the first application
of AP to a given patient would have no visible ill effects, while the second might
have very severe ones.

It is important to remember that safety engineers aren’t very worried about
hazards that always happen — such hazards will become obvious before long.
Their prime concern is with hazards that will rarely manifest, but not so rarely
as to be of no concern. A common baseline (in process plants and aviation) is
that all hazards combined should cause a fatality no more than once every 106
years, but this varies widely.

One important variant of this is finding hazards that will manifest often
under certain circumstances — in the AP case, this might mean only for some



Table 1. Identified AP Accident Scenarios

ID

Description

Notes / Causes & Consequences

Al

AP fail to form clot

If not announced may delay other treatment.

A2

Clot is too short-lived

Human platelet transfusions have a very lim-
ited lifespan and are often used in people who
have low platelets who are actively bleeding,
or alternatively, immediately prior to an op-
eration. Temporary clotting is of little value
and AP would need to at least match the cur-
rent human platelet lifespan.

A3

Clot blocks blood vessel

Could cause stroke, coronary thrombosis
or potentially a pulmonary embolism. An-
nouncement required at inter-platelet/multi-
agent level.

A4

AP cause Disseminated Intravascu-
lar Coagulation (DIC) — widespread
clots form in multiple vessels

Usually fatal. Very poorly understood phe-
nomena — root cause is not known, but
platelets are involved in the mechanism. Un-
regulated clotting occurs, which leads to
haemorrhage as clotting factors and platelets
are subsequently used up.

A5

Allergic reaction to AP

May be immediate or delayed. Effect could
range from minor symptom (e.g. rash) to fa-
tal anaphylaxis.

A6

AP act as infection vector

Particularly dangerous given that patient is
already in poor health.

AT

AP damage permeable membrane

AP may interact differently in response to
the body’s permeable membranes such as in
the kidneys filtering system. It could cause
an obstruction or pass through the kidney
filtering system inappropriately. This could
damage the filtering apparatus and lead to
renal impairment or even organ failure.

A8

AP prevent secondary haemostasis

May prevent formation of stable, long-term
clot.




Table 2. Identified AP Hazards

ID Description Notes / Causes & Consequences
H1 AP go somewhere they shouldn’t e.g. crossing the blood-brain barrier. May
cause A3 or A7.
H2 AP destroyed by immune system May cause Al or A2. Detection and an-
nouncement may be difficult.
H3 AP lifespan too short May cause A2.
H4 AP form oversized clot May cause A3.
H5 AP contaminated with infectious|May cause A6. May depend on platelet stor-
agent age arrangement — might need to be stored
at or near body temperature. Bacterial infec-
tion most likely in this scenario.
H6 AP have unexpected interaction withli.e. their interaction is unlike that of natural
permeable membrane platelets. May cause A7.
H7 AP fail to release mediators for sec-|May cause A8 (see clotting cascade diagram
ondary haemostasis in Figure 2).

patients, only when administered in combinations with some drugs, or only for
patients with some other medical condition.

H5 (AP contaminated with infectious agent) shows how performing safety
analysis early can save effort (and maybe save your engineering project). If you
know that preventing bacterial growth on AP (or in their storage medium) is
critical, then you can take steps to achieve this. If you don’t know that this is
critical until late in the project, then you might have made design decisions that
conflict with this. For example, your AP might have to be stored at human body
temperature (which is ideal for bacterial growth).

It is important to remember that you don’t have to argue safety in all possible
situations, provided that you can argue that you know when your system is not
safe to use. Taking A3 as an example, the AP system might not be safe to
use on a patient with a cardiac stent, because the stent may be a likely site
for an unwanted artificial clot. If you know this, you can explicitly exclude this
situation from the safety case (except to note that this restriction will be clearly
documented).

