
Equivalence Arguments for Complex Systems
Simulations – A Case-Study

Teodor Ghetiu1, Robert D. Alexander1, Paul S. Andrews1,
Fiona A. C. Polack1, and James Bown2

1 Dept of Computer Science, University of York, York, YO10 5DD, UK
{teodorg,rda,psa,fiona}@cs.york.ac.uk

2 University of Abertay, Dundee, UK j.bown@abertay.ac.uk

Abstract. Complex systems are often simulated to provide a basis for
research or analysis. However, complex systems simulation often fails
to properly demonstrate that the constructed simulation is an adequate
tool to support investigation of the system under study. To address this
issue we adopt and adapt argumentation techniques traditionally used
for safety critical systems (SCS). Here we present part of an on-going
case-study in which these techniques are used to demonstrate that two
different implementations of a complex system simulation are adequately
equivalent. This is a first step in producing further simulations of the
system under study, which will be shown to be valid models on which to
explore particular ecological phenomena.

1 Introduction

This paper presents part of a case study that is using a principled approach
to computer simulation of a complex system. The work is part of the CoSMoS
project1, which is developing a general framework for the simulation of complex
systems using agent-based approaches. One of our long-term goals is to argue the
validity of complex systems simulations against domain models that capture an
explicit expression of scientific understanding. More generally, we want to present
properly-evidenced arguments that one model is an adequate representation of
another model, or a particular perspective on reality. Such arguments form the
basis for discussion between the simulators and the domain experts, and capture
the rationale for the simulation, in terms of both the domain understanding of the
science, and the engineering of the simulation – see [1, 2] for further discussion.
We believe the ability to argue properties of a complex system simulation (such
as equivalence or validity) is an important element of CoSMoS and any other
similar approach.

In this case study, a first step is to re-engineer a simulation of intra-specific
plant variation [3]. The existing object-oriented simulation, in C++, needs to
be scaled-up to support the scientific research. Elsewhere, we discuss the use
of occam-π for efficient, process-oriented parallel agent-based simulation [4]. A

1 http://www.cosmos-research.org



2 Ghetiu et al

number of recent complex systems simulations [5–8] have successfully used this
programming language. Here, we will ultimately exploit parallelisation to dis-
tribute the occam-π simulations over a cluster of machines [9]. This will allow
us to simulate larger numbers and variations of plant, and a greater range of
environmental influences than is possible in a purely sequential implementation.

The re-engineering is supported by construction of an argument that the
occam-π simulation is adequately equivalent to the original C++ simulation. We
call this an equivalence argument. The description of this argument forms the the
main subject of this paper. The original C++ simulation was used in ecological
research that has some credibility within its research community, and through
the equivalence argument we can support a claim that our re-implementation
should share that credibility. Thus, our definition of adequate equivalence must
make a case that the simulations capture equivalent aspects of the scientific
domain, rather than simply presenting evidence of the technical equivalence of
the two programs. Our argument is acceptable if the scientists – here represented
by the person who has overseen the C++ simulation effort, James Bown (referred
to subsequently as the scientist) – accept the argument that we have captured
equivalent aspects of the scientific domain.

The paper continues with a brief introduction to argumentation techniques
and their relation to simulation validity, section 2. Section 3 then describes the
plant ecology case-study. Section 4 considers what adequately equivalent means
and shows how we can build an explicit, structured argument of adequate equiv-
alence for the two simulations. Section 5 gives examples of the required evidence
from the simulations, to support the argument presented in section 4. The paper
concludes with a discussion, section 6, conclusions and proposals for future work.

2 Argumentation and Complex Systems Validity

Elsewhere, we summarise current scepticism about the ability of computer sim-
ulations to adequately support scientific research (see [10], and cited work, [11–
15]). In [1, 2], we report on an immunological case study undertaken in con-
junction with immunologists, in which we found that a systematic collection
and exposure of assumptions, made by the immunologists in relation to the
scientific domain and by us as modellers and simulation-engineers, helped the
immunologists to understand the value and limitations of our simulations. This
understanding meant that the immunologists could use even basic agent-based
models to test their understanding and guide their laboratory experiments; the
documented assumptions gave rise to new avenues of scientific research. Here,
we follow a suggestion in [2], and turn to conventional techniques from critical
systems engineering, to start the process of systematising the use of arguments
to capture and analyse evidence and assumptions.

In critical systems engineering, arguments are used to demonstrate a case
to regulators that a system has certain properties, most commonly properties
related to safety. In critical systems, it is impossible to absolutely demonstrate
properties such as safety; instead evidence is collected based on criteria such as



Equivalence Arguments for Complex Systems Simulations – A Case-Study 3

use of accepted development practices, software, system and sub-system testing,
mechanical analysis, past experience or cumulative usage outcomes, and field
trials. The evidence is used to support an argument that the risk associated
with the system is As Low As Reasonably Practicable (ALARP), within the op-
erational environment for which the system is designed. A general approach to
constructing and documenting safety cases can be found in Kelly [16], whose
other published research includes a range of studies and applications of critical
systems argumentation. For an example of safety case creation for a – hypothet-
ical – complex system, see [17].

2.1 Argumentation in Safety Critical Systems

Early safety-critical systems were unregulated, and were potentially grossly un-
safe [18]. Consequent deaths and damage costs from, for instance, industrial and
vehicle accidents, led in time to regulation, part of which is usually certification.
Potentially-dangerous systems are allowed if there is sufficient evidence that they
would be safe to operate. For a long time, evidence was based on process – “I
have followed good engineering practice, so my system is safe”. This approach
is unsatisfactory in many ways, not least of which is its limiting of engineers to
use only approved processes, thus inhibiting innovation.

A significant improvement in safety management came with product-based
certification. Independent regulators are appointed, who set the safety criteria
that a system must meet, in terms of specific evidence requirements. Developers
collect evidence, and tie it together by means of a structured argument known
as a safety case. It is still possible to cite an approved process as evidence, but
this evidence is relegated to an appropriately-subordinate role. A safety case
is accepted or rejected based on independent review of its arguments and evi-
dence. Acceptability is not an absolute, and can change over time, in the light
of experience or new evidence. This presents an important parallel to scien-
tific investigation, particularly in biological domains, where the understanding
of complex natural systems is a developing area, with much debate and many
competing theories.

