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Abstract 
 
Traditionally, hazard analysis has been a manual process performed by safety engineers following a systematic 
process. This has proved highly effective for existing systems. However, for Systems of Systems of the complexity 
now being constructed it is becoming increasingly difficult to use these conventional techniques, particularly when 
considering the effects of multiple concurrent and distributed failures. It therefore seems advisable to investigate 
how automation can assist in the hazard analysis process. In order to do this, it is necessary to clearly identify the 
role of the human in hazard analysis, and determine the unique contribution made by human intelligence. This 
paper, in particular, identifies the importance of creative input and application of domain knowledge in deriving 
accurate and complete results. From this, it identifies some parts of the hazard analysis process where automation 
could be used to improve performance. As an example of how this could work, a partially-automated approach to 
Systems of Systems hazard analysis is presented, and this is illustrated using a military system case study. 
 

Introduction 
 
A risk-based safety process relies on the identification and analysis of the risks associated with the system. If such a 
process is to be effective, the analysis must be complete and accurate. If the process is to be affordable, risks must 
be identified and quantified (if only roughly) early in the system life cycle. 
 
The main method for achieving this involves identifying the set of possible hazards that are exhibited by the system, 
and determining the probability and severity of their occurrence. The UK military standard Defstan 00-56 defines 
‘hazard’ as “A physical situation or state of a system, often following from some initiating event, that may lead to an 
accident” (ref. 1). In order to acquire the set of such hazards, engineers must perform hazard identification (Defstan 
00-56: “The process of identifying and listing the hazards and accidents associated with a system”). In order to 
determine the risk associate with each hazard, hazard analysis must be performed to discover the causes and effects 
(Defstan 00-56: “The process of describing in detail the hazards and accidents associated with a system, and 
defining accident sequences”).  
 
At present, hazard analysis is primarily performed by engineers using manual techniques such as FHA (ref. 2) or 
HAZOP (ref. 3). Although this labour is time-consuming (and hence expensive) is has historically been highly 
effective at finding hazards and their causes, and thereby allowing safe systems to be built. 
 
The safety-critical systems that are being developed today, however, are growing in size and complexity, while 
public and hence political and legal demands for increased safety are prominent. The increasing use of software is a 
well-documented part of this increase in complexity, but looking to current and near-future developments new 
problems are apparent with the increased use of ad-hoc networks and autonomous robotic systems. Systems that 
exhibit these latter characteristics are commonly described as ‘systems of systems’, and a discussion of some of the 
problems they present for safety is provided by the authors in references 4 and 5. 
 
To some extent, problems with analyzing such systems can be dealt with by allocating ever-more resources to 
conventional hazard analysis approaches. However, given that human intelligence remains a constant, it is hard to 
have confidence that manual approaches will maintain the same level of completeness and accuracy in the face of 
increasing complexity. A similar development can be seen in the field of software, where increasing complexity has 
required programmers to move to progressively higher-level languages and more automated support. 
 
Furthermore, as Venkatasubramanian notes in (ref. 6), most of the work performed by engineers in current manual 
approaches involves repetition of the same responses to the same situations that they have seen many times before. 
Such mundane, tedious work dulls awareness and may prevent engineers spending time and effort on generally 



novel situations, and may cause them to miss those situations that are genuinely important. Performing manual 
analysis when an automated alternative is available is a waste of engineer skill and training.  
 
This paper will discuss the potential for resolving these problems via automation of the hazard analysis process, 
concentrating on the systems of systems case. The following section identifies what it is that humans actually do in 
typical hazard analysis procedures, and the section after that discusses what parts of that can be automated. Some 
requirements for an effective automated hazard analysis approach for systems of systems are identified, and existing 
work described in the literature is then reviewed with respect to these. The authors then describe their work in 
progress on developing such an approach.  
 

What do Humans Do in Hazard Analysis? 
 

The core of hazard analysis is the asking of a “What if?” question, where some plausible cause (such as a valve 
jamming shut) is evaluated in the context of the entire operational system in order to determine what effects it can 
have (such as causing an uncontrolled increase in pressure in the tank immediately prior to the valve). The overall 
goal of this questioning is to gain understanding of these cause-effect relationships such that hazards inherent in the 
current design of the system can be evaluated, and the design (or operational arrangements) of the system changed 
so that the hazards are prevented or mitigated.  
 