Tables 1 and 2 are, of course, only a starting point, but they illustrates the
typical form and character of a high-level hazard analysis. It is likely that there
are possible accidents that are not covered by Table 1. There are certainly ways
that those accidents could occur that are not covered by the hazards in Table
2 (for example, no hazard is identified that could lead to accident scenario A4).
During the development of the AP system, the hazard list would be expanded
and additional detail would be added. Further brainstorming with other domain
experts (and more specialised experts) would be valuable (the Oxford Handbook
of Acute Medicine [18] gives “abnormal platelet behaviour” as a possible cause
for many different conditions, and various platelet-related disorders are discussed
in [19]).
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As more sophisticated models became available, engineers would use a va-
riety of hazard analysis techniques that work over these models. Some general-
purpose methods were identified in Section 3.1, and Section 5 outlines a possi-
ble simulation-based technique. For example, the HAZOP technique (see [10])
is widely used for analysing process diagrams in chemical plants. It could be
adapted for use on biological process diagrams, such as the clotting cascade
shown in Figure 2. (It should be noted that Figure 2 is a simplified represen-
tation of the cascade, only touching on the secondary (non-platelet) part; more
detailed representations exist.)

One corollary of the above hazard analysis is that the safety of the AP system
has a tremendous dependency on the behaviour of the patient’s immune system.
Any simulation-based attempt to address these hazards will need to be paired
with a reasonable immune system model. Most likely, this environment model
will be built up over time (e.g. through concept, design, animal trials and human
trials). Scope control is crucial here — developers may need to restrict the use of
simulation to where it is explicitly needed (e.g. for “emergent hazards”).

In some ways, the AP system is an easy example because we already have nat-
ural platelets to learn from. If we were considering an entirely novel bloodstream-
dwelling nanomachine, we’d have a more difficult job. For example, consider
whether the hazards presented by an artificial heart are the same as those of a
natural heart — there is probably significant overlap (particular those hazards
concerned with the blood vessels around the heart) but the artificial heart has
a very different internal mechanism.



4.2 Individual and Multi-agent Hazards

H1 (AP in wrong location) could potentially be detected by an individual AP —
the AP to detect that the surrounding tissue is of the wrong type. By contrast,
hazard H4 (AP form oversized clot) is a state at the inter-platelet (i.e. multi-
agent) level, and can be detected only by something that has an overall awareness
of multiple APs.

This is an architectural distinction — it is much easier to argue that a hazard
is mitigated if it can be resolved at the individual platelet level. For example,
an AP could be built to detect whether it was in or near a blood vessel, and
to self-destruct if it was not. Alternatively, it might be possible to argue that
the lifespan of an AP, although long enough to be useful for clotting, is not long
enough to cause problems in other tissue. On a theoretical level, these kinds of
arguments are straightforward — they’re much like the ones we use in existing
safety-critical systems.

By contrast, it is difficult to achieve and argue mitigation for multi-agent
hazards. Most likely, an engineer would need to argue that the platelet would be
able to detect that the AP system had formed a clot where it was not needed, and
then disassemble it. This is an extra requirement for emergent behaviour (extra
to those needed to provide useful clotting in the first place). If this approach
was taken, this would be an example of a safety requirement as introduced in
Section 3.3.

(One alternative might be to detect unwanted clots through external imaging,
but this would raise a variety of issues including imaging equipment availability,
interaction of imaging actions with other treatment of a critically injured pa-
tient, and human factors such as ability to see small developing clots in obscure
locations).

‘Detect’ in the above paragraphs could have a number of meanings. One is
that the AP has some kind of explicit knowledge of its state (and can therefore
take an explicit action) — this is the norm for conventional systems. Another is
that the AP is engineered so as to only be stable under a narrow set of ‘safe’
conditions. For example, it might be that the AP could be designed only to be
stable in the physical and chemical environment of a suitable blood vessel — if it
was in any other location, it would break up and become inert. For ultra-simple
(e.g. nanoscale-assembled) agents the latter approach may be the only viable
one.