2.2 Summarising the Structure of an Argument: GSN

Safety cases were conventionally presented as free text, which is easy to create
and immediately readable, but hard to systematically review. As Kelly [16] notes,
not all safety engineers are gifted writers, and free text safety cases are often
ambiguous. Construction and review of cases is improved if the structure of
the argument and evidence can be summarised, for example using the Goal
Structuring Notation (GSN) [19, 16]. Existing examples and patterns for GSN
are predominantly concerned with safety cases.

GSN is a graphical way to express argument structures. A GSN diagram
shows a hierarchy from the top-level claim – a typical safety case might seek
to establish that The system is safe – down through sub-claims that support
that claim (e.g. The hazard ‘loss of temperature control’ will not occur) and



4 Ghetiu et al

eventually to the evidence supporting those claims (e.g. Software test results for
component X show no faults). Anybody using GSN is guided by the rules of the
notation, which helps to avoid gross errors of logic.

It is important to understand that GSN as a notation is of limited value
– it is the argumentation culture and the safety-case literature that gives it its
power in the safety field. Similarly, it would be a culture of argued validation that
would be most important in addressing the criticisms (noted above) of complex
systems simulation for scientific research.

2.3 Adapting Argumentation for Scientific Simulation Validity

When a computer simulation is used in a scientific study, the user of a simulation
needs to demonstrate the extent to which the computer simulation matches
reality (and other models). Traditionally, these arguments have been, at best,
informal discussions in papers and reports. This causes many problems. Evidence
or detail is omitted, making it difficult to assess the validity of simulation results.
In an attempt at clarity, many arguments are reduced to vacuous or partial
claims. There is a need to improve the quality and presentation of validation
arguments; GSN is an obvious candidate for constructing argument structures
and recording the evidence that supports (or could support) the argument.

Whilst there is a range of work on the validity in simulation, for example [20,
21], we are not aware of any existing work on structured arguments of computer
simulation validity.

In safety analysis, the safety properties and the case for safety are normally
created and rehearsed by the developers before the argument is constructed and
represented in GSN. There are few specific argument construction methods, and
experience shows that, whilst a top-down approach is impractical because it
requires oversight of the body of evidence before the top-down structure can be
identified, a bottom-up approach risks losing sight of the point of the argument.

The argumentation that we require for simulations is somewhat different to
safety case argumentation, in that we are constructing arguments in parallel to
simulation development, and can use the top-down construction of the argument
to guide development. Similarly, we do not have a regulator dictating what is
and is not acceptable evidence, but instead we have a scientific collaborator who
must be able to understand and review our argument. In this paper, the goal is to
demonstrate that two simulations are adequately equivalent. Our argument pro-
ceeds by analysing and recording what we will accept as evidence of adequately
equivalent. We then establish this evidence by systematic analysis, recording the
result as a GSN argument structure. First, we briefly introduce the intra-specific
plant variation domain and the existing C++ simulation.

3 The Example: Intra-specific Plant Variation
Simulations

The work presented in this paper is the first phase of a case study to provide
computer simulations to support extensions to the ecological research of Bown



Equivalence Arguments for Complex Systems Simulations – A Case-Study 5

et al [3], based on their novel model of plant physiology and interactions, based
on physiological traits.

In [3], computer simulation is used to demonstrate that defining plants in
terms of a suitable set of traits yields results that are acceptable to the ecological
community, for example, the model produces species-area and species-abundance
distributions that have typical characteristic statistical signatures (curves) [22].
However, the existing simulations are limited in the number and complexity of
components that can be modelled, even if the implementation and platform were
fully optimised, because of the difficulty of distributing a C++ program.

3.1 Ecological Modelling and Plant Trait Models

Begon et al define ecology as the “scientific study of the distribution and abun-
dance of organisms and the interactions that determine distribution and abun-
dance” [23]. The “holy grail” of ecology [24] is to find general rules that relate
environmental conditions, species characteristics and community composition.

To complement field experiments, ecologists attempt to capture observational
patterns and behaviours in models. At one extreme, equation-based models
(EBMs) focuses on characteristics of the plant population as a whole, while
at the other extreme individual-based models (IBMs) that allow for some of the
individual variations within and between species. IBM is the more appropriate
technique for study of intra-specific variation, and has the advantage that IBM
individuals can map directly to and from real plants, so biological understand-
ing can be mechanistically reflected in computer models. However, a computer
model cannot hope to express all the characteristics of a real plant. A popular
ecological technique is to summarise the characteristics of a plant in terms of
numerical traits, with much ecological research to establish the most appropriate
traits and value-ranges. Traits typically characterise visible, phenotypical prop-
erties such as shoot height, as well as ongoing biological processes such as water
uptake capacity. A good model has rich informational content built using traits
whose validity is supported by the direct mapping to biological data.

Ecological research has shown that trait trade-off is important in explaining
the distribution and abundance of ecological communities [25]. Computer-based
IBMs that model plants in terms of traits play a key role in this research. How-
ever, the models do not always map well to research goals, and it has been shown
that the identification and representation of traits has a significant influence on
the simulation results [26, 27].

3.2 The Computer Simulation of Bown et al

The intra-specific plant variation models of Bown et al [3] uses an IBM based
on a resource-centric physiological scheme [28]. The model allows the study of
the relationship between trait trade-off and the distribution and abundance of
species.



6 Ghetiu et al

Firstly, Bown et al [3] establish twelve traits (table 1) that adequately de-
scribe plant physiology. The plant species is described by a set of twelve distribu-
tions, one for each of these traits. The distributions determine the probability of
each trait value across the set of plants, with individual trait values assigned to
achieve the species distribution. This approach gives appropriate intra-specific
variation.

Trait 1 Trait 2 Trait 6Trait 5Trait 4Trait 3

Trait 12Trait 11Trait 10Trait 9Trait 8Trait 7

compartment
Surplus 
store

Structural Structural
store

AgeResourse
areauptake

Development
stage

Genotype

Phenotype

Fig. 1. Bown et al’s model of an individual plant [3]

In the model of Bown et al [3], a plant individual is modelled as a phenotype
and a genotype, figure 1. The phenotype consists of appropriate representations
of the resource storage and usage of a plant: the structural compartment repre-
sents resources corresponding to the plant’s fixed structure; the structural store
holds resources that are used for reproduction; and the surplus store represents
any excess of resource-uptake over the level essential to maintain the plant. In
addition, the phenotype records age and development stage. In the genotype, a
value is assigned to each of the twelve species traits, using a random sampling of
the trait distribution to introduce intra-specific variation. Trait value distribu-
tions were obtained from field observations of the Rumex acetosa plant species
[29].

