
Towards a safety case for runtime risk and uncertainty
management in safety-critical systems

R Eastwood∗, T P Kelly∗, R D Alexander∗, E Landre†

∗University of York, United Kingdom <ralph@cs.york.ac.uk>, <rob.alexander | tim.kelly@york.ac.uk>
†Statoil KTJ/IT, Forus, Stavanger / Rotvoll, Trondheim, Norway <einla@statoilhydro.com>

Abstract
Many safety-critical systems have a human-in-the-loop for
some part of their operation, and rely on the higher cogni-
tive abilities of the human operator for fault diagnosis and
risk-management decision-making. Although these operators
are often experts on the processes being controlled, they still
sometimes misjudge situations or make poor decisions. There
is thus potential for Safety Decision Support Systems (SDSS)
to help operators, building on past successes with Clinical
Decision Support Systems in the health care industry. Such
SDSS could help operators more accurately assess the sys-
tem’s state along with any associated risk and uncertainty.
However, such a system supporting a safety critical opera-
tion inevitably attracts its own safety assurance obligations.
This paper will outline those challenges and suggest an initial
safety case architecture for SDSS.

1 Introduction
An operator sits in a stuffy control room, watching a screen
with monitoring data scrolling down. The operator is drowsy; it
is near the end of his shift and he has had nothing significant to
do for hours. Suddenly, alarm lights flash and a series of audi-
ble alarms are tripped. The operator looks around and is star-
tled to see that these are not the normal “nuisance” alarms that
he normally waves away. He diagnoses it as a genuine problem
- he saw something similar about three years ago which turned
into a serious incident. He calls up his supervisor, and talks for
a few minutes about what he believes the alarms to indicate.
He strongly advises that they divert the normal operation of the
plant to perform some tests as a precautionary measure. The
supervisor, eventually convinced, reluctantly agrees to stop the
plant so they can do some tests to see whether it is safe to con-
tinue.

This example could happen in many areas of process industry:
nuclear, chemical and oil; the operators performing the moni-
toring and process control may have years of experience, but
it is often described as a task that involves “99% boredom and
1% sheer terror” [1]. The time scales for responding to alarms
vary from industry to industry and from problem to problem
(and hence procedures can differ significantly from the exam-
ple) but it captures the influence of risk and uncertainty per-
taining to the decision making process in such situations. With
small permutations to the example, the situation could be made
very different and potentially a lot worse.

Conceivably, a Decision Support System could be developed
to take sensor information to determine probabilistically the

state of the system, and then provide advice to the operator.
This would be somewhat similar to clinical Decision Support
Systems (which are showing increasing use [2]). Ideally, the
system would list the various options available along with their
associated risk and uncertainty; even better, the reasoning pro-
cess behind that information would be available to the operator
on request. Such a system would be able to truly work along-
side the operator — we call this a Safety Decision Support
System (SDSS) here.

However, “Who Guards the Guardians?” — Schumann et
al. [3] write that there is an unanswered concern of how to
assure the safety of the software that is tasked to monitor a
system.

2 Related Work
There is much current interest in the use of Decision Sup-
port Systems for safety-critical applications. In particular there
is work in Prognostics and Health Management Systems [4]
and Condition-based Maintenance Systems [5] which involve
activities such as fault detection, fault diagnostics and failure
prognostics. Much of the work, however, is focussed on the
techniques of modelling in application-specific domains, rather
than on generally-applicable techniques.

Work in Prognostics and Health Management systems [6] has
paid some attention to reliability, but little to safety (to ensur-
ing that the system does not have dangerous side effects). Frost
et al. [7] express the concern that there can be negative impact
of decision support on the decision-making ability of a human
pilot. Schumann et al. do consider the issues of verifying, vali-
dating and certifying “all” software on a system [8] (this neces-
sarily includes any Decision Support System), but this is only
a very preliminary investigation.

The most closely related work to our current concerns is that
of Pace and Seward [9] in the domain of autonomous robotics.
They present a method to make autonomous robots that man-
age safety in themselves, and provide justification for that use
in a safety context.