Manual analysis techniques, by necessity, break down the task into a number of steps. This can be illustrated by 
considering two widely used techniques: Functional Hazard Analysis (FHA) (ref. 2) and HAZOP (ref. 3). A set of 
steps for each of these, as presented by Pumfrey in (ref. 7), are shown in (Table 1) and (Table 2) respectively. 
 

Table 1 — Steps in FHA (from Pumfrey, reference 7) 
 

Step Description 
1 Identify functions. 
2 For each function identified, suggest failure modes, using the three failure types as prompts. 
3 For each failure mode, consider the effects (at different levels, e.g. function / subsystem / system, if 

necessary). 
4 Identify and record any actions necessary to improve the design. 
 

Table 2 — Steps in HAZOP (from Pumfrey, reference 7) 
 

Step Description 
1 Select a flow in a pipeline. 
2 Identify important physical attributes of the flow, such as pressure, temperature, flow rate, chemical 

composition etc. 
3 Consider those deviations prompted by applying each guide word to each property for this line section. 
4 Determine the possible causes of each of these deviations. 
5 Investigate the expected outcome (effect on the plant) of each deviation, taking into consideration 

operating conditions and other causal factors where necessary, and examining the contribution of 
protection mechanisms and other mitigation already included in the design. 

6 Decide which deviations are safety problems (i.e. those with both plausible causes and hazardous 
effects). 

7 For deviations which are not safety problems, record a justification (i.e. explain why the design is 
acceptable as proposed. 

8 Consider changes to the plant that will remove, or reduce the probability or severity of, hazardous 
deviations. 

9 Determine whether the cost of the proposed changes is justified. 
10 Agree actions and responsibilities. 
11 Repeat steps 1 to 10 for all other lines in the plant. 
12 Follow up to ensure necessary actions have been taken. 
 



Although the two techniques have different steps, it can be seen that they break down into similar stages as shown 
in table 3. 
 

Table 3 — Combined Stages from FHA and HAZOP 
 

Stage FFA Equivalent HAZOP Equivalent 
A) Build / acquire model 1 2 
B) Enumerate possible deviations of 
model 

2 3 

C) Derive effects of deviations 3 5, 6, 7 
D) Consider design changes to 
prevent or mitigate 

4 8, 9, 10, 12 

 
 
HAZOP steps 1 and 11 appear not to fit into this classification, but this is because they are merely instructions to 
repeat certain other steps. HAZOP step 4 is genuinely excluded, but for the purpose of simplicity this stage of the 
technique will be ignored in this paper. 
 
As well as performing those activities that are explicit in the given process being followed, engineers invariably 
perform additional actions in parallel. They validate the model, questioning the predictions that seem to arise from 
it. If the model is at odds with their understanding of the world and engineering judgment, they may propose a 
change in the model, or a change of scale or abstraction (in order to avoid repeatedly analyzing equivalent 
phenomena, or to drill down into detail when some prediction cannot be made at the current level of the model). 
 
These additional activities relate to the overall ability of humans to bring their background knowledge to bear on the 
hazard analysis problem. An engineer faced with a paper model of a system has a great wealth of knowledge about 
computers, machinery and human behaviour that allows them to “cover over the gaps” in the model itself. In a 
manual process, the model is explicitly acknowledged as the proxy for a much more complex reality, which is 
fleshed out as needed by the background knowledge of the engineers. By contrast, in a fully automated system the 
model must be the reality because the system does not have such knowledge. 
 
Given the above descriptions of what activities human engineers perform in hazard analysis, we must now 
determine whether, and to what extent, these activities can be automated. 
 

Can These Activities be Automated? 
 

The question of “What can be usefully automated?” is certainly an important one. Problems with automation of 
operational manual tasks (as distinct from engineering ones) are well described, and quite familiar to safety 
engineers (ref. 8). Taking the stages in typical hazard analysis processes described in the previous section, we can 
now make some observations of the potential for automation. 
 
An automated system cannot realistically build or acquire a model (stage A). This task is therefore deferred to 
human intelligence. It is possible, however, to support the development of suitable simulation models through tools 
and libraries of components. Engineers already use tools to produce a variety of system models, and potentially 
some of those tools can be reused. It can be noted, however, that many ‘modelling’ tools are little more than 
specialized diagram editors. 
 