Four biological processes drive the generic life-cycle of a plant: resource up-
take, resource allocation, reproduction and development, as shown in figure 2. In
the model, each plant takes up resources from the environment and allocate it to
the three resource components of the phenotype. As resource is accumulated, the
plant develops, which is denoted by incrementing the Development stage in the
phenotype. Four of the trait values are related to a plant’s development stage:
spatial distribution of uptake, development dependent reproduction, and the two
uptake traits.

There is an initial population of plants. When a plant reproduces the distri-
bution of seeds is controlled by the seed dispersal pattern trait. A seed is only



Equivalence Arguments for Complex Systems Simulations – A Case-Study 7

Table 1. Bown et al’s twelve plant traits [3]

Trait Description

Essential uptake Amount of resources that a plant needs for normal
development without reproduction

Requested uptake Amount of resources that a plant will request to
support development and reproduction.

Spatial distribution of uptake Uptake capacity of a plant with respect to the dis-
tance

Compartment partition Resource allocation ratio of structural compart-
ment to structural store

Structural store release pro-
portion

Proportion of structural store that can be released

Surplus store release propor-
tion

Proportion of surplus store resource that can be
released

Time dependent reproduction Time needed before initiating reproduction.

Development dependent repro-
duction

Resource level needed to initiate reproduction

Storage/fecundity relation Ratio of the resource available for reproduction to
the resources necessary for creating a seed

Seed dispersal pattern Radius of the area of local seed dispersal

Survival threshold Minimal resource level for plant survival

Survival assessment period Number of consecutive timesteps over which the
resources level can be below the survival threshold
before the plant dies

viable if it lands at a valid location that does not contain a plant. In [3], repro-
duction is clonal, so a seed has the same trait values as its (single) parent plant.
The Reproduction process may be triggered according to the trait value for time
dependent reproduction or for development dependent reproduction.

The environment is represented by a single type of resource, which is dis-
tributed evenly across its surface. The resource level has an upper limit defined
by a saturation level. The flow or resource to plants is constrained by release and
replenishment rates, which specify the maximum quantity of resource that can
be released or added to the environment at any time. In the computer simulation,
the environment is modelled on a two-dimensional grid. Bown et al [3] note that
a cell represents an area of approximately 100cm2, which, in the model, can be
occupied by at most one plant. The number of plants that take resource from a
cell is determined by the location of each plant and its root area, as represented
by the spatial distribution of uptake trait. Grid cells contain a resource substrate,
which is parametrised by the saturation level and the release and replenishment
rates.

A timestep in the simulation represents one day in the real-world. Accord-
ingly, the values that are used for parametrisation of the model reflect the re-
source flow through a plant during one day [3].



8 Ghetiu et al

Fig. 2. State machine model of the biological processes of Bown et al [3]: ellipses
represent the states of the plant associated with each biological process, and arrows
represent possible transitions between theses states; the plant is created in the Resource
uptake state and must be in the Resource allocation state when its death is determined

In order to compare the trait-model intra-specific results to inter-species dis-
tribution results, Bown et al [3] introduce 75 individual plants, which are treated
as representing 75 different species. Because the model uses clonal reproduction,
these 75 species either persist and increase in numbers, or die out. A simulation
run lasted for 50 000 timesteps, which corresponded to around 1250 genera-
tions of plants. The simulation was run over different environment sizes (grids
of 10×10 up to 50×50 cells) to collect statistics on the relationship of the size of
the environment to the number of species co-existing (the species-area curve),
and to the abundance of each species (the species-abundance curve).

3.3 The C++ and occam-π Simulations

Bown et al [3] use a mechanistic model of plants through which community level
processes can be studied. We have re-implemented the simulation in occam-π,
but in order to use our simulation to scale up the original experiments, we need
to show that the new simulation is still based on the same underlying biological
model.

The C++ simulation code is sequential, running on a single thread of exe-
cution. The model uses two passes per timestep to reduce sequential bias. For
example, for resource uptake, all plant demands are made in the first pass, then,
in a second pass, each plant receives a normalised percentage of the quantity
it requested – where the total demand on a grid cell is more then the cell can
release then each demand is reduced accordingly. The limitation of running on
a single thread constrains the size of the environment and population that can



Equivalence Arguments for Complex Systems Simulations – A Case-Study 9

be used in this simulator, which cannot handle the real-world scale of several
hectares containing millions of plants.

A traditional re-engineering approach would create an abstract model of the
data and processing implemented in the C++ simulation, and then re-develop
this model in occam-π. This would, in theory at least, allow formal refinement re-
lations to be established between each implementation and the abstract model,
and a formal proof of equivalence. In practice, whilst model-driven engineer-
ing provides semi-formal transformation approaches to move between object-
oriented models at different levels of abstraction, the potential for formal refine-
ment between abstract models and object-oriented code is limited. Furthermore,
having extracted an abstract model from the object-oriented code, there is no
established way to refine this model into the process-oriented occam-π language
– occam-π is formally underpinned, but by CSP [30], an event-driven formal
language.

If a formal approach were to be found, it could establish a measure of equiv-
alence between the implementation codes of the two simulations, but would not
allow the re-engineered version to take full advantage of the strengths of occam-
π. Most significantly, here, the re-engineered occam-π simulation can represent
plants and locations as individual occam-π processes, each having its own thread
of control. The occam-π processes communicate through channels through which
data can be passed. This gives a closer mapping between the implementation and
the biological reality than was evident in the C++ simulation.

4 A Structured Argument for Adequate Equivalence

This section works through the argument of adequate equivalence constructed
for the C++ and occam-π implementations. For simplicity, we will refer to the
C++ implementation asC, and the occam-π implementation as O. The argument
is presented in GSN, using the standard notations, given in figure 3. The meaning
of these symbols in our work is elucidated in the description of the argument
that follows.

Note that the equivalence argument does not attempt to address the rationale
or engineering of the C++ simulation – this is an established system that we
cannot change. We do not compare the performance of the two implementations,
as the motive for the re-engineering is not any immediate performance gain, but
the distribution potential of the occam-π simulation across computer grids [6],
with the efficient management of processes and events [31].