Nanoscale devices may be novel in that they are built on a single substrate,
without the traditional divisions between e.g. software and hardware in a conven-
tional vehicle or robot. They may be built from a single material, both logic and
actuators, making them closer to a clockwork device than an electronic robot.
In safety engineering, we often rely on the software-hardware divide to manage
and contain the software contribution to hazards. More generally, this illustrates
how novel technology may break existing safety techniques.



4.3 Building a Safety Case for the AP System

A common and practical approach to building safety cases is to argue that all
hazards presented by the system present an acceptably low risk. Figure 4 shows
the top level of a possible safety case for the AP system, presented in the Goal
Structuring Notation (GSN).

Arguments in GSN have a hierarchical structure. At the top of the structure
is a goal which takes the form of a particular claim about the system (in Figure
4 this is the node RisksTolerable). The level below that breaks this down into
multiple child goals. Each of these child goals then broken down in turn, until we
reach a point where the goals can be supported by (“solved by”) explicit evidence
(evidence is shown in a GSN diagram as a “Solution” node). Between any goal
and its child goals a strategy may be used; this explains how the breakdown is
being performed (in Figure 4, ArgOverHazards shows that we are claiming that
the risk from all hazards is tolerable on the basis that the risk associated with
each identified hazard is tolerable). Figure 3 gives a key to the symbols used in
GSN; for a more comprehensive description of the notation, see [11] or [20].

(Note: The strategy ArgOverHazards breaks down the argument in terms of
the top-level hazards that were identified in Table 2).

System can Fault tree Argument by
tolerate single A
component for Hazard elimination of
P H1 all hazards
failures
Goal Solution Strategy

All Identified
System
Hazards

Undeveloped Goal
Context (to be developed further)

Fig. 3. Principal Elements of the Goal Structuring Notation (from [20])

The context node DefTolerable is very important — it defines the term ‘toler-
able’ that is used in the rest of the argument. The definition used here, “expec-
tation of less than 1076 accidents per use” is arbitrary, although not untypical
of existing safety arguments. If we knew what the regulator in this case would
require as a standard of safety, then we can change our definition (although we
might then need to change our argument structure in order to meet it).
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Fig. 4. Top Level of AP Safety Case

It is important to note that the definition of tolerable’ provided by DefTol-
erable applies to the whole AP system active within a particular patient; it sets
a probablistic tolerability for accidents at the macro level. This may eventually
be converted into probablistic requirements on behaviour at the micro level in
terms of individual AP. The value of the probabilites used at that level would
depend on the macro-level tolerability, the number of AP likely to be given in
a single treatment (for AP, that could be billions) and the ability of the overall
AP system to mitigate undesired behaviour by a small number of AP. No simple
mapping from macro-level accident rates to micro-level failure or hazard rates is
possible.

The big advantage of arguing over hazards, compared to other ways of struc-
turing a safety case, is that we can adopt a unique argument structure for claim-
ing that each hazard is tolerable. Figure 6 illustrates this for hazard H6 — we
argue over the various membranes that the AP could encounter, attempting to
show that the interaction with each will be safe. Similarly, Figure 7 shows the
argument for hazard H3 — in this case, we argue across the normal and abnormal
cases, then (in Figure 8) over the possible causes of the abnormal case.

Notice how Figure 8 ends with undeveloped goals (indicated by the diamonds
underneath them). Before this safety case could even potentially be accepted,
the developer would need to decompose it further until they reached solutions
(shown as circles in e.g. Figure 6).

In a real safety case, parallel arguments would be needed for the completeness
of hazard and cause identification, and about the combined risk from all hazards.
The latter is straightforward but the former can be very hard — see Section 5.5.
There would probably, also, need to be more context and strategy nodes.
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The ‘trick’ exploited by this safety case structure is that it deals with as
many hazards as possible by simple means. Neither of the hazard arguments
shown involves appeal to complex emergent properties — instead, we have dealt
with two hazards in relatively simple terms. This allows us to focus our effort on
where it is most needed (on the complex, emergent accident hazards like H4).
Complex hazards will require the development of new techniques and patterns.
Some progress towards this has been made in unpublished work by Polack [21].