3 Abductive Reasoning
Normal safety analyses performed on systems can be described
as asking “what if” questions throughout the safety lifecy-
cle during the development of a system to discover hazards,
their causes and their likelihood and likely consequences. This
begins with predictive analyses that use inductive techniques
(that work forward from known causes to potential (unknown)

1



effects) and ends with confirmatory analyses that use both
inductive and deductive techniques (the latter that work back-
wards from a known unwanted event) [10]. The SDSS would
supplement the above by supplying abductive reasoning (rea-
soning that fits the available knowledge to the most likely
of several rival theories) in the act of transforming the infor-
mation from sensor inputs into the likely explanations of the
system state (e.g normal operation, valve X is blocked, natural
gas is pushing up through the wellbore. . . ).

4 General function of a SDSS
The general function of a SDSS would initially begin with
the abductive reasoning stage which influences later reason-
ing. This abductive reasoning will give information about the
probable state that the system is in, with some uncertainty.
The risk analysis stage would then perform inductive analy-
ses which will reveal the risks posed by being in that state
(the models used for this would be described from standard
safety analyses of the system). Anomaly detection could also
be performed to detect abnormal patterns — patterns that the
SDSS has not seen before. These may be innocuous or they
may correspond to an unanticipated failure mode or a flaw
in the SDSS’s model of the plant. The decision support stage
will receive the results of the risk analysis and will consider
the trade-offs between reducing risk, reducing uncertainty, and
maintaining performance. Based on this, it will then present
the operator with a number of alternative plans; ideally, it will
be able to explain the rationale behind each plan to the opera-
tor, on demand.

5 An Architecture Model of an SDSS
A general model of a SDSS is presented in Figure 1.

5.1 Data Gathering

The Decision Support System needs to be able to sense the
world: the sensors on the physical system and the environment
with which the system interacts. Some preprocessing of the
raw data could be involved to remove noise.

5.2 Sensemaking

Sensemaking is the continuous effort to understand and inter-
pret relevant information for the purpose of anticipating events
and making decisions in response [11]. This is a crucial part of
a Decision Support System to “orientate” itself in the mass of
data being received from the sensors. For example, sensemak-
ing would involve the process of determining the mode or state
of the system (e.g. is the chemical process active or inactive)
using historical data and models of the advised system and the
process it controls.

5.3 Reasoning

Reasoning in a Decision Support System is the intermediate
step between the Sensemaking and the Decision Making (in
practice, reasoning would be closely tied to the Decision Mak-
ing) where prognostics is performed to predict future states of
the system. Risk assessment provides a utility to help deter-

Sensemaking

Data Gathering

Reasoning

Data acquisition
● Component sensors
● Environment sensors

System Mode detection

Data manipulation
● Pre-processing
● e.g. noise removal

Diagnostics

Prognostics

Risk AssessmentArtefacts from
Safety Analyses

Operational Playbook
Decision Making

Plan Formulation

Policies for tradeoff
between

risk/cost/production

Plan Explanation

Modelling e.g.:
● failure models
● statistical models
● numerical models

Presentation

Human-Computer/Machine Interface

Operator Actuation

Environment

Subjective Knowledge

Historical Data

Alarms

Figure 1. SDSS Architecture Model

mine the best decision to make with regards to safety analyses,
the operational playbook and the various plans that can be for-
mulated. Here, we have used the term “Playbook” to refer to
the collection of standard procedures, including the conditions
under which each is appropriate to apply.

5.4 Decision Making

The Decision Making is where the plans of action are actu-
ally made. This involves taking all the information that has
been processed and deciding the best course of action based on
that with regard to standard procedures. One constraint on the
decision-making approach used here is that the SDSS needs to
be able to describe to the operator why it has made the decision
it has. The approach used must, therefore, be one that produces
such an intelligible rationale.

5.5 Presentation

The interface between the Decision Support System and the
operator is extremely important. This has to be done in such
a way that it doesn’t overload the operator nor skip important
details relevant to the current situation. Although there is rel-
evant work and experience in conventional alarm and moni-
toring systems, it is not clear exactly how to do this for more

2



sophisticated SDSS.