4.1 The Top Goal

A GSN argument starts with a top goal. In figure 5, this is shown as the rectangle
labelled OCEquiv – O simulation is adequately equivalent to C simulation. This is
the claim that we want to make, and the whole argument below is devoted to
making that claim. In the diagram, lines with solid arrowheads connect each
goal to lower-level components that together meet the goal.



10 Ghetiu et al

Context Undeveloped Goal
(to be developed further)

Goal Solution Strategy

Justification

J

Fig. 3. GSN notations used in the equivalence argument: explanations are given in the
text description of the arguments that follow

A goal exists in a context. In figure 5, DefAdEq labels a context node, here
promising that a definition of adequately equivalent is given elsewhere – in fact,
the definition is given and explained in this section of the paper.

It is hard to definitively define equivalence. Structures in different languages
may be syntactically different but semantically equivalent, or vice versa; we
may have behavioural bi-similarity from different structures, or, since we are
modelling complex systems, we may observe different results from similar initial
conditions even within the same implementation. Despite this we need a defi-
nition of what we mean by adequate equivalence in order to argue convincingly
about it.

We therefore propose that:

the two simulations are adequately equivalent if they produce the same
results over the whole range of concern.

In common with most analyses of complex systems, same results can be defined
by statistical analysis – we run each simulation many times, and collect the
results. This gives a distribution for each result. We then use an accepted statis-
tical test (usually a non-parametric test that medians and inter-quartile ranges
represent the same distribution at some confidence level) to determine whether
the results can be considered equivalent.

The range of concern is defined by ranges for parameters over which the
equivalence should hold. In the plant simulations, this relates to the range of en-
vironment sizes and initial plant numbers. Note that, because we cannot execute
the C++ simulation on very large populations, we can only consider equivalence
within the range of this simulation. Instead, we present direct comparisons of
results within the range of the C++, and theoretical arguments for the rest of
the range. The comparison of the results gives us high confidence within part



Equivalence Arguments for Complex Systems Simulations – A Case-Study 11

of the range, while the theoretical arguments give us some confidence, but at a
lower level, beyond that. This is represented figuratively in figure 4.

Top Goal
Argument and

Evidence

R
ange of

C
oncern Results

Theory

Fig. 4. Range of concern for arguing adequate equivalence: we wish to be convinced
over the whole range of both simulations (the Top Goal), but we can only produce
results evidence for part of the range; in the rest of the range we rely on other forms
of evidence

Note that the crucial factor in determining whether the definition of ade-
quately equivalent is sufficient is a discussion with the scientists. Thus, in our
case study, we consult the scientist directly; since he considers that our def-
inition is sufficient, we can proceed. It is, of course, possible that this initial
acceptance may be reversed when the evidence is complete and the whole argu-
ment presented – perhaps the scientist can demonstrate that our non-parametric
tests of statistical equivalence are inappropriate, or our theoretical arguments
are flawed, or perhaps we find that there are bugs in one of the simulations that
affect the comparability of the results in other ways. The dialogue to establish
the definition and associated argument is essential in the establishment of trust
and understanding between simulators and scientists [1, 2].

4.2 Decomposing the Top Goal

Having agreed a top goal and the definition of the key terms that it uses, we need
to provide an argument that the goal is satisfied. In figure 5, the top goal OCE-
quiv is met by following the ArgSciImplRes strategy. A strategy in an argument
explains the connection between a goal and its sub-goals. Here, ArgSciImplRes
states that we argue over three distinct areas – the underlying science, the de-
tails of how the simulations are implemented, and the actual results that they
produce. The relationship here is complementary – each child goal gives us some
confidence that the parent goal holds, and together, they give us adequate con-
fidence that the goal is met.



12 Ghetiu et al

Note that the three-goal sub-argument in figure 5 is not an alternative defi-
nition of what it means for two simulations to be adequately equivalent. Rather,
it is an approach to substantiating such a claim. We are using the three-legged
argument to support a claim that the results will be the same across the whole
range of concern.

OCEquiv

O simulation is
adequately equivalent to
C simulation

CDesc

Description of C
model

ArgSciImplRes

Argument over science,
implementation and
results

ORepScience

O represents the same
science as C

OSameResults

O gives same results
as C

DefAdEq

Definition of
'adequately equivalent'
is given in section 4.1

ODesc

Description of O
model

ORepImpAbs

O uses implementation
abstractions that are
adequately equivalent to those
of C

Fig. 5. Top level of the argument that the C++ (C) and occam-π (O) simulations are
adequately equivalent

The text in the GSN goal boxes is necessarily terse, and refers to concepts
that need to be defined, as in the above discussion of adequately equivalent. It is
hard to provide compelling contexts and definitive definitions. This is seen as a
benefit, not a cost, of making structured arguments – you get to see where your
definitions are vague or unsatisfying. (It is also much easier to see when another
person’s arguments are weak.)

In GSN, an upward triangle beneath a context box means that it has yet to be
instantiated – it is a placeholder for concrete content that is not yet available. In
figure 5, the CDesc and ODesc context boxes could be instantiated by a reference
to the code of the simulations, to common abstractions such as figure 2, above,
or to summary text such as the descriptions in section 3. The argument is not
complete until this instantiation is performed.



Equivalence Arguments for Complex Systems Simulations – A Case-Study 13

Again, the point of GSN arguments is not to demonstrate with absolute
certainty that the top goal holds, but to demonstrate why the author of the ar-
gument believes that it is holds. The reviewer can disagree with the assumptions,
strategy, and eventual evidence, and can challenge the author to find a better
argument. Here, for instance, our scientist may dispute the strategy of arguing
over three distinct areas, or may dispute the totality of these complementary
areas, and challenge the author to make better justifications for its argument.

The three lowest-level goals shown in figure 5 are expanded in figures 6 to
8. Each of these argument fragments terminates in a circular solution node. So-
lutions refer to the evidence that supports a claim. In very simple arguments,
evidence might directly support the top goal, but in practice, such intermedi-
ate sub-goals and strategies are needed to create a compelling argument. The
following sections consider each of the three sub-goals in turn.