Given a suitable simulation model, can an automated system enumerate the possible deviations of that model (stage 
B)? Potentially, this is possible, provided that the system is built so as to be able to (i) identify points in the model 
where deviations can be applied (ii) manipulate the model so as to implement those faults. For a task of deriving all 
the permutations of a model, given a set of rules about where deviations can be applied, a computer can quickly 
consider a vast number possible permutations, whereas humans would take much longer to enumerate them. 
 
For stage C, the deviations applied in stage B must be applied to the model, and their effects determined. Whether 
this is possible in any given case depends on the adequacy of the model and the simulation algorithms that can be 



applied to it. It can be noted that in manual analysis, engineers typical only consider the effect of a single deviation 
at a time, and for a given deviation they can only predict the effects a short distance through the system (for 
example, in a process plant this might mean in devices or pipes adjacent to the point of deviation) or for a short 
period of time after the deviation occurs. By contrast, although an automated system cannot consider all possible 
combinations of deviation, or develop their effects for the lifetime of the system, it can project many combinations 
of deviations over an extended period of simulated time. 
 
In stage D, changes to the design must be proposed and evaluated. It is not inconceivable to create an automated 
system that would attempt to do this, based on a library of historical design changes. Indeed, the HAZOPExpert 
system (ref. 6) has some ability to do this. In practice, however, once an engineer’s attention has been drawn to a 
problem they are generally well-placed to propose solutions. The primary concern addressed in this paper is that it is 
difficult to identify all the hazards in the first place. 
 
A number of additional activities were noted above that didn’t fit into single process stages. All of these are far 
outside the capabilities of realistic automated systems. There is, therefore, a clear need for human involvement here. 
As we noted above, these actions occur as needed throughout the process. It follows that not only must it be 
possible for engineers to take such actions, but that they must have visibility of the process sufficient to see when 
they should take such actions. An analogous issue in general automation is discussed by Norman in reference 9. 
 
It was noted that, in a manual analysis, humans may at any time propose changes to the model being used, either to 
correct an explicit error or to make a general change, for example to the level of abstraction. As well as being 
beyond the abilities of any implementable computer system, the increased “weight” of executable and analyzable 
models means that such a change to these models requires far more work than in the equivalent manual process. 
Indeed, many transforms of this nature in a manual process are performed solely in the minds of the engineers 
involved. This may be less of a problem in domains where levels of abstraction versus detail are well established 
across multiple uses of models. 
 

What Do We Need from Such an Approach? 
 

It was established in the previous section that some aspects of the hazard analysis process can usefully be 
automated. The question then arises: “What, then, are the requirements on a method and tool that implement such an 
automated process?” In this paper, we will consider this in terms of general-purpose hazard analysis, then 
specifically in the context of systems of systems. 

 
Requirement 1. The approach must allow for errors and incompleteness in the model 
 
Given the practicalities of modelling, we can be confident that engineers will quickly find problems with any model, 
and will need to correct those problems or work around them. In effect, they will want to instruct the system “that’s 
clearly not realistic; don’t tell me about it again”. We therefore need to allow for this, and not put explicit obstacles 
in its way. 
 
In reference 10, Zhao and Venkatasubramanian describe the extension of their PHASuite hazard analysis system 
with a learning engine for this purpose. They note that “Without a proper mechanism to incorporate this kind of 
knowledge based on user feedback, if a similar situation arises later when analyzing another process, PHASuite 
would generate similar inappropriate results and users would have to make the same changes to the results again.” 
They go on to describe an extension to PHASuite that uses a case-based learning system to allow the user to give 
feedback and have the system respond to it. 
 
One corollary of this is that we need to make it relatively easy for engineers to perform an automated analysis, note 
(after some period of study) that some of the results are unrealistic, make changes to the model to correct this 
problem, and repeat the analysis. In order for this to be practical, they must be able to detect unrealistic output 
without performing significant manual work that will need to be duplicated once the changes are made. 
 
This may point towards specifying an end point in the analysis where the automated work is decreed “finished” and 
the engineers carry on from there “on foot”, i.e. drawing together the results by some manual means. 



 
Requirement 2. The approach must use a risk-based, whole-system model 
 
In a real system, accidents are rare. Typically, they require seemingly bizarre coincidences of actions and states. An 
accurate simulation model will manifest accidents equally rarely. Therefore, the system must provide a way to 
detect repeated near-misses as well as accidents. This can be achieved by recording the exposure to risk either 
experienced by or caused by each entity in the system. 
 