In the argument fragments above, the argument’s legs are combined infor-
mally, and would rely on expert judgement to assess the overall contribution
of evidence to the top goal. The general intuition is that when there is a goal
solved by N child goals, then adding an additional diverse child goal will increase
the confidence in the parent. There is no accepted, explicit method of assessing
and combining argument confidence, although [22] and [23] comment on what
engineers seem to do in practice. (In particular, Littlewood and Wright show in
[23] how the “extra leg” intuition may be misleading in some cases).

To adequately assess the strength of complex arguments, a systematic method
for propagating confidence through the argument is desirable. Weaver, in [24],
presents a system of Safety Assurance Levels (SALs) for performing this propa-
gation. Each low-level goal is assigned a SAL (from 1 to 4) and these propagate
up through the argument until the top goal is reached. Independent child goals
may give their parent a SAL that is higher than either of them; interdependent
child goals will give their parent a SAL that is the lowest of all of them. The
weakness of SALs is that it is not clear what a given SAL means in tangible
terms (if a goal has SAL 2, what exactly does that mean about the system being
argued about?).

A mechanism for assigning truly quantitative confidence in useful real-world
terms would be very valuable. Littlewood, in [25], discusses how such a mech-
anism might be found in Bayesian Belief Nets, which can express structural
relationships between beliefs in terms of probability, although he also notes that
there are a number of unsolved problems with the approach.

5 Simulation in Safety Engineering — An Example

Two of the authors previously developed a simulation-based approach to hazard
analysis for complex systems-of-systems (SoS). The work, carried out as part of
the HIRTS DARP project, was in response to increasing integration of large-
scale SoS such as network-enabled military units and Air Traffic Control (ATC).
An overview of the work follows; for more detail, see Alexander [26].

The motivating concern for the work was that large-scale SoS are not very
tractable to conventional hazard identification and analysis techniques. The SoS
of concern are complex (in the sense used by CoSMoS), immensely complicated,
distributed, and very heterogeneous. Our scope was limited to hazard identifi-
cation and analysis — we didn’t attempt to provide confirmatory safety analysis
(this has certain implications, which are discussed in Section 5.5, below).



Merely identifying and explaining hazards is difficult in SoS. If we have a
failure in one entity, what is the consequence at the SoS level. For example, if
a reconnaissance aircraft in a military unit spots a civilian car and believes it
is an enemy tank, what happens to the car? The consequence depends on the
capabilities of the other entities in the SoS, the operational procedures in force,
and many properties of the SoS’s dynamic state (right down to the psycholog-
ical disposition of the humans involved: are they relaxed or on edge? Are they
expecting the enemy or do they think there’s a ceasefire? Do they want to see
the enemy?) Timing may be a critical factor (when does the misidentification
occur, with respect to the patrol times of other reconnaissance entities?).

It may be, in a complex SoS, that we don’t even need a “failure” in order for
an accident to occur. It may be that under certain circumstances, under certain
system states, normal behaviour by all the entities involved is enough to cause
an accident. This could be seen as an example of “negative emergence”. The
enormous state space of an SoS makes these dangerous states, and the paths to
them, difficult to discover.

This leads to the concept of an SoS Hazard — a state of an SoS. Taking the
Def Stan 00-56 definition of ‘hazard’ (from Section 3.1) we can define this as
“A condition of a SoS configuration, physical or otherwise, that can lead to an
accident.” We can explicitly exclude from this those hazards that are confined
to a single entity — states where an entity has suffered a failure and may go on
to directly cause an accident (for example, an aircraft suffers an engine failure
and crashes into the ground). These single entity hazards are relatively tractable
using current techniques. It is the multiple-entity hazards that are challenging.
(A similar, but more general, concept of complex system hazard could be defined).
The aim of the work discussed in this section is to find and explain SoS hazards.