4.3 The Science Goal

ORepScience

O represents the same
science as C

CScience

Definition of 'C
science'

OAllBioAssumptions

O implements all the
biological assumptions used
in C

AssumptionTable

Table of
assumptions

showing how they
are implemented in

O

CAssumptions

List of assumptions
made by C

OSameAbs

O is designed using the
same abstractions of the
biology as were used for C

BioAbstractionTab
le

Table of
abstractions

showing how they
are used in the

design of O

CAbstractions
List of
abstractions made
by C

DefAbs

Definition of
'abstraction'

Fig. 6. Elaboration of the sub-goal to show that the simulations represent the same
science, from figure 5

In figure 6, the goal, ORepScience, is shown as being solved by two further
goals. OAllBioAssumptions presents an argument that the occam-π version is
based on the same assumptions about the actual biology as the C++ version.
OSameAbs argues that the occam-π simulation abstracts from the details of the
biology in the same way as the C++ version. Again, we expand the goals by



14 Ghetiu et al

providing context. From these goals, we directly reach the evidence required,
with solutions pointing to tabular comparisons.

We could expand the argument, and the GSN, further to argue over each
compared assumption or abstraction, providing a specific argument that each
pair is adequately equivalent. This might be necessary if scientist found the
comparison tables unacceptable without further evidence.

4.4 The Implementation Goal

OCodeStructures

The code of O
implements all the code
structures of C

CCodeStruct
Description of
code structures
used in C

AlgMapping

Table showing
how algorithms of

C are
implemented in O

CParameters

C is configured to use
the same parameter
values as O

ParameterComp
arison

Table showing
value of each

parameter in O
and C

CParameters

List of parameter
values used in C

OAlgorithms

O implements algorithms that
are computationally
equivalent to the key
algorithms in C

ODataStructures

O is implemented using data
structures that are equivalent to
the data structures used in C,
given the algorithms used in O

DataMapping

Table showing how
data structures of

C are implemented
in O

ORepImpAbs

O uses implementation
abstractions that are
adequately equivalent to those
of C

Fig. 7. Elaboration of the goal to show that the simulations represent the same imple-
mentation abstractions, from figure 5

The second child goal in figure 5, ORepImpAbs, is expanded in figure 7,
with new sub-goal relating to the adequate equivalence of the code structure
(OCodeStructures) and parameters (OParameters) in the two simulations. The
reasoning here is that the simulation implementations are adequately equivalent
if they run equivalent algorithms on equivalent data structures and use the same
parameter settings.



Equivalence Arguments for Complex Systems Simulations – A Case-Study 15

OParameters is solved directly by a table comparing parameters in the two
simulations, whilst OCodeStructures is further decomposed into a claim about
algorithms and a claim about data structures. Each of these is, again, solved by
a table that compares key elements of the two implementations.

Again, despite the appearance of precision provided by the GSN notation,
much of the argument here is still implicit and left to the reader to infer. For
example, it is implicit that equivalence of code structures and equivalence of
parameters is sufficient to argue equivalence of implementation. Similarly, the
argument that two algorithms in the table are equivalent is not made explicit. A
software expert could verify or refute our claims, by whatever means they chose,
but the non-expert must take our assertions on trust or ask for a further level
of argument.

Also note that although the top-level goal talks about equivalence in terms
of a black box that produces results, the argument here is white-box – we talk
about how the simulation works internally. We are using white-box methods to
support a claim expressed in black-box terms. This is similar to software testing,
where it is common to combine white-box and black-box methods.

4.5 The Results Goal

The third child goal in figure 5, OSameResults, is decomposed, in figure 8, into
claims relating to the testing and experimentation on the two simulations.

OCBoundaryCases claims that the two simulations provide the same results for
boundary and extreme cases within the valid range. This is based on a common
testing strategy, to establish that unusual situations are properly managed. We
have not developed this goal yet, as is shown by the diamond beneath the goal
box. To develop it, we need to consider what cases to test, in terms of the
parameter and value settings that characterise each case – for instance, we may
test both simulations on the case where all plants are the same, in order to
check that clonal reproduction is implemented similarly; we might then check
the behaviours that result with very small and very large initial numbers of plants
(starting with the same plant populations), then look at the effects of extreme
environments. Unless equivalence were obvious – in a very poor environment,
we might be able to see that all plants died as soon as the minimum time (trait
survival assessment period) had elapsed – in all cases, we would be using statistical
analysis to determine acceptable equivalence of the results, as described above.

OCExperiments states that, when the simulations are set up to replicate the
same experiments (e.g. same environment and plant population, same trait and
resource distributions), the results are the same – again using statistical analysis
to determine equivalence.

As OCExperiments is critical to our argument, we expand the goal further to
argue under the strategy of result similarity from n experiments (ArgCExp) – we
could add a context here, that n represents the specific experiments conducted on
the C++ simulation, as reported in the literature. Below ArgCExp, experiments
are enumerated – here using the GSN version of ellipsis for brevity. We are
showing that each entry in some list has been considered, and evidence produced.



16 Ghetiu et al

RangeOfConcern

Description of the range
of input parameters over
which C model is valid
and interesting

OSameResults

O gives same results
as C

OCBoundaryCases

O gives same result as C in
boundary cases of valid
range

OCExperiments

O gives same result as C in
original experiments used to
validate C

CExperiments

Description of original
experiments used to
validate C

J

CExperimentsGood

The experiments used to
validate O provide a good
test case because...

ArgCExp

Argument over N
experiments

Exp1Same

Experiment 1 gives the
same result in O and C

ExpXSame

Experiment X gives the
same result in O and C

Exp1Results

Results of
experiment 1
in O and C

BoundaryCases

Description of
boundary cases

n=N

Fig. 8. Elaboration of the goal to show that the simulations produce equivalent results,
from figure 5

The whole argument fragment in figure 8 is in the context of RangeOfConcern.
This returns to the point made in defining adequately equivalent for the top goal,
that there is a range over which we can produce equivalent results, and that,
in this case, we can only claim that the two simulations are equivalent when
performing the type and scale of experiments for which the C++ simulation was
originally designed.

In figure 8, CExperimentsGood is a justification node – shown by a J next to
the node. When expanded, it identifies a justification of why we can assume that
OCExperiments supports OSameResults.

5 Solution Data

The previous section summarises the argument of adequate equivalence which
we are making, and which we present to the scientist for review and external



Equivalence Arguments for Complex Systems Simulations – A Case-Study 17

Table 2. Expanding CAssumptions – some of the assumptions made in the C++ model
[3], and mirrored in the occam-π simulation

Environment Assumptions

1 The soil properties do not change radically in time.

2 The environment can be seen as a plain. Various three-dimensional land-
scapes will not affect the outcome.

Plant Assumptions

3 The uptake area of a plant can be considered conic.

4 The tap root is generally more developed than the fine roots.

5 The ratio between resource allocation towards growth and towards repro-
duction varies slowly in time.

6 Germination takes place in no longer than one day.

7 Plants develop unhindered, if having necessary resources.

8 Plants release their resources back into their environment, when they die.

9 Plants may die of starvation or due to unpredictable events.

10 Seed dispersal happens over a short period (a matter of days).

11 Each seed requires a similar amount of resource.

12 Seeds that fall in populated areas, most often do not germinate.

scrutiny. We now consider some of the evidence, or solutions, that support the
argument.

