
System of Systems Hazard Analysis using Simulation
and Machine Learning

Robert Alexander, Dimitar Kazakov, and Tim Kelly

Department of Computer Science
University of York, York, YO10 5DD, UK.

{robert.alexander, dimitar.kazakov, tim.kelly}@cs.york.ac.uk

Abstract. In the operation of safety-critical systems, the sequences by which
failures can lead to accidents can be many and complex. This is particularly true
for the emerging class of systems known as systems of systems, as they are com-
posed of many distributed, heterogenous and autonomous components. Perform-
ing hazard analysis on such systems is challenging, in part because it is difficult
to know in advance which of the many observable or measurable features of the
system are important for maintaining system safety. Hence there is a need for
effective techniques to find causal relationships within these systems. This pa-
per explores the use of machine learning techniques to extract potential causal
relationships from simulation models. This is illustrated with a case study of a
military system of systems.

1 Introduction

Large-scale military and transport Systems of Systems (SoS) present many challenges
for safety. The term ‘SoS’ is somewhat controversial — attempts at definitions can be
found in [1] and [2]. It is easy, however, to identify uncontroversial examples, Air Traf-
fic Control and Network Centric Warfare being the most prominent. These examples
feature mobile components distributed over large areas, such as regions, counties or
entire continents. Their components frequently interact with each other in an ad-hoc
fashion, and have the potential to cause large-scale destruction and injury.

It follows that for SoS that are being designed and procured now, safety has a high
priority. This is particularly true for SoS incorporating new kinds of autonomous com-
ponent systems, such as Unmanned Aerial Vehicles (UAVs).

This paper is concerned with one aspect of the safety process for SoS, specifically
hazard analysis. This is an important first step in any risk-based safety process. Unfor-
tunately, performing hazard analysis on SoS is not easy. Quite apart from the novelty
of these systems, and the commensurate lack of examples to work from, the charac-
teristics of SoS raise serious difficulties. For example, ad hoc communications mean
that information errors can propagate through the system by many, and unpredictable,
routes.

The following section describes the problems faced in SoS hazard analysis, then
section 3 proposes multi-agent simulation as a possible solution. An approach to per-
forming hazard analysis, using simulation combined with machine learning, is outlined



in section 4, and the results of a case study are presented in section 5. Section 6 com-
pares the work with existing applications of simulation in safety and section 7 discusses
the issue of model fidelity.

2 The Problem of SoS Hazard Analysis

A definition of the term ‘SoS hazard’ was given by the authors in [3] as “Condition of an
SoS configuration, physical or otherwise, that can lead to an accident.” It follows that
SoS hazard analysis is the process of finding those conditions that can lead to accidents.

The problems faced by safety analysts when attempting to perform hazard analysis
on SoS fall into two key categories: the immediate issue of failure effect propagation,
and the more pernicious category of ‘System Accidents’. It has been noted by Kelly and
Wilkinson, in [4], that these problems are present in conventional systems, too, but the
characteristics of SoS exacerbate them.

2.1 Deriving the Effects of a Failure

In a conventional system, such as a single vehicle or a chemical plant, the system bound-
ary is well-defined and the components within that boundary can be enumerated. When
a safety analyst postulates some failure of a component, the effect of that failure can be
propagated through the system to reveal whether or not the failure results in a hazard.
This is not always easy, because of the complexity of possible interactions and variabil-
ity of system state, hence the need for systematic analysis techniques, automated anal-
ysis tools, and system designs that minimise possible interactions. To make the task
more tractable, most existing hazard analysis techniques (such as FFA and HAZOP)
deal with only a single failure at a time; coincident failures are rarely considered.

In an SoS, this problem is considerably worse. The system boundary is not well
defined, and the set of entities within that boundary can vary over time, either as part
of normal operation (a new aircraft enters a controlled airspace region) or as part of
evolutionary development (a military unit receives a new air-defence system). Conven-
tional tactics to minimise interactions may be ineffective, because the system consists
of component entities that are individually mobile. In some cases, particularly military
systems, the entities may be designed (for performance purposes) to form ad-hoc group-
ings amongst themselves. Conventional techniques may be inadequate for determining
whether or not some failure in some entity is hazardous in the context of the SoS as a
whole.