Furthermore, as discussed by Perrow in reference 11, many accidents in complex systems stem not from single, 
dramatic failures but from a mixture of the unexpected interactions between normal behaviour and a number of 
simultaneous minor failures. In order to capture the effects of such interactions, the system must use a model that it 
is mechanically similar to the real system, rather than, for example, a crude functional abstraction. 
 
Requirement 3. The approach must derive qualitative rules describing cause-effect relationships 
 
As noted earlier, the goal of hazard analysis is to gain understanding of cause-effect relationships such that the 
identified hazards can be prevented or mitigated. Merely observing that the system can produce some accident is not 
sufficient, and nor is deriving a purely statistical relationship between some external factor and some risk metric, 
unless the internal-to-the-system mechanism by which such an accident can occur is eventually derived. 
 
An effective automated approach, therefore, must provide some form of output that leads analysts at least to the 
precise combination of external circumstances that will reliably lead to an accident. Such a rule could be of the form 
“If it is raining heavily, and the cover for tank 4 is incorrectly seated, an explosion will occur in reactor vessel B”. 
Engineers can then study the system model with the knowledge that there is some mechanism by which this 
relationship holds; in other words, it focuses their attention where it is most needed. 
 
Ideally, the system should capture the internal process of states and events by which the system responds to the 
external factor so as to cause the hazard. 
 
Requirement 4. The approach must handle dynamic behaviour in dynamic structures 
 
All systems involve some form of dynamic behaviour, in that the different parts of the system have state that varies 
independently over time. Much traditional analysis work, however, has been concerned with systems such as 
process plants which have static structures; in such systems, the relationships between the parts are fixed. 
 
Systems of systems, however, may consist of a set of entities which vary over time, and those entities may interact 
in an ad-hoc fashion driven as much by geographical and task-allocation happenstance as by any a priori structure. 
Hence, the set of interacting parts, and the relationships between those parts, varies over time. Any hazard analysis 
approach that is to be effective when applied to systems of systems must be able to find hazards emerging from 
interactions within such dynamic structures. 
 

What Has Been Achieved So Far? 
 

There are many automated safety analysis techniques described in the literature. In this section, we will evaluate the 
relevance and effectiveness of such work in terms of the requirements identified in the previous section. 
 
There are several existing approaches based on Monte Carlo simulation, whereby stochastic input variables 
(representing external conditions) are used to derive a statistical assessment of the probability of various accidents 
and hence of the level of safety achieved by the system. An example of this is the work of Blom et al in airspace 
safety (ref. 12). This information is useful, but, as we noted under requirement 3, hazard analysis requires causal 
rules to be derived. 
 
Additionally, the usefulness of such purely statistical information depends heavily not just on the fidelity of the 
simulation but on the ability of the engineer to support that claim of fidelity. Hence, in hazard analysis, engineers 



need something that they can use as a starting point for investigation; they need results that they can use, not results 
that they have to rely on. Dewar et al, in reference 13, describes this as “weak prediction”. 

 
There is a large body of work in the field of multi-agent simulation. An example of this applied to safety analysis is 
presented by Johnson in reference 14. In reference 15, Ferber gives the following explanation of the multi-agent 
simulation concept: “Multi-agent simulation is based on the idea that it is possible to represent in computerised 
form the behaviour of entities which are active in the world, and that it is possible to represent a phenomenon as the 
fruit of the interactions of an assembly of agents with their own operational autonomy.” 
 
That is, such simulations are composed of a set of distinct agents who have their own rules of autonomous 
behaviour (their own program) and some simulated environment in which they interact. For example, in the work by 
Johnson the agents represent staff, patients and visitors in a hospital, and they act within a map of that hospital. In 
the scenario he studies (evacuation of the building because of a fire) the agents have behaviours that lead them to 
autonomously move towards the nearest exit, and they may interact in that, for example, agents representing staff 
may help to move wheelchair-bound or bedridden patients. 
 
Multi-agent simulations can represent systems that exhibit complex, dynamic relationships between their 
components, and as such they are heavily used for modelling and simulation of military systems. An example of this 
is given by Ilachinski in reference 16. They can therefore meet requirement 4. As noted by Dewar et al in reference 
13, such models can be built at varying levels of fidelity and completeness, thereby supporting requirement 1. 
Requirement 2 can be met by a multi-agent simulation, although the completeness of the model implemented 
depends on the time and effort expended on it. 
 