Most of our argument of adequate equivalence points to tabular comparisons.
We briefly cover two of the biological aspects, but then focus on structural com-
parison from the implementation argument structure, which raises most of the
interesting issues of equivalence. The generation of evidence for the argument
of adequately equivalent science is, in general, more interesting, and the estab-
lishment of this argument will be essential when we extend the simulation to
support further experiments on the intra-specific plant variation. However, for
the argument of simulation equivalence, the science has already been captured
by J. Bown in constructing the original C++ simulation (and reviewed by the
scientists with whom he was working). We have essentially one source, Bown
et al [3], and, throughout, we refer to an interpretation of it that is directly
expressed in the C++ implementation.

5.1 Biological Assumptions

Biological assumptions were not explicitly identified in the body of work repre-
sented by Bown et al [3]. However, we have had to identify some assumptions
in order to complete the re-engineering, and can use these to strengthen the
argument of equivalence. Table 2 lists some of the assumptions that form the
context CAssumptions in figure 6. These have been confirmed by the scientist,
giving us confidence that the occam-π simulation captures the assumptions on
which the C++ simulation was based.



18 Ghetiu et al

Table 3. Expanding CAbstractions – some of the abstractions made in the C++ model
[3], and mirrored in the occam-π simulation

Environment Abstractions

1 Resource release and replenishment rates are constant.

2 The environment is 2D and each grid cell can hold only one plant.

3 The maximal level of resource is homogeneous across the environment.

Plant Abstractions

4 Requested uptake is homogeneous with respect to the distance from the plant.

5 The uptake area has a regular shape and is not affected by neighbouring com-
petitors roots.

6 The ratio between resource allocation towards growth and towards reproduc-
tion, does not vary in time.

7 Germination is instantaneous (takes only one time step).

8 When they die, plants release all of their resources into the environment.

9 Plants die of random events and starvation.

10 Reproduction is instantaneous (takes only one time step).

11 Each seed requires an identical amount of resource.

11 Seeds die if cells are occupied, otherwise they become plants.

12 Reproduction is clonal.

5.2 Biological Abstractions

Between biological facts and assumptions and the construction of computer sim-
ulations, we make various abstractions to map the real world into the com-
putational one. The abstractions are influenced by the platform on which the
computer simulation is built, as well as subjective factors. To expand the CAb-
stractions context in figure 6, we collect the abstractions made by Bown et al
[3], some of which are listed in table 3). We then checked that the occam-π
simulation respects each of these abstractions.

5.3 Algorithm Mapping

To compare the algorithms of the two simulations, a sub-goal of OCodeStructures
in figure 7, we present pseudo-code summaries and check subjectively for simi-
larity. Figure 9 gives a pseudo-code overview of the two simulations, whilst figure
10 focuses on the algorithm for resource uptake. Note that the pseudo-code for
the occam-π implementation is written to facilitate comparison with the C++,
rather than in a way that native occam-π programmers would use.

The sequential C++ implementation has a centralised architecture. This re-
quires loop-iteration over, for example, all instances of location and all plant
individuals. Because occam-π is a parallel language, all the occam-π processes
(plants, locations) could execute in parallel, shown in figure 9 as each individual
and each location.

In the C++ model, a double-pass approach is used to reduce positional biases
– resource uptake and usage are separated into two phases, otherwise subsequent



Equivalence Arguments for Complex Systems Simulations – A Case-Study 19

C++ simulation

instantiate locations

instantiate individuals

for each timestep

/* resource uptake */

for each location

assess resource demand

release resources

replenish substrate

/* resource usage */

for each individual

allocate uptake

assess death

if not dead

assess development

assess reproduction

occam-π simulation

instantiate locations and servers

instantiate individuals

while simulation_running

/* resource uptake */

each individual

place resource demand

SYNCHRONISE

each location

process resource demands

replenish substrate

/* resource usage */

each individual

allocate uptake

assess death

if not dead

assess development

assess reproduction

Fig. 9. Comparing the C++ and occam-π simulations

behaviours such as seed dispersal would take place in the order in which plants
are iterated. In the occam-π simulation, synchronisation means that the plant
processes will be blocked until all have finished sending their resource requests,
when all processes will be released to proceed to resource uptake.

In reviewing the complete comparison of the high-level algorithm, we found
that, in terms of semantics and results, the two implementations can be con-
sidered equivalent. The resource flow is identical; only the architecture through
which it is carried out differs.

The second pseudo-code comparison, figure 10, refers to the process of re-
source uptake. In the C++ implementation, resource uptake is location-centric –
the neighbourhood of each location is scanned for plants and the demand of each
plant is calculated and stored. A normalisation process is necessary to divide the
resource fairly among the plants. In the occam-π implementation, however, the
process relates more closely to the biology, as each plant interacts directly with
its location. The computational abstraction is, in this case, that of plants and
locations interacting through a client-server protocol [32].

In this case, the algorithm comparison shows that, although the input and
output of the algorithms is equivalent, the detail is different. To make a strong
equivalence argument, we would need also to look at evidence of resource uptake
behaviours through experimentation and testing.



20 Ghetiu et al

Resource uptake (C++)
Sequential algorithm

Main control loop:

for each location

select uptake_area of location

create empty demand_list

for each loc in uptake_area

if loc occupied

select occupying plant

calculate plant’s demand on

location

add demand to demand_list

normalise demand_list

for each demand in demand_list

select demanding plant

add resources to plant’s uptake

replenish location’s substrate

Resource uptake (occam-π)
Parallel algorithm

Plants:

for each location in uptake_area

send resource request

SYNCHRONISE

for each location in uptake_area

if resources released

uptake resource

Locations:

create empty demand_list

while running

if resource request received

store request

if all requests received

normalise demand vector

for each demand in demand_list

select demanding plant

send resources to plant

reset demand_list

replenish substrate

Fig. 10. Comparing resource uptake algorithms for the C++ and occam-π simulations

5.4 Data Mapping

The second sub-goal of OCodeStructures in figure 7 concerns the argument of
adequate equivalence of data representations. We can explore this similarity
starting from a class diagram of the C++ implementation, figure 11, and a
similar diagram of the occam-π processes and channels, figure 12.