2.2 System Accidents

Perrow, in [5], discusses what he calls ‘normal accidents’ in the context of complex
systems. His ‘Normal Accident Theory’ holds that any complex, tightly-coupled system
has the potential for catastrophic failure stemming from simultaneous minor failures.
Similarly, Leveson, in [6] notes that many accidents have multiple necessary causes. In
such cases it follows that an investigation of any one cause prior to the accident (i.e.
without the benefit of hindsight) would not have shown the accident to be plausible.



An SoS can certainly be described as a ‘complex, tightly-coupled system’, and as
such is likely to experience such accidents. This line of reasoning can be taken slightly
further, however, to note that a ‘normal accident’ could result from actions by each of
two entities that were safe in themselves, but that are hazardous in combination with
each other and the wider SoS context.

This latter issue is more immediate when we consider that many SoS will incor-
porate systems drawn from multiple manufacturers, developed at different times, and
operated by multiple organisations. The evolutionary and dynamic nature of SoS struc-
tures means that a system designer will not necessarily ever have a clear picture of the
entire SoS context.

2.3 Dealing with these Problems

It follows from the above that in order to perform effective hazard analysis for SoS, there
is a need for a hazard analysis approach that can find the hazards in a system containing
multiple autonomous entities that interact in complex and continually changing ways.

To some extent, this situation is comparable to that faced by the military modelling
and simulation community when they attempted to build models that incorporated ex-
plicit modelling of entity behaviour rather than only high-level mathematical abstrac-
tions. Their solution was the development of multi-agent simulation, which is discussed
in the next section.

3 Multi-agent Simulation

Ferber, in [7] provides the following definition of multi-agent simulation: “Multi-agent
simulation is based on the idea that it is possible to represent in computerised form the
behaviour of entities which are active in the world, and that it is possible to represent
a phenomenon as the fruit of the interactions of an assembly of agents with their own
operational autonomy.”

Similarly, Ilachinski, in [8] offers “[Multi-agent simulations] consist of a discrete
heterogenous set of spatially distributed individual agents, each of which has its own
characteristic properties and rules of behaviour.”

Typically, the value of multi-agent simulation is asserted in comparison to the math-
ematical models that have traditionally been used in biology, economics and military
analysis. Ferber notes that agent-based models allow the integration of quantitative vari-
ables, differential equations and symbolic rules into agent behaviour, thereby providing
a means to exploit qualitative observations as well as quantitative information [7]. He
also notes that such ‘micro-worlds’ allow analysts to experiment by modifying agent
behaviour and adding new agent types, which is not possible with high-level mathe-
matical models. Most significantly for our purposes, Ferber comments that such simu-
lations “make it possible to model complex situations whose overall structures emerge
from interactions between individuals”.

Ilachinski, in [8] makes a similar point: in a multi-agent simulation, different lev-
els of behaviour can be observed. Analysts can examine both the top-level emergent
behaviour and the low-level interactions between individual agents. That is, the simula-
tions can both predict overall behaviour and explain why it occurs.



4 Hazard Analysis Method

The approach described in this paper combines simulation and machine learning. The
SoS to be analysed is represented by a model in which each major component of the
system (such as an aircraft or radar station) is represented by an agent. Each agent is
described in terms of its physical capabilities (such as the ability to fly at a certain
speed) and its rules of behaviour. The simulated system is then placed in a simulated
environment (containing, for example, terrain and hostile forces) and given orders and
objectives for an appropriate military mission.

The resulting simulation model will have dynamics that are too complex to under-
stand merely by watching it run. It is therefore necessary to derive other models that
characterise its behaviour and that are simple enough for humans to read and under-
stand.