The alarm management system may work autonomously; if
there is a high risk risk system state, it may be able to trip
alarms (audible and visible to not just the operator but to all in
the area of concern) without operator intervention. In this, it is
slightly more autonomous than the rest of the SDSS, which is
ultimately subordinate to the operator.

6 Architectural Failure Modes
The standard Functional Failure Analysis technique, as
described in the ARP 4761 (as “System Functional Hazard
Assessment”) [12], provides three failure classifications to
help guide a systematic exploration of failures during design
time:

(1) Function not provided
(2) Function provided when not required
(3) Function provided incorrectly.

Although these are applicable to software failures as well,
many types of failures would be simply classified as function
provided incorrectly [10]. The failure modes in this paper
utilise a set of failure classifications (in Table 1) from the
SHARD HAZOP technique [10] to provide guidance in sys-
tematically analysing the architecture. Note that these tables
are not exhaustive due to the abstract nature of the SDSS we
consider and to space constraints.

The extracts highlighting the distinctive challenges of the
SDSS from our FFA are presented here (avoiding the obvious
“software bug prevents execution”).

Group Failure classes
Service provision (a) Omission, (b) Commission
Service timing (c) Early, (d) Late
Service value (e) Coarse (detectably) incorrect,

(f) Subtle (undetectably) incorrect

Table 1. SHARD Failure Classifications [10].

Modelling the system plays an important role in the SDSS;
however, it is a difficult task to model all phenomena com-
pletely – more so when considering environmental effects that
occur in an oil drilling scenario, or autonomous robots work-
ing in an outdoor environment. We call this modelling uncer-
tainty.

6.1 Data Gathering

The input sensors that provide data to the SDSS play a large
role as it involves the entire process, up to the Plan Formula-
tion and its explanation, is dependent on them. As sensors are
often quite exposed to the environment, they are quite likely
to fail. Hence, failures here must be mitigated through redun-
dancy and cross-checking for contradictory sensor readings.
Table 2 shows the FFA for some of the more subtle problems
that may occur.

Data Manipulation refers to pre-processing of the sensor data,
and possible failures here are shown in Table 3. It is possible

Failure Mode Indicative Cause(s) Effects
(a) Sensor read-
ings are lost.

(1) Sensor readings
come in a lower
granularity than
expected (misconfig-
uration). (2) Faulty
connections causing
lost data.

Reduction in the
confidence of risk
assessment and
ultimately plan for-
mulation.

(e) Sensor data
values are out
of range.

(1) Implementation
does not follow sen-
sor specification. (2)
Sensor is malfunc-
tioning and provid-
ing data outside of its
specification.

Invalid data leading
to readings lost due
to filtering.

(d) Sensor
updates are too
late.

(1) Sensor updates
are sent through a
congested network.
(2) Polling of the
sensor is too slow.

The sensor data is too
late to be useful –
the SDSS will either
be unable to use the
sensor information or
will treat it as current
when it is not.

(f) Fluctuating
sensor read-
ings.

Conditions exceed
specification of the
sensor causing unde-
fined behaviour.

Incoming sensor
data has spurious
values as the condi-
tions have caused the
sensor to go out of
range.

Table 2. Sensor FFA.

for biases to be introduced and for subtle artifacts to be pro-
duced through e.g. noise smoothing in this pre-processing. The
effect of these on the Risk Assessment and Plan Formulation
may be difficult to predict (or even detect).

Failure Mode Indicative Cause(s) Effects
(e) Data values
are corrupted.

(1) Uncertainty in
modelling causes
incorrect pre-
processing to be per-
formed. (2) Software
bug.

Invalid data fed to
system mode detec-
tion, diagnostics,
prognostics and
ultimately plan for-
mulation. Alarms
may be triggered due
to misinterpretation
of such values.

(f) Introduction
of a bias in the
data values.

(1) Uncertainty in
modelling introduces
hidden bias. (2) Soft-
ware bug.