UML provides an object-oriented modelling notation which is well-adapted
to expressing the class structure of C++, but the notation of figure 12 is just an
ad hoc representation of occam-π processes and channels. However, informally,
we can compare data types between the two diagrams. As in earlier argument
fragments, we present the evidence at this level for review; we only need to
elaborate the comparison if the scientist is not prepared to accept it.

The C++ implementation of Bown et al [3] uses the class Location to repre-
sent represents cells of the environment. Each location contains a resource sub-
strate, of class Substrate, and a plant individual, of class Plant. Because plants
do not move, a Location instance is represented as being composed of one Plant
instance and one Substrate instance. The Location attribute, occupied takes the
value 1 if there is a plant growing at a location, and 0 when a location is empty –
in the C++ an unoccupied location is associated to an “empty” plant instance,



Equivalence Arguments for Complex Systems Simulations – A Case-Study 21

Fig. 11. Class diagram (UML notation) of classes in the C++ simulation

Fig. 12. Processes and channels in the occam-π implementation (notation undefined)

rather than to no plant instance. The diagram does not show the relationship be-
tween a location and the plants that are taking up resource from it, as the C++
implementation calculates this from the plant traits and location at run-time.

In the occam-π implementation, a similar form is used for the location sub-
strate, but occam-π supports more flexible data structuring for locations and
plants. These are dynamic processes (the occam-π PROC structure), which in-
teract through channels (the occam-π CHAN structure). The relation between
plants and locations is implemented through explicit channel communication.



22 Ghetiu et al

The channel ends held by each plant process can be connected to the corre-
sponding channel ends in any location process.

Comparing the two data structure implementations, we can observe differ-
ences in terms of attributes and their data types, the nature of plants, locations
and their relationship. By reference to the biological model that these represent,
we could declare ourselves adequately confident that these implementations rep-
resent implementations of the same abstract model. However, there are some
subtleties that may present problems, such as the subtle quantitative effects of
internal data formats: the C++ implementation uses the type double while the
occam-π one uses REAL32. The two differ in terms of precision, double being
represented on 64 bits, while REAL32 on 32 bits. Again, we need to check the
effect of this difference through appropriate experimentation and testing – at
this stage, we do not believe that the difference in precision qualitatively affects
the simulations results, but we may need more evidence to convince the scientist.

6 Discussion

In this paper, we present a summary of an argument of adequate equivalence
between an existing C++ simulation and a re-engineered version in occam-π.
If we can assume that the original simulation is valid, then establishing the
equivalence of the occam-π version would imply its validity in the same context
and for the same purposes as the original simulation (see [21]). We used GSN
to visualise the argument structure: those faced with evaluating our argument
can immediately see the basis of the belief that the two models are adequately
equivalent, and can challenge areas that they do not consider to be sufficiently
supported by evidence.

This work is part of the CoSMoS project2, which is developing a general
framework for the simulation of complex systems. Part of this framework con-
cerns the routine collection of assumptions – about the domain, the design, and
the implementation. In the CoSMoS context, just the exposure of assumptions
has led to scientific acceptance of some of our experimental simulations [1]. The
work presented in this paper is a first step towards producing guidance and
techniques for systematising argumentation relating to simulation development.
However, turning assumptions into evidence for arguments that a simulation is
a valid imitation of the real world, for a given scientific purpose, is a non-trivial
activity, which is the subject of ongoing research.

Computer scientists who have spent a career in the deterministic world of
the digital computer are often sceptical about the value of arguments of validity,
safety etc. However, in simulating complex systems for scientific study, we are
not seeking to model or implement traditional deterministic computer systems.
A simulation that reduces the interacting complex systems of the real world to a
deterministic system is unlikely to be adequate for the areas of scientific research
that we seek to support.

2 http://www.cosmos-research.org



Equivalence Arguments for Complex Systems Simulations – A Case-Study 23

Our work, here and in the CoSMoS project, also signals a departure from
the common form of computer applications, in that our simulations are designed
to support specific domain models – a particular expert’s view of a particular
scientific context. The aim of the simulation is to support those areas of scientific
experimentation that rely on that specific scientific context. If the scientist wishes
to extend or adjust the context, then the simulation models must be extended
or adjusted, and the adequate equivalence re-established. Later revisions can
be facilitated through the careful recording of the argument of equivalence or
validity for each simulation; if a preceding simulation was already acceptable,
scientifically, and a new simulation corresponds to that simulation for part of its
range, then we need concentrate only on what has changed.

This brings us to the use of occam-π in the re-engineered simulation pre-
sented here. To support the need to extend or adjust simulations in line with
scientists’ requirements, we need flexible implementations. In CoSMoS, we have
used a range of implementation languages, and, although occam-π does not have
the mature support of languages like C++ and Java, we have found that appli-
cations written in occam-π are easy to adapt and re-use. The CoSMoS project
is assembling concrete evidence of this assertion, as well as seeking to improve
the maturity of the occam-π programming environment.

7 Future Work

In relation to the specific example presented here, we need to complete the ar-
gument of adequate equivalence, and expose it all to the critical review of our
scientist and his colleagues. Our next step is then to use the occam-π implemen-
tation to scale up the original experiments, which will improve the quality of
the scientific evidence we can provide. We will then produce a series of modified
simulations to support other experiments on intra-species and inter-species plant
ecology, in collaboration with Bown’s group.

In relation to the CoSMoS project, the work is contributing to the body
of evidence on use and suitability of occam-π for developing flexible, validated
simulations to support scientific work. The argumentation processes will form
part of the CoSMoS framework for complex systems modelling and simulation –
we continue to review SCS work for guidance in analysis, evidence collection and
management, argument construction and validation. We plan to provide specific
guidance on producing GSN type arguments in the context of complex systems
simulation. In addition, we are applying the activities outlined here in a range
of other case studies including various scientific studies of the immune system
and work on swarm robotics.

8 Acknowledgements

The work of Teodor Ghetiu, Paul Andrews and Fiona Polack is supported by
the CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1.