This derivation is achieved by defining a set of deviations over the simulation model,
and exploring the set of combinations of these deviations. Machine learning allows an
automated analysis of the resulting output data, resulting in a set of comprehensible
rules that relate deviations to accidents occurring in the simulation. The intention is that
these rules will guide analysts towards identifying some hazards in the system that they
otherwise would have missed.

The five steps of the method are described in the following five sections.

4.1 Build Model

The approach is potentially open to multiple modelling approaches, but the effective-
ness of the analysis process will hinge on the type of model used. Models that are used
for traditional performance analysis can focus heavily on capturing the overall function-
ality of the system. Models for hazard analysis need to capture much of the mechanism
of the system’s operation. This is for two reasons:

– The system needs to be manipulated in ways which the original designers might not
expect (particularly in ways which relate to implementation rather than functional
specification), and the model has to respond appropriately.

– Deviations will be derived by studying how the system works and applying a set of
heuristics. Mechanical detail that is not modelled cannot be used in this process.

Inter-agent mechanisms (communications protocols, operating procedures, roles)
are more important than intra-agent mechanisms (since the internal behaviour of agents
will already be well understood). In order to capture the necessary inter-agent mecha-
nisms, agent actions and communication must be made explicit. Also, as discussed by
Hall-May in [9], an important aspect of the system model is that of ‘policy’ or ‘op-
erational doctrine’, the set of rules or procedures that attempt to constrain the global
behaviour of the system.

Further discussion of modelling approaches is outside the scope of this paper. The
important issue of model fidelity, however, is addressed in section 7.



4.2 Specify Deviations for Model

Given the model specified in the previous step, a set of possible deviations must be
derived. There are many ways to do this, but the one that is used in this paper is to
identify the channels over which interactions can occur between entities. Examples
of channels include network wires, radio transmissions or simply being located in the
same airspace. A set of guide words is then used to hypothesise some failure modes of
these channels. Each combination of some entity exhibiting some failure mode on some
channel provides a single distinct ‘deviation’.

The use of guide words for deriving deviations is based on their usage in HAZOP
[10]. By combining the words used in HAZOP with those from the computer-system
analysis method SHARD [11] we can derive the set shown in Table 1.

Table 1. Channel deviation guide words

Guide Word Interpretation
Omission The interaction does not occur
Commission The interaction occurs when not expected
Early The interaction occurs too early
Late The interaction occurs too late
Too much A parameter associated with the interaction is increased
Too little A parameter associated with the interaction is decreased
Conflicting The interaction conflicts with another interaction on the channel

4.3 Run Simulation to Explore the Effects of Deviations

Given a model and set of possible deviations, the simulation must now be run and the
results recorded. In an ideal world, a run would be performed for every possible combi-
nation of deviations, but this is not realistic because of the number of such combinations
entailed by even a small deviation set. An efficient approach is to work through the low-
order subsets of the deviation set. Given a priori knowledge of the probability of each
deviation, it will be possible to show that the higher-order subsets represent wildly im-
probable circumstances.

4.4 Learn Rules

The task of machine learning can be viewed as one of function approximation from a set
of training instances expressed as input-output pairs; given a function specification (a
set of named input parameters (the ‘features’ used for learning) and a particular form of
output value), the algorithm learns the relationship between combinations of parameter
values and the output of the target function for those values.

For our purposes, the features represent causes and the output values are the con-
sequences within the simulation. All the features used in the current work are explicit
parameters that are given to the model, and the target function is the set of accidents
that occurs during the simulation run. For example, in an air traffic scenario, the anal-
ysis might determine that when the parameter “collision warning distance” is reduced
below 8km, it becomes possible for the accident “mid-air collision” to occur.



Many machine learning algorithms are described in the literature; a summary is pro-
vided by Mitchell in [12]. Machine learning is used here to produce descriptive rather
than predictive models, i.e. models are learned, but they are not then used to classify any
new instances; rather, they are studied by human analysts who wish to understand how
the system behaves under various failure conditions. Learning approaches that produce
‘black box’ outcome models (i.e. models that are not very amenable to human com-
prehension), such as Bayesian Learners or conventional Neural Networks, are therefore
not very helpful for this purposes of this work..