5.1 Method Overview

The method requires, first, that the SoS safety team develop a multi-agent model
of the SoS. They do this by taking an appropriate source model (such as a
description of the system in the Ministry of Defence’s MODAF notation [27])
and identifying specific safety concerns that they need to model (such as collisions
between aircraft). They must also identify (a) the vignettes that the SoS will be
expected to participate in and (b) a set of reasonable deviations that may occur
in practice, such as a system suffering a particular kind of failure. The resulting
multi-agent model must be implemented in a multi-agent simulation framework,
thereby making the model executable.

Once an executable model is available, the ‘space’ represented by the devia-
tions of that model must be explored. This is performed by running the model
with different combinations of deviations and observing the results.

As each run executes, the actions and states of the system components are
logged so that they can be studied later. This invariably produces a huge vol-
ume of output. To aid comprehension of this data, machine learning techniques
can then be used to extract high-level descriptions of hazards. These descrip-
tions are relationships between certain combinations of deviations and certain



accident events. Once interesting accident runs are identified, causal explana-
tions can be derived using an agent tracing tool. Engineers can then use the
explanations to study the plausibility of the simulated accidents, and modify
the SoS configuration or operating arrangements in light of the more credible
relationships.
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Fig. 8. Overview of the SoS Hazard Analysis Process

An outline of this process is shown in Figure 8, and key aspects are expanded
on in the following sections.

5.2 Modelling Approach

A common concern in simulation modelling is that, in going from a paper model
to an implemented simulation, distortions and errors can be introduced. To help
alleviate this, we adopted the concept of explicit concerns. These concerns were
initially expressed in terms of aspects of the source model, and then updated
and checked at each modelling stage or iteration of the model. These concerns
could be either deviations or accidents, and provided a starting point in terms
of causes and their eventual consequences. The rest of the process then works
from there to derive the intermediate paths and states that linked them.

In addition to deviations coming from the concerns, we provided a method
for deriving agent deviations by applying a set of five guide words to a six-part



breakdown of a generic agent model. This is similar to the existing methods FFA
and HAZOPS mentioned in Section 3.1.

The process we used for developing the agent model was an adaptation of
the Prometheus process (see [28] for a description). Although this was not a
true refinement method, requiring considerable engineer input, it structured the
process and provided a range of cross-checks between the several stages of model
development. For example, Prometheus leads developers to describe inter-agent
communication in terms of high-level protocols before the agents themselves
are developed in detail. Once the agents are developed, the Prometheus Design
Tool (described in [29]) will automatically check that the agents have the mes-
sage types defined that they need in order implement the protocol. (It cannot,
however, verify that they will restrict their message sequences to those allowed
by the protocol.)

The CoSMoS project aims to provide methods for developing high-quality
declarative models (rather than the partial MODAF models that we worked
with) and offers the prospect of more systematic refinement from model to sim-
ulation. However, even if we had been able to perform a true refinement from
source model to implementation, we still would not be able to assume that the
simulation represents the real world. For our explicit purposes (hazard analysis
only) this is not necessarily a problem, but we cannot escape it entirely. See
Section 5.5 for further discussion of this issue.

5.3 Analysis Techniques

Once the model has been built, it must be analysed. The analysis technique must
select simulation runs to be performed so as to achieve adequate coverage of the
parameter space of the simulation while spending the minimum of computation
time. We would like to exhaustively explore the parameter space demarcated
by all agent deviations, because this would reveal all behaviour paths that were
implemented by the simulation model. In practice, this will be impossible unless
we use a toy example.

Our solution was to specify a probability for the occurrence of each deviation
(in any given simulation run), and then perform runs only for those combinations
where the combined probability is above a certain threshold. The simulation en-
gine decides whether or not to run each combination by comparing its combined
probability to a threshold for ‘incredibility of failure’. This concept originally
stems from the nuclear industry — dangerous situations that appear to be more
improbable than this threshold are not studied further in hazard analysis. A
value for this is given in [30] as 10~7 per year of operation (equivalent to 107!
per hour), and this value is adopted here.