Invalid data fed to
system mode detec-
tion, diagnostics,
prognostics and
ultimately plan for-
mulation.

(f) Removal of
detail from the
data values.

Noise removal
smooths over detail.

Invalid data fed to
system mode detec-
tion, diagnostics,
prognostics and
ultimately plan for-
mulation.

Table 3. Data Manipulation FFA.

6.2 Sensemaking

The main concern of system mode detection is that the wrong
mode is detected; the failure modes that relate to this are shown
in Section 6.2. If it is obvious that a system mode is incorrect;
the operator can likely determine what the mode of the system
should be.

3



Failure Mode Indicative Cause(s) Effects
(e) The wrong
mode is
detected.

(1) Uncertainty in
system mode mod-
elling. (2) Input
sensor readings are
too noisy (uncer-
tainty in the actual
sensor readings)

The SDSS provides
incorrect Diagnostics
and Prognostics as
well as Plan Formu-
lation. Furthermore,
alarms may be trig-
gered as sensors will
appear abnormal
with regards to the
mode.

(f) The
wrong mode
is detected
(between two
similar modes).

(1) Uncertainty in
system mode mod-
elling. (2) Input
sensor readings are
too noisy (uncer-
tainty in the actual
sensor readings)

The SDSS provides
incorrect Diagnostics
and Prognostics as
well as Plan Formu-
lation.

(e) Algorithm
detects uncer-
tainty in system
mode

(1) Insufficient sys-
tem mode modelling
due to uncertainty.

Diagnostics, Prog-
nostics, Risk Assess-
ment and Plan
Formulation all have
less confidence in
their results.

Table 4. System Mode Detection.

Diagnostics can be used to both detect malfunctions in the sys-
tem hardware (failure modes shown in Table 5) and problems
in the target application. The target application, for example in
oil drilling, can involve tasks such as measuring the pressure of
the mud flowing through the drill pipe. Such diagnostics give
a good indication whether there is a risk of the well ‘kicking’
(oil and gas flowing up the well uncontrollably).

Failure Mode Indicative Cause(s) Effects
(a) No diagnos-
tics available.

(1) Modelling uncer-
tainty causing a
complete mismatch
between input and
the model. (2) Soft-
ware Bug.

Other Diagnostics
dependent compo-
nents cannot execute.
The system cannot
provide the operator
with risk assess-
ment and formulated
plans.

(e) Contradic-
tory evidence
for hardware
component
malfunction.

(1) Modelling uncer-
tainty. (2) Sensor
uncertainty. (3) Sen-
sor failure.

Unable to determine
whether a component
is faulty or not. There
is less confidence in
the risk assessment.

(e) False posi-
tive failure.

(1) Modelling uncer-
tainty. (2) Sensor
uncertainty. (3) Sen-
sor failure.

The Risk Assessment
is incorrect impact-
ing on the validity of
Plan Formulation.

(f) Source of
failure is incor-
rect.

(1) Modelling uncer-
tainty. (2) Sensor
uncertainty. (3) Sen-
sor failure.

The Risk Assessment
attributes higher risk
to the wrong parts of
the system and this is
reflected in plan for-
mulation.

Table 5. Diagnostics for hardware components.

6.3 Reasoning

Prognostics attempts to predict the future based on past trends
and the current state. This makes it valuable in making preemp-
tive decisions, such as scheduling maintenance or replacement

Failure Mode Indicative Cause(s) Effects
(d) Prognostic
calculations
take too long.

(1) Memory con-
tention. (2) Inade-
quate CPU speed. (3)
Network speed is too
slow.

Risk assessment and
Plan Formulation
will stall until prog-
nostics calculations
are complete.

(e) Incorrectly
predict com-
ponent failure,
despite compo-
nent not having
problems.

(1) Modelling uncer-
tainty. (2) Sensor
uncertainty. (3) Sen-
sor failure.

Maintenance down-
time to inspect com-
ponent.

(e) Failure
to predict a
component’s
failure.

(1) Modelling uncer-
tainty. (2) Sensor
uncertainty. (3) Sen-
sor failure.