Learning approaches that do produce comprehensible models are more valuable in
that they allow the engineer or analyst to inspect the learned model to discover why it
considers a particular parameter combination to be hazardous. This is analogous to the
analyst observing the hazardous result produced by the original (simulation) model and
then inspecting the event log, or watching the run via visualisation, in order to determine
why the model produced the result that it did.

4.5 Investigate Rules

Once some set of rules has been learned from a system model, safety analysts need to
study and make use of them. This is a two stage process:

In the first stage, the analysts must try to understand the rules, and how they relate
to the modelled system (rather than the model itself). Important questions at this stage
include “Why did the algorithm learn this rule?”, “Is this realistic, or is it merely a sim-
ulation artifact?”, “Why (in terms of the mechanisms of the model) are these particular
features/causes so important?”

The output of this first stage includes a revised set of rules, which have been manu-
ally filtered (to remove rules that have no apparent correspondence to the real system)
and augmented with explanations and references to particular simulation runs which
express the behaviour well.

In the second stage, analysts must consider the implications of the identified hazards
for the real system. Key questions are “Is this hazard serious and plausible enough to
warrant our attention?” and “What are we going to do about it?”.

5 Example

Our hypothesis is that the machine learning algorithm will learn rules that cover all
the hazards that were identified by manual analysis. The learning tool that has been
used here is a decision tree learner using the C4.5 algorithm as described by Quinlan
in [13]. The algorithm was chosen because it is fast, stable implementations are readily
available, and the resulting rules are human-comprehensible. The implementation used
was that provided by the data mining tool WEKA (described by Witten and Frank in
[14]) under the name of ‘J48’.

The example uses a simulation model of a military unit engaged in anti-guerilla
operations. An overview of the elements in the system is shown in figure 1. Notionally,
it contains four types of entities: Unmanned Air Vehicles (UAVs), Unmanned Self-
Propelled Guns (UGVs), transport helicopters and infantry sections. As the infantry



move only by air, a helicopter with troops on board is represented by a single entity.
Infantry sections never appear on the map on their own.

Fig. 1. The System

A single scenario has been implemented for this model, in which the units in the sys-
tem must detect and neutralise a number of static enemy positions. The UAVs move on
pre-defined search paths, and when they detect an enemy presence they contribute this
to a shared picture which is available to all friendly entities. Responding to this shared
picture, the artillery entities fire on the enemy until the UAVs report that it is adequately
weakened. Once such weakened enemies are identified, the helicopters move in to take
control of the areas on the ground. It is at this stage that the safety risk manifests, as the
manned helicopters move across the terrain and engage the enemy.

5.1 Hazards in the Model

For a given system it is relatively easy to determine the types of accidents that can occur,
since the set of entity types is finite and there are only a few ways in which an entity can
be involved in an accident. Simple examination of our model reveals that the following
accidents are possible:

– Accident 1 — Helicopter collides with another helicopter
– Accident 2 — Helicopter collides with a UAV
– Accident 3 — Landed helicopter is hit by artillery fire
– Accident 4 — UAV collides with a UAV
– Accident 5 — Helicopter hit by enemy fire

By running the model with all combinations of the possible entity-failure pairs
(some 260000 in number), and studying the results manually, we have been able to
identify the following hazards in the system:

– Hazard 1 — Friendly forces in field of fire of inaccurate artillery



– Hazard 2 — A UAV is in shared airspace with no ability to detect other airborne
entities

– Hazard 3 — A helicopter moves into anti-aircraft range of a strong enemy unit

Hazard 1 can cause accident 3, hazard 2 can cause accident 4, and hazard 3 can
cause accident 5. In the runs that we have performed, given the deviations that we have
implemented (in this case only entity-level failures), there are no instances of accidents
1 and 2. We have not, therefore, been able to identify any hazards that would lead to
them.