In typical applications of multi-agent simulation, however, including the examples cited above, requirement 3 
presents a problem. In addition to supporting Monte Carlo use in order to derive statistical information, many multi-
agent models provide visualization of ongoing simulation runs, allowing users to “watch what happens”. This is 
certainly valuable for comprehension of system behaviour. In a realistic hazard analysis situation, however, 
engineers will have the system perform many thousands of runs, and it will not be practical to watch them all in 
order to extract hazards. It is possible to focus on, for example, just those runs that involve particularly serious 
accidents, but this provides no guarantee that the user will uncover all the distinct cause-effect chains by which 
accidents may occur. (There may be two “equally bad” results that are reached by completely different causal 
pathways). 
 
The area of automated hazard analysis that is perhaps best represented in the literature is that related to automated 
HAZOP. Venkatasubramanian et al present a summary of this work in reference 6. For example, QHI (described by 
Catino and Ungar in reference 17) combines a plant-specific pipe and instrumentation diagram of a chemical plant 
with a generic library of faults, chemical processes and hazards. Permutations of the possible faults are combined 
with the plant model, producing modified versions of that model, and the behaviour of these variants is then 
simulated. The system looks for plant behaviour that is consistent with the generic set of hazard types, and reports 
such behaviour to the user along with the faults that caused it. 
 
Approaches such as QHI are thus consistent with requirements 1 through 3. However, the existing automated 
HAZOP work is successful in part because it exploits the highly static structure of chemical process plants. As 
noted above, in requirement 4, this assumption does not hold for systems of systems. The work on automated 
HAZOP is therefore not directly applicable to systems of systems analysis. 

 
Our Approach 

 
Given the requirements identified above, and building on the prior work discussed in the previous section, the 
authors have developed a partially-automated approach to systems of systems hazard analysis. This section 
describes the approach, and explains how it meets the requirements. The description is illustrated with examples 
drawn from a military system of systems case study. 
 
The case study uses a simulation model of a military unit engaged in anti-guerrilla operations. The unit contains 
Unmanned Air Vehicles (UAVs), artillery pieces and helicopter-borne infantry. A single vignette has been 



implemented for this model, in which the agents in the system must detect and neutralize a number of static enemy 
positions. Some initial results from this study were presented by the authors in reference 18. 
 
In our approach, an engineer builds a multi-agent model of a system, and places it in a synthetic environment. Each 
agent is given the ability to perform a mixture of scripted and reactive behaviour. They have the ability to perceive 
their environment (both through organic sensors and inorganic shared situational awareness) and to act on it. In our 
example, there is an agent for each UAV, artillery piece and helicopter. The environment consists of a map of a 
mountainous desert region, and an agent for each enemy unit. 
 
As noted above, in the automated HAZOP system QHI, which is described by Catino and Ungar in reference 17, a 
library of faults is provided that describes preconditions for each fault to be possible and the effect of the fault 
occurring. For example, the failure “valve fails shut” might have the precondition “there is a valve in a pipe between 
two devices” and the effect “flow rate through that pipe is set to zero”. Catino and Ungar note that such a model 
replaces the use of guide words in manual HAZOP; the computer’s ability to try a large base of fault preconditions 
against every possible fault location in the model partly compensates for the loss of human creativity in proposing 
faults to consider. 
 
Based on this, our approach allows all sensing, communication and action channels of each agent to be open to a 
variety of potential faults (although the in current implementation these possible faults must be manually 
implemented for each entity type). For example, a given sensor can potentially be disabled, have its range reduced, 
or be made to perceive multiple versions of everything it detects. Given a priori probabilities of each fault occurring, 
a simulation engine can be built that automatically runs simulations of the system in all fault permutations that have 
a probability of occurrence below some user-defined impossibility threshold. 
 
In our example, the UAV agents have two sensors, one for detecting enemies on the ground below it and one for 
detecting other aircraft nearby. Both of those may fail so as to provide no information. Similarly, the artillery pieces 
have actuators that allow them to perform indirect fire at a given coordinate; these can fail such that their fire is 
distributed in a wide area around their intended target. In our current work, we have assigned an arbitrary 
probability of 10-3 of each fault being present in given simulation run, and an impossibility threshold of 10-11. The 
system therefore considers combinations of up to three simultaneous faults. 
 