Once those runs have been performed, the accidents that occurred need to
be identified and their causes found. The former task is relatively easy, since the
set of possible accidents is small. The latter, however, is harder, and machine
learning techniques have been adopted to make it tractable.

For our purposes, the task of machine learning can be viewed as one of func-
tion approximation from a set of training instances expressed as input-output



pairs; given a function specification (a set of named input parameters (the ‘fea-
tures’ used for learning) and a particular form of output value), the algorithm
learns the relationship between combinations of parameter values and the output
of the target function for those values.

In our approach, the features represent parameters of the simulation and the
output values are the consequences within the simulation. All the features used
in the current work are deviations that are applied to the model, and the target
function is the set of accidents that occurs during the simulation run. We used
a decision-tree learning algorithm because it could learn from Boolean-valued
parameters (deviations) and discrete-valued outputs (accidents), and present
the resulting rules in human-readable form.

The output of the learning algorithm is a set of rules that describes the
relationship between deviations and accidents. For example, a rule might be
“Aircraft 1 lost_radio_comms causes aircraft 1 to collide with aircraft 27. Such
rules, however, only explain how accidents occur in very broad terms. In order
to choose appropriate definitions of our hazards, or to take action to prevent or
mitigate them, more detailed information about causation is required.

Lam and Barber, in [31] present a tool-supported approach to the compre-
hension of agent systems. Given a log of the events that occurred in a single
simulation run and an event of interest within that run, the tool tries to ex-
plain why that event happened in terms of its immediate causes. Those causes
can each then be explained in the same way, and the process repeated until the
final explanation is in terms of the initial state of the simulation or ‘external’
events that occurred. This explanation, complete or partial, can be expressed as
a causal graph leading to the event that we asked the tool to explain.

A simple example of such an explanation would be of the form “UAV 1
received a percept indicating the location of an enemy unit. This caused it to
form a goal of destroying that enemy unit, which it selected the ‘air strike’ plan
to resolve, and as a consequence of that plan the UAV conducted the ‘attack’
action using a laser-guided bomb”.

The tool achieves this by storing what Lam and Barber call ‘background
knowledge’. This is a set of possible causal relationships between events of dif-
ferent types and different properties. As the tool tries to explain each event, it
reviews these rules to find which earlier events could have caused it.

Once the analysis is complete, the analyst must evaluate the significance of
the results, in consultation with the rest of the project safety team and other
stakeholders. It is likely, particularly early on in development, that the analysis
will reveal problems with the SoS that need to be resolved. As indicated in
Figure 8, this may involve changes to the configuration of the SoS, to the design
of the individual elements, or to the operational safety policy under which the
SoS operates.

5.4 Strengths

By using simulation, our approach is able to search a huge amount of the state
space. By using probability as a heuristic for the selection of runs, we can pri-



oritise our explanations towards those parts of the space that are most likely
to occur in practice. The approach is particularly strong in this regard when
compared to the manual techniques that have traditionally been used in this
role.

Using simulation paired with machine learning and tracing (rather than an
explicit exploration technique such as model-checking) allows engineers to use the
approach with almost any kind of multi-agent model. For example, agent state
may be modelled in terms of discrete states or continuous-value parameters, and
agent behaviour may be defined by pre-written scripts or by a neural network.

The tracing tool provides a head start to analysts who want to explain how
a particular accident happened. Simple learning of relationships between devia-
tions and accidents may not be sufficient for human comprehension — in partic-
ular, it is difficult for humans to read extensive logs of simulation events. Ani-
mation can help here, but it is still difficult to see causes that are well-separated
in terms of time.

The key value of the approach is that if it finds one hazard in an SoS that was
not found by other means, then it is useful. This is true even if it also identifies a
number of hazards that are initially plausible but turn out to be unrealistic. As
it is not intended to provide confirmatory safety analysis, errors and omissions
are acceptable as long as some hazards are realistic. (There could, of course,
come a point where the cost of investigating false hazards made the approach
impractical.)