5.2 Learning Rules from the Model

In section 4.5, we noted that heuristics can be used to identify and respond to issues
implicit in the learned rules. In this case, the heuristic could be described as ‘single
point of failure’ (i.e. the failure of one entity allows a variety of accidents to occur), and
an appropriate response would be to re-evaluate the roles in the system to redistribute
some of the functionality of the entity, or to insulate other systems from the effects of
its failures.

The model has approximately a quarter of a million combinations of possible devi-
ations. For this simple model we can learn from the complete set of runs, but this will
not be practical for larger examples, so it would be misleading to do so here. Therefore,
only the first 8000 runs were performed. Most of these include only small numbers of
failures, which is appropriate given that larger numbers of failures become increasingly
improbable.

As noted above, it was possible to determine by examination the accidents that
were possible. These then provided learning ‘targets’; for each such target, a decision-
tree model was learned to predict the combinations of failures that would cause that
accident to occur. The failures that provide the learning features for the decision tree
were expressed as entity-failure pairs; one example would be “UAV4 has suffered the
failure loss of communications”. The list of the accidents that were used as learning
targets, together with the labels used for them in the learning tool, was as shown in
Table 2.

Table 2. Possible accidents

Accident Label
Helicopter X hit by enemy fire ehX
Helicopter X hit by friendly artillery fire ghX
UAV X collides with UAV Y cuXuY
Helicopter X collides with UAV Y chXuY

Enumerating these combinations gave 36 targets to learn models for. In practice,
many of these accidents were not manifest in the available runs and so no models were
to generated for them. For each accident, the 8000-run input set was processed into a
table with boolean values for each of the 18 entity-failure pairs and a label of either
‘safe’ or the code for the target accident. Those runs that contained accidents, but not



the current target accident, were discarded. This ensured that the data set contained
positive and negative examples. The data set was then given to the learner, which was
told to learn a decision tree for predicting the label from the parameters.

As a simple example, consider the accident ‘cu1u4’ i.e. where UAV 1 collided with
UAV 4. Of the 8000 runs, 192 were safe and another 2048 contained cu1u4. These runs
were labelled appropriately while the rest were discarded, and the resulting data set was
given to the tree learner.

The resulting decision tree is shown in figure 2. The rule expressed here is that if
UAV 4 exhibits the failure ‘noairsensors’ then this collision will occur, otherwise it will
not. This learned rule is 100% accurate with respect to the training data; it perfectly
captures the implicit model that was fed to it. Whether this is the optimal inductive
inference will require further testing effort; see below.

noairsensors_uav4

safe (194.0) cu1u4 (2048.0)

no yes

Fig. 2. Decision tree learned for accident ‘cu1u4’

A more complex model is that for the accident ‘gh1’ (One of the UGVs hits heli-
copter 1). The learned tree is shown in figure 3.

lossofcommsfailure_uav2

safe (70.0)

safe (116.0)

no yes

firespreadwidely_gun3

lossofcommsfailure_uav4

fireskewnorthwest_gun3 gh1 (8.0)

yes

safe (8.0)

yes

gh1 (6.0)

no yes

no

no

Fig. 3. Decision tree learned for accident ‘gh1’

Although the tree notation is attractive for simple models, it becomes increasingly
unwieldy as models become larger. As noted by Quinlan in [13], a decision tree can be
‘flattened’ into a set of production rules. The tree for figure 3 has five leaf nodes and
therefore corresponds to the following five rules:

1. ¬lossofcommsfailure uav2 ∧ ¬lossofcommsfailure uav4 → safe



2. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4 ∧
¬firespreadwidely gun3 ∧ ¬fireskewnorthwest gun3→ accident

3. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4 ∧
¬firespreadwidely gun3 ∧ fireskewnorthwest gun3→ safe

4. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4
∧ firespreadwidely gun3 → accident