As noted above, multi-agent simulations can produce vast amounts of data that is difficult to usefully interpret, and 
the system we describe is no exception. In reference 19, Platts et al describe a system which aims to improve the 
mission performance of Unmanned Air Vehicles (UAVs) by learning rules from a simulation model. In their work, 
a simulated UAV attacks a target using tactics determined by several input parameters (such as height, angle and 
velocity of approach). A large number of runs are performed, with randomly generated parameter values, and 
learning techniques are applied to derive rules which relate the values of those parameters to mission success or 
failure. 
 
A similar approach can be applied here; if we replace the “mission success” criteria with a description of some 
accident, then we have rules that may lead engineers to discover an important hazard in the system. For example, in 
our case study, for the accident “landed helicopter is hit by artillery fire” the system learned the rule “IF UAV #2 
has not lost communications AND UAV #4 has lost communications AND artillery #3 is firing inaccurately THEN 
the accident will occur.” 
 
Clearly, it is necessary to perform this learning attempt once for each possible accident. This is reasonable, as the set 
of all possible distinct accidents can be derived from the set of agents in the system and the possible direct 
interactions between them or between them and their environment (for example, attempted fratricide by each armed 
entity, collision between any two mobile entities, collision between any mobile entity and the terrain). An extension 
to this is that risk metrics could be collected for each accident (for example, for midair collision accident the metric 
could be based on incidents of unacceptable proximity) and rules learned for those cases where the metric exceeds 
some predefined threshold. 
 



The resulting rules are then studied by engineers in order to determine which of them are realistic (as opposed to 
being simulation artefacts) and how the mechanisms of the system gave rise to the accident. This is a two stage 
process: 
 
In the first stage, the analysts must try to understand the rules, and how they relate to the modelled system (rather 
than the model itself). Important questions at this stage include “Why did the algorithm learn this rule?”, “Is this 
realistic, or is it merely a simulation artefact?”, “Why (in terms of the mechanisms of the model) are these particular 
features/causes so important?” 
 
The output of this first stage includes a revised set of rules, which have been manually filtered (to remove rules that 
have no apparent correspondence to the real system) and augmented with explanations and references to particular 
simulation runs which express the behaviour well. In the second stage, analysts must consider the implications of 
the identified hazards for the real system. Key questions are “Is this hazard serious and plausible enough to warrant 
our attention?” and “What are we going to do about it?” 
 
Having described our approach to automate analysis, the question remains as to whether it meets the identified 
requirements. As noted in the discussion of previous work, multi-agent simulation allows systems with dynamic 
structure to be modelled, and the results of their structural changes observed. This satisfies requirement 4. The use 
of machine learning to derive qualitative cause-effect rules covers requirement 3. With regard to requirement 1, it 
has been noted that multi-agent simulations can be built at a variety of levels of detail, and that detail can be added 
over time as more complex entity models become available or are needed. We do not yet, however, have explicit 
support for user feedback, for example in the manner of the PHASuite extension described earlier. This will be 
addressed in future work. 
 
Through support for tracking of incidents as well as accidents, and for collecting risk metrics related to entity 
behaviour, part of requirement 2 can be met. As for the other part (simulating whole-system behaviour), this is in 
the hands of the engineer implementing the model. The need for an executable model, however, in which agents 
achieve the overall system’s objectives through interaction with other agents and their environment, pushes the 
developer towards a level of completeness that is not necessarily required by other approaches. 
 

Conclusions 
 
It is clear that we need an automated hazard analysis approach using multi-agent simulation in order to perform 
analysis of systems that exhibit dynamic interactions over dynamic structures. These systems fall well outside the 
scope of current manual methods. But there is a problem with removing the human from the process. If we ask 
“What if?” and only let engineers ‘see’ the end results arising from the simulation models, it is likely that they will 
struggle to understand the cause-effect relationships sufficiently to propose adequate mitigation and prevention 
actions. In other words, we don’t want to “cut them out of the understanding loop”. Hence, we need to combine the 
simulation with machine learning techniques in order to extract the causal rules we need from the mass of data 
generated by the simulation. 
 
This paper has presented the requirements for such a hazard analysis approach, introduced a candidate method, and 
evaluated the method against the requirements. Future work will include applying the approach to a range of 
systems and scenarios, and experimenting with multiple machine learning algorithms and ways to introduce 
deviations. In order to evaluate the real-world value of the approach it will be applied in realistic industrial case 
studies. 
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