In , we applied our approach to two plausible case studies (one of them purely
hypothetical, the other provided by industry) and derived some interesting haz-
ards. It is important that this be replicated in a real industrial or operational
development, but these results are promising.

All of the above is likely to be true and relevant for the use of simulation
in CoSMoS. It is important to note, though, that if simulation is to be used
in direct support of a safety argument then it must aim higher than the work
described in this section, particularly in terms of gaining confidence in the results
(see ‘Challenges’, below).

5.5 Challenges

The approach described above raises a number of challenges. If the CoSMoS
project uses simulation in a similar role, it will have to face these challenges.

The biggest concern with this work is the question of completeness — whether
or not an adequately complete set of hazards, and causes of those hazards, has
been identified. There are two aspects of this — completeness with respect to
model (does the analysis reveal all the hazards in the simulated model), and
completeness of the model with respect to reality (does the model implement,
and reveal in simulation, all the hazards that exist in the real system). Some
confidence that there are mo unidentified serious hazards is vital for building
a safety case. Ultimately, such a confidence cannot be empirically observed; it
must come down to theory, theory about when it is reasonable to believe that
your hazard analysis is complete.



A second concern is related — does the approach provide a false sense of
security? Any safety technique or process will have an effect on the perceptions
of the engineers involved. A highly detailed simulation model (especially when
combined with an attractive animation) may convince engineers that lack of
hazards is evidence of their absence. Put another way — any hazard identification
or hazard analysis has an implicit, intuitive role in safety analysis. The key is
that it should give confidence only in proportion to its adequacy.

A final concern is that the explanations produced by the tracing tool may
be too compelling. If the tracer leads naturally to a plausible explanation of a
mechanism by which a hazard can occur, they may cause engineers to ignore
other alternative explanations.

6 The Challenges of Small-Scale Simulation

One can draw a distinction between large-scale simulation (such as the simu-
lations of military units and air traffic discussed in Section 5) and small-scale
simulation (such as the simulation of cells and nanites with which CoSMoS is
primarily concerned). It could be suggested that in large-scale simulation the
properties of the agents (including their local behaviour) are well understood,
and that the role of simulation is to combine these to determine their emergent
behaviour when they work together. In the small-scale case, the behaviour of
the agents may be less well known, and the role of the simulation is to explain
(and allow analysts to comprehend) the observed high-level behaviour in terms
of low-level rules.

Alternatively, the distinction between large and small could be replaced by
one between and engineering and scientific simulation. Engineering simulation is
concerned with modelling well-understood parts in situations where their com-
bined behaviour is too complex to understand; scientific simulation is concerned
with understanding how parts give rise to well-understood high-level behaviour.

This second conceptualisation leaves potential for engineering simulation of
small-scale entities. Can we, however, really know the fine detail of tiny things?
For example, platelets may be relatively simple when compared to (e.g.) white
blood cells, but they are still not completely understood. Some aspects of their
high-level behaviour are also unexplained, such as the causes of the DIC phe-
nomena mentioned in Table 1. The behaviour of entities such as platelets cannot
be understood without reference to the environment that they operate in; for
platelets this is, at the very least, the human vascular system. This creates a huge
demand for knowledge, particularly for knowledge of combinatorial interactions
between the diverse entities and processes in the system and the environment.

One can go further, however. Can we really know the precise local behaviour
of large-scale entities such as vehicles? We certainly know gross detail (weight,
dimension, maximum engine output), but as we move to progressively finer de-
tail (mechanical tolerances, network protocols, presence of software faults) it
becomes harder to fully describe, or indeed to know at all. Behaviour over the
long term, as the system degrades through operation and is maintained, is partic-



ularly difficult to predict. Engineers have often been surprised by the behaviour
of vehicles; for example, consider the 1974 air crash caused by the hard-to-shut
cargo door on the DC-10 aircraft [32]. Safety engineering, when dealing with the
levels of safety that we now expect in our society, deals with tiny probabilities.