5. lossofcommsfailure uav2 → safe

In order to assess the importance of each rule, we can assess the probability of it
occurring in practice by applying a priori probabilities to the individual failures and
setting a ‘threshold of concern’ beyond which a rule will be considered too improbable
to be worthwhile investigating. This is similar to the ‘incredibility of failure’ concept
used in the nuclear industry; the probability that is used for this is given in [15] as 10−7

per year of operation (equivalent to 10−11 per hour).
We will consider all failures to have a probability 10−3 of being present in any

given instance of the scenario, and set a lower threshold of 10−11. Rules with a lower
probability than that will be discarded as implausible.

It can be noted that this approach is somewhat naı̈ve; for example, we have assumed
complete independence between the failures. As the authors noted in [3], the nature of
systems of systems is such that many apparently independent failures have common
causes. It can also be noted that, within an entity, one failure may cause (or indeed
mitigate the effects of) another. We have assumed a simple flat probability for each
individual failure; these probabilities would much better justified if they came from
entity-level safety analyses. For the context of this paper, however, these assumptions
suffice for illustration.

Table 3 summarises the results of this process. For each accident, it shows the num-
ber of instances that contained that accident, the number of rules in the learned model
(in total/rules that led to the accident occurring), percentage accuracy of that learned
model (over the training set), the number of rules above the plausibility threshold and
the highest estimated probability of any of the rules occurring.

Note that the table only contains those accidents for which examples were found in
the first 8000 runs. Many of the accidents that could potentially occur (as apparent from
a simple examination of the simulation model) did not manifest in this result set.

For the five accidents identified in section 5.1, we have rules that correspond to
three of them. (Accidents 1 and 2, involving helicopters colliding with UAVs or other
helicopters, do not occur in any of the runs we are working with). These three accidents
correspond to the three hazards that were previously identified, as shown in Table 4.

At the beginning of this section, we gave our experimental hypothesis as “the ma-
chine learning algorithm will learn rules that cover all the hazards that were identified
by manual analysis”. It can be seen that the example supports this hypothesis, in that
we have at least one rule that describes a way to cause the accidents corresponding to
each hazard.

The question remaining is whether a safety engineer studying this simulation and
the learning results would be lead directly to discovering the hazards (as opposed to
merely noting that the accidents could happen). It is certainly plausible that the engineer
would discover the hazards, but to give a more affirmative answer in practice (with



Table 3. Summary of the learned rules

Accident #runs #rules #plausible rules highest prob % accuracy
eh1 6657 54/33 19 9.98× 10−4 96.7
eh2 6966 42/28 14 1× 10−3 99.3
eh3 6738 56/35 21 1× 10−3 99.1
eh4 6842 56/35 21 1× 10−3 99.2
gh1 14 5/2 2 9.97× 10−4 99.5
gh3 14 5/2 2 9.97× 10−4 99.5
cu1u4 2048 2/1 1 1× 10−3 100
cu4u3 3904 2/1 1 1× 10−3 100
(other) 0

Table 4. Accidents found and the corresponding hazards

Label Accident Hazard
gh1, gh3 3 1
eh1-4 5 3
cu1u4, cu4u3 4 2

systems of realistic complexity) will require the application of the approach to larger
scale industrial case studies.

5.3 Investigating these Rules

The preceding discussion has looked at the experimental results from the perspective of
function approximation from failures to accidents. We can also look at how these rules
relate to the behaviour of the system as observed through visualisation of the simulation
runs. This is a necessary step in any case because these rules have only been learned in
terms of explicit simulation parameters, rather than in terms of the actual mechanisms
of the simulated system; they tell us (as simulation operators) how we can cause an
accident to manifest, but they don’t tell us what events within the simulation model
lead to that accident. This requires additional analysis, but the analyst has an advantage
in that he is aware of these learned rules and can look first at those runs that implement
the rule preconditions, knowing in advance what overall result he expects to see.