Component fails
without warning.

Table 6. Prognostics.

Failure Mode Indicative Cause(s) Effects
(a) Algorithm
produces a
Risk Assess-
ment with high
uncertainty.

(1) Modelling uncer-
tainty (2) Sensor
uncertainty (3) Sen-
sor failure

Confidence in the
plan formulation is
severely reduced.

(f) Risk Assess-
ment is incor-
rect; the risk
for the current
operation is too
low.

(1) Modelling uncer-
tainty. (2) Sensor
uncertainty. (3) Sen-
sor failure.

The Plan Formu-
lation suggests no
action to handle the
current situation
as the risk is not
deemed high enough.

(f) Risk Assess-
ment is incor-
rect; the risk
for the current
operation is too
high.

(1) Modelling uncer-
tainty. (2) Sensor
uncertainty. (3) Sen-
sor failure.

The Plan Formu-
lation suggests an
action to handle
the current situa-
tion although none
is needed - further-
more, the actions
could increase risk as
a result.

Table 7. Risk Assessment.

of failing components before they completely fail. Prognostics
may take too long to be useful, especially in a real-time con-
text. If simply adding faster computers does not mitigate the
risk that the prognostics do not complete in time (for instance
in heavy simulations), then faster, less accurate, approxima-
tions may have to be used. Some of the failure modes are illus-
trated in Table 6.

Risk Assessment involves evaluating the risk associated with
the current state of the system. This takes into consideration
the mode of the system, diagnostics and prognostics that have
been determined. The failure modes, as shown in Table 7,
rely crucially on the completeness of the modelling of the
system.

6.4 Decision Making

We assume here that Plan Generation generates plans using
an “operational playbook” — a database of the common pro-
cedures to deal with the system state — and presents them to
the operator in order of relevance. There are three main ways
(expanded in Table 8) this can fail; when the operator does not
get a plan, gets an incorrect plan but notices it is wrong, or gets

4



Failure Mode Indicative Cause(s) Effects
(a) No plan
generated.

(1) Software bug. (2)
System that executes
the algorithm loses
communication. (3)
No viable plan can
be generated (e.g.
nothing is found in
the Operational Play-
book). (4) Execution
never terminates.

The operator must
make decisions with-
out advice from the
SDSS.

(b) Partial exe-
cution.

(1) Executes incom-
pletely due to sensor
failures. (2) Memory
exhausted. (3) Exe-
cution timed out due
to long run time.
(4) Network outage
midway through exe-
cution. (5) Unfore-
seen code bug causes
algorithm to termi-
nate prematurely.

Limited number of
plans formulated -
full set of combina-
tions is not provided.
Plans provided may
not cover whole
tradeoff space.

(e) Plan gen-
erated is not
viable.

(1) Modelling uncer-
tainty. (2) System
state detection fail-
ure. (3) Operational
Playbook contains
mistakes.

Actions that are sug-
gested cannot be per-
formed on the sys-
tem. The worst case
is that the actions are
performed until the
first unviable action,
which leaves the sys-
tem in a irrecover-
able state.

(e) Plan gener-
ated is implau-
sible.

(1) Modelling uncer-
tainty. (2) System
state detection fail-
ure. (3) Operational
Playbook does not
contain a suitable set
of procedures.

Actions in plan are
incompatible with
system state.

(f) Plan gener-
ated has incor-
rect sequence
of actions.

(1) Modelling uncer-
tainty. (2) System
state detection fail-
ure. (3) Operational
Playbook contains
mistakes.

Actions performed in
the wrong order leads
to hazards.

(d) Plan formu-
lation does not
return a value
in time for deci-
sion making.

(1) Memory con-
tention. (2) Inade-
quate CPU speed. (3)
Network speed is too
slow.

The operator must
make decisions with-
out advice from the
SDSS when there is
a time-critical situa-
tion.