It can be observed that, for real systems, the small-scale is always present
inside the large scale. An aircraft may have a human pilot — the pilot con-
tains blood which contains platelets. If we drill down further, into the individual
platelets and (primarily) the mitochondria which they contain, then we have
the respiratory cycle whereby they generate the power to operate. This cycle is
invisible at the high level, but is intricate at the sub-cellular level; e.g. a diagram
of the Krebs Cycle in [33] has 25 edges and 26 nodes (of which 17 are unique
substance names).

The respiratory cycle is simple for the SoS engineer — at worst, they’ll need to
think of air, water and calories (e.g. blood sugar levels affect alertness). For the
AP engineer, however, the respiratory cycle is close enough to be a concern — it is
possible that AP will interact with the substances involved at a molecular level
(e.g. it might be that AP attract and accumulate a respiratory by-product). This
illustrates how small-scale engineering dredges up fine detail. As we move down
into the micro-scale and nano-scale, phenomena that were manageable (indeed,
barely of concern) in the large become critically important.

Ultimately, however, it is the high level that matters. For safety engineer-
ing, this means that we need adequately compelling evidence that the identified
safety requirements are met (at the level of the whole system). For those prop-
erties of the system that are not relevant to any safety requirement, we do not
need any evidence. Of course, there may need to be an argument made that
these properties are truly irrelevant. Put another way - we do not need accurate
models of the whole system. We do need evidence that we can predict certain
key properties, and that the values of those properties will be suitable. And we
can constrain the situations under which we need to predict these properties by
explicitly restricting the situations in which the system is allowed to be used.

There is a further aspect that may make the CoSMoS approach more practical
— as noted in Section 3.5, safety management and safety performance measure-
ment are critical. Many aspects of system behaviour will only ever be discovered
in real-world operation. If we can provide the initial confidence that a complex
system is safe to operate, and have effective safety management in place, then
we may be able to detect unexpected hazards before they occur and deal with
them before they are able to cause an accident.

7 Conclusions

Safety engineering matters for many domains. In industries that are explicitly
regulated (such as aviation or nuclear power) then conformance to explicit engi-
neering standards is mandatory. Outside of those fields, it is still often the case
that employers or product manufacturers have a duty of care towards their em-
ployees or users, and therefore need to ensure that the engineered systems they



use are adequately safe. Increasingly, this requires system developers to present
a structured safety case, incorporating argument and evidence, that a mandated
level of safety has been achieved.

When producing a safety case, we need to present an argument that the
system is acceptably safe, given the risk posed by the hazards present in the
system. We do not need irrefutable proof, and we do not need evidence (however
weak) of total safety. In particular, we don’t need to make any claims at all
about those aspects of the system that are not safety-critical.

Architecture is a powerful tool — we don’t need ensure that every component
of a system behaves safely, provided we can argue that the overall architecture
system architecture will keep it in line. For example, it doesn’t matter if a con-
troller component proposes a hazardous act if we have a monitor component
that can reliably veto that act. Complex systems, however, (along with micro-
scale devices) prevent the use of many common architectural approaches and so
present a major safety challenge. In particular, it is not at all clear how emergent
properties could be bounded in this way.

In safety engineering, conservatism is a fact. It is present at every level,
from working engineers through to governments (and then on to the general
public). Complex systems are likely to face opposition simply because they are
novel and little-understood, quite apart from the (genuine) technical difficulties
they present. Resolving the technical challenges will help gain acceptable, but
showing engineered complex systems working reliably in non-safety domains will
be critical.

The real engineering of complex, safety-critical, micro-scale systems such as
the AP system may be some way off, but we can start to work out what claims
we will need to make, and how we can generate the evidence we need to make
those claims. This way, when the technology becomes ready we may actually be
able to use it.
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