24 Ghetiu et al

References

1. Andrews, P., Polack, F., Sampson, A., J, T., Scott, L., Coles, M.: Simulating
biology: towards understanding what the simulation shows. In: Proceedings of
the 2008 Workshop on Complex Systems Modelling and Simulation, York, UK,
September 2008, Luniver Press (2008) 93–123

2. Polack, F.A.C., Andrews, P.S., Sampson, A.T.: The engineering of concurrent
simulations of complex systems. In: CEC 2009. (2009) 217224

3. Bown, J.L., Pachepsky, E., Eberst, A., Bausenwein, U., Millard, P., Squire, G.R.,
Crawford, J.W.: Consequences of intraspecific variation for the structure and func-
tion of ecological communities: Part 1. model development and predicted patterns
of diversity. Ecological Modelling 207(2-4) (2007) 264–276

4. Polack, F., Stepney, S., Turner, H., Welch, P., Barnes, F.: An architecture for mod-
elling emergence in CA-like systems. In: ECAL. Volume 3630 of LNAI., Springer
(2005) 433–442

5. Bonnici, E., Welch, P.H.: Mobile processes, mobile channels and dynamic systems.
In: 2009 IEEE Congress on Evolutionary Computation (CEC 2009), IEEE Press
(2009) 232–239

6. Sampson, A.T., Bjorndalen, J.M., Andrews, P.S.: Birds on the wall: Distributing a
process-oriented simulation. In: 2009 IEEE Congress on Evolutionary Computation
(CEC 2009), IEEE Press (2009) 225–231

7. Ritson, C.G., Welch, P.H.: A process-oriented architecture for complex system
modelling. In Mcewan, A.A., Schneider, S., Ifill, W., Welch, P., eds.: Communi-
cating Process Architectures 2007. Volume 65 of Concurrent Systems Engineering
Series., Amsterdam, The Netherlands, IOS Press (2007) 249–266

8. Turner, H., Stepney, S., Polack, F.: Rule migration: Exploring a design framework
for emergence. International Journal of Unconventional Computing 3(1) (2007)
49–66

9. Ritson, C.G., Sampson, A.T., Barnes, F.R.M.: Multicore Scheduling for
Lightweight Communicating Processes. In Field, J., Vasconcelos, V.T., eds.: Coor-
dination Models and Languages, 11th International Conference, COORDINATION
2009, Lisboa, Portugal, June 9-12, 2009. Proceedings. Volume 5521 of Lecture
Notes in Computer Science., Springer (2009) 163–183

10. Polack, F.A.C., Hoverd, T., Sampson, A.T., Stepney, S., Timmis, J.: Complex
systems models: Engineering simulations. In: ALife XI, MIT press (2008) 482–489

11. Miller, G.F.: Artificial life as theoretical biology: How to do real science with
computer simulation. Technical Report Cognitive Science Research Paper 378,
School of Cognitive and Computing Sciences, University of Sussex (1995)

12. Epstein, J.M.: Agent-based computational models and generative social science.
Complexity 4(5) (1999) 41–60

13. Paolo, E.D., Noble, J., Bullock, S.: Simulation models as opaque thought experi-
ments. In: Artificial Life VII, MIT Press (2000) 497–506

14. Wheeler, M., Bullock, S., Paolo, E.D., Noble, J., Bedau, M., Husbands, P., Kirby,
S., Seth, A.: The view from elsewhere: Perspectives on alife modelling. Artificial
Life 8(1) (2002) 87–100

15. Bryden, J., Noble, J.: Computational modelling, explicit mathematical treatments,
and scientific explanation. In: Artificial Life X, MIT Press (2006) 520–526

16. Kelly, T.P.: Arguing safety – a systematic approach to managing safety cases. PhD
thesis, Department of Computer Science, University of York (1999) YCST 99/05.



Equivalence Arguments for Complex Systems Simulations – A Case-Study 25

17. Alexander, R., Alexander-Bown, R., Kelly, T.: Engineering safety-critical complex
systems. In: Proceedings of the 2008 Workshop on Complex Systems Modelling
and Simulation, York, UK, September 2008, Luniver Press (2008) 33–62

18. Leveson, N.: High-pressure steam engines and computer software. IEEE Computer
(1994)

19. Wilson, S.P., McDermid, J.A., Pygott, C.H., Tombs, D.J.: Assessing complex
computer based systems using the goal structuring notation. In: 2nd Int. Conf.
Engineering of Complex Computer Systems. (1996) 498–505

20. Sargent, R.G.: The use of graphical models in model validation. In: 18th Winter
Simulation Conference, ACM (1986) 237–241

21. Sargent, R.G.: Verification and validation of simulation models. In: 37th Winter
Simulation Conference, ACM (2005) 130–143

22. Preston, F.W.: The canonical distribution of commonness and rarity. Ecology
43(3) (1962) 185–215, 410–432

23. Begon, M., Townsend, C.R., Harper, J.L.: Ecology: From individuals to ecosystems.
Fourth edn. Blackwell Publishing (2006)

24. Lavorel, S., Garnier, E.: Predicting changes in community composition and ecosys-
tem functioning from plant traits: revisiting the holy grail. Functional Ecology
16(5) (2002) 545–556

25. Tilman, D.: Causes, consequences and ethics of biodiversity. Nature 405(6783)
(2000) 208–211

26. Reineking, B., Veste, M., Wissel, C., Huth, A.: Environmental variability and allo-
cation trade-offs maintain species diversity in a process-based model of succulent
plant communities. Ecological Modelling 199(4) (2006) 486–504

27. Marks, C., Lechowicz, M.: A holistic tree seedling model for the investigation of
functional trait diversity. Ecological Modelling 193(3-4) (2006) 141–181

28. Squire, G.R.: The Physiology of Tropical Crop Production. Oxon (UK). C.A.B.
International (1990)

29. Bausenwein, U., Millard, P., Thornton, B., Raven, J.A.: Seasonal nitrogen storage
and remobilization in the forb rumex acetosa. Functional Ecology 15(3) (2001)
370–377

30. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
31. Wood, D.C., Welch, P.H.: The kent retargetable occam compiler. In: WoTUG

’96: Proceedings of the 19th world occam and transputer user group technical
meeting on Parallel processing developments, Amsterdam, The Netherlands, The
Netherlands, IOS Press (1996) 143–166

32. Martin, J.M.R., Welch, P.H.: A Design Strategy for Deadlock-Free Concurrent
Systems. Transputer Communications 3(4) (1997) 215–232