Table 8. Plan Formulation.

an incorrect plan and accepts it. In the first instance, the oper-
ator is left to manually define a plan. In the second instance,
the operator explores the other, safer, alternatives and performs
some actions for this purpose. In the third, this is the most dan-
gerous – the SDSS must optimise plans such that they prefer
safer actions that gather more information about the system to
reduce the risk that an incorrect plan cannot be aborted, as well
as, continuously monitor the execution of the plan to see if the
plan was the correct plan to execute.

Plan Explanation produces evidence and explanation for the

Failure Mode Indicative Cause(s) Effects
(a) Partial
explanation.

(1) Executes incom-
pletely due to sensor
failures. (2) Memory
exhausted. (3) Exe-
cution timed out due
to long run time.
(4) Network outage
midway through exe-
cution. (5) Unfore-
seen code bug causes
algorithm to termi-
nate prematurely.

The operator may
lack confidence in a
correctly suggested
plan and prefer a
better explained (but
not necessarily good)
one

(a) No explana-
tion.

(1) Modelling uncer-
tainty. (2) Software
bug. (3) Cannot
form analysis due
to incomplete Oper-
ational Playbook
information.

Explanation for the
plan is not exposed to
the operator. Opera-
tor would not be clear
as to why each plan
has been suggested.

(b) Information
is too dense.

(1) Modelling error.
(2) Software design
inadequacy.

Explanation given
has too much infor-
mation that makes it
hard to understand.

(d) Plan formu-
lation does not
return a value
in time for deci-
sion making.

(1) Memory con-
tention. (2) Inade-
quate CPU speed. (3)
Network speed is too
slow.

The operator must
make decisions with-
out advice from the
SDSS when there is
a time-critical situa-
tion.

(e) Explanation
is invalid for
the plan and is
unconvincing.

(1) Modelling uncer-
tainty. (2) System
state detection fail-
ure.

The operator may
lose its confidence in
a correctly suggested
plan and prefer a
better explained plan
(but not necessarily
good plan)

(f) Explanation
is invalid for
the plan but is
convincing.

(1) Modelling uncer-
tainty. (2) System
state detection fail-
ure.

The operator may
gain confidence in an
incorrectly suggested
plan. Contradictions
may only be hidden
in “Detailed Expla-
nation”.

Table 9. Plan Explanation.

choice of plans. The aim of the plan explanation would be
to clarify and give confidence to the operator that the sug-
gested plans are correct. However, plan explanation could fail
is numerous ways, as shown in Table 9.

6.5 Presentation

We have not used FFA on the Presentation stage because
Human factors specific techniques would be more appropri-
ate.

7 Establishing A Safety Case
Establishing a valid safety case for a system that has an
advanced SDSS requires an understanding of the underlying
nature of the SDSS and its role in an operator’s decision-
making. We call advice anything that the SDSS suggests, from
its diagnostic and prognostic information to formulated plans.
Following Hawkins et al. [13], a safety case can be divided

5



REFERENCES

into three complementary parts — the safety, confidence and
compliance arguments.

The first need is to establish the safety argument — to show
that the potential chains of accident causation within the sys-
tem have been understood and managed appropriately. The
decision-making in the system is still ultimately the operator,
and the risks involved are if the operator is influenced in such
a way that he/she makes the wrong decision. The intent of
adding a SDSS is to add a significant positive influence on the
operator’s decision-making.

The SDSS has to be reliable in its suggestions and advice about
plans of action. The link between decision-making and SDSS
is not so simple as being simply ‘reliable’ because the operator
may be:

(1) convinced by correct advice,
(2) convinced by incorrect advice,
(3) unconvinced by correct advice, and
(4) unconvinced by incorrect advice.

The operator may also simply ignore advice, especially if the
SDSS has a reputation for being unreliable. If strenuous efforts
are made to ensure that operators are ‘convinced by correct
advice’, there is a danger that the risk of the the second, third
and fourth items are increased.

As will be clear from the FFA tables given previously, uncer-
tainty plays a very important role here. Uncertainty manifests
itself in many parts of the system: inexact modelling, propa-
gates of uncertainties in input, and the inputs to the system.
But, as a concept, uncertainty (or rather certainty) is a key part
of decision-making i.e. clarification of certainty leads to confi-
dence and confidence helps with convincing.

Secondly, the safety case will need to establish confidence at
deployment time that the safety argument is valid, in partic-
ular that the evidence from analysis and testing is adequate.
This will be difficult as SDSS will need to rely on technolo-
gies that have not traditionally been used for safety-related sys-
tems.

Thirdly, a safety case will need to establish compliance with
safety standards. Currently, most standards do not provide
specific guidance on the use of Decision Support Systems
in safety-critical systems. An exception is the standard IEC
61508, where the use of a Decision Support System in an
advisory role is discussed [14].

Acknowledgements
We would like to thank AOS and Statoil for their support in
this work.

References
[1] R. J. Mumaw, E. M. Roth, K. J. Vicente, C. M. Burns,

“There is more to monitoring a nuclear power plant
than meets the eye”, Human Factors: The Journal of
the Human Factors and Ergonomics Society, 42(1), pp.
36–55 (2000).

[2] T. Bright, A. Wong, R. Dhurjati, E. Bristow, L. Bas-
tian, R. Coeytaux, G. Samsa, V. Hasselblad, J. Williams,
M. Musty, L. Wing, A. Kendrick, G. Sanders, D. Lobach,
“Effect of Clinical Decision-Support Systems: A System-
atic Review”, Annals of Internal Medicine (2012).

[3] J. Schumann, A. Srivastava, O. Mengshoel, “Who Guards
the Guardians? – Toward V&V of Health Management
Software”, Runtime Verification, pp. 399–404 (2010).

[4] M. Schwabacher, K. Goebel, “A Survey of Artificial
Intelligence for Prognostics”, AAAI Fall Symposium, pp.
107–114 (2007).

[5] Y. Peng, M. Dong, M. J. Zuo, “Current status of machine
prognostics in condition-based maintenance: a review”,
The International Journal of Advanced Manufacturing
Technology, 50(1-4), pp. 297–313 (2010).

[6] N. Iyer, K. Goebel, P. Bonissone, “Framework for Post-
Prognostic Decision Support”, in IEEE Aerospace Con-
ference, pp. 1–10, IEEE (2006).

[7] S. Frost, K. Goebel, J. Celaya, “A Briefing on Met-
rics and Risks for Autonomous Decision-making in
Aerospace Applications”, in Infotech@Aerospace 2012,
Infotech@Aerospace Conferences, American Institute of
Aeronautics and Astronautics (June 2012).

[8] J. Schumann, O. J. Mengshoel, A. N. Srivastava, A. Dar-
wiche, “Towards Software Health Management with
Bayesian Networks”, Proceedings of the FSE/SDP work-
shop on Future of software engineering research, pp.
331–336 (2010).

[9] C. Pace, D. Seward, “A Model for Autonomous Safety
Management in a Mobile Robot”, in International Con-
ference on Computational Intelligence for Modelling,
Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Com-
merce 2006, volume 1, pp. 1128–1133, IEEE (2005).

[10] D. J. Pumfrey, “The Principled Design of Computer Sys-
tem Safety Analyses”, Ph.D. thesis, University of York
(1999).

[11] G. Klein, B. Moon, R. R. Hoffman, “Making sense of
sensemaking 1: Alternative perspectives”, Intelligent Sys-
tems, IEEE, 21(4), pp. 70–73 (2006).

[12] Society of Automotive Engineers, “Guidelines and Meth-
ods for Conducting the Safety Assessment Process on
Airborne Systems and Equipment”, Technical report,
Society of Automotive Engineers (1996).

[13] R. Hawkins, T. Kelly, J. Knight, P. Graydon, “A
new approach to creating clear safety arguments”, in
Advances in Systems Safety, pp. 3–23, Springer (2011).

[14] European Committee for Electrotechnical Standardiza-
tion, BS EN 61508-3 : 2010 Functional safety of electri-
cal / electronic / programmable electronic safety-related
systems, BSI Standards Publication, Brussels (2010).

6