In the current example, we have derived a number of rules from the simulation
that describe how accidents can occur. For purposes of illustration we will follow up
the accident ‘gh1’ (UGV fires on helicopter 1). The rules for this are given in section
5.2 and are shown in figure 3 as a decision tree. The rules specify that the necessary
conditions for this accident are that UAV 4 has lost all communications and that UAV
2 has not suffered any loss of communications. Furthermore, UGV 3 must either be (a)
firing accurately (i.e. not skewed) or (b) have its aim spread widely.

Observing some of the runs in which this accident does occur, it is apparent that
removing UAV 4 from the data fusion loop (through communications loss) has an effect
on the order in which enemy positions are detected, and that this affects both the order
in which the guns target the enemy positions and the order in which the helicopters fly



out to them. In order for this to be dangerous UAV 2 must be functioning normally; if
UAV 2 has suffered a communications failure then this changes the ordering of target
selection, and the corresponding outcome of airspace deconfliction actions, such that
the result is a safe state. (The failures specified for UGV 3 merely mean that it must be
able to hit the square it aims at).

Given this interpretation of the rules, is it plausible that this could occur in the real
world, or are we merely seeing a simulation artefact? Superficially, it would seem to
involve a rather unlikely combination of events (the helicopters being in just the right
position at just the right time) but it can be observed that the fire from the UGVs and the
movement of the helicopters are concentrated around specific locations (those occupied
by the enemy positions) and specific times (when the enemy are first revealed as valid
targets).

Finally, what changes can we propose to prevent this accident occurring in the fu-
ture? One apparent issue is that this accident depends heavily on a failure of UAV 4.
We studied the assigned flight path for UAV 4, and it was apparent that UAV 4 is par-
ticularly significant in this context in that it covers a large number of enemy positions.
One viable option would be to change the UAV roles to ensure a more even distribution
of coverage, perhaps by introducing an additional UAV.

6 Existing Applications of Simulation in Safety

In that the current work uses simulation for safety-related analysis, it is similar to the
work of Blom et al. in airspace system safety [16] and Johnson in hospital evacuation
[17]. Both of those, however, use Monte Carlo techniques to acquire quantitative statis-
tical measures of the overall safety of a system under specified conditions. By contrast,
the work described in this paper attempts to determine the relationship of simulation
parameters to distinct (undesirable) modes of behaviour of the system; the aim is to
acquire a qualitative understanding of system behaviour.

Computer system simulation approaches (such as the DEPEND tool described by
Goswami et al. in [18]) generally focus on the interaction of software processes running
on networked processors. Our work is distinct from that in that it explicitly deals with
mobile physical entities interacting in physical space.

Perhaps the closest work described in the literature is that of Platts et al. in [19], in
which rules are learned which relate the behaviour of an unmanned aircraft to success
in a particular mission. The approach described in this paper is similar in that it involves
learning rules which relate entity behaviour to unwanted hazardous consequences.

7 Model Fidelity

In this work, the aim of the simulation is to identify ways in which hazards (and hence
accidents) could reasonably occur; in this respect, it is comparable to existing hazard
analysis techniques. Any hazards that are identified through simulation will require
further manual investigation — the simulation result is valuable in that it has drawn the
analyst’s attention to the hazard and ‘made a case’ for its plausibility by means of the
recorded event trace.



A standard objection to the use of simulation for analysis is to question the fidelity
of the model with respect to the real system that it purports to represent. In this context,
it is important to note that almost all hazard analysis is performed with respect to some
model of the real system; it cannot be said to be performed on the system itself. This
is partly because the complexity of a real system is unmanageable (and much of it
irrelevant) but also because hazard analysis is important very early in the safety life
cycle, before the detail of the final system design is available.

Whilst there will always be concerns with the fidelity of the models we use, the use
of models and approximations remains an inevitable part of real-world hazard analysis.
One difference when using models for simulation, rather than for manual analysis, is
that in manual analysis there is great opportunity for pragmatic human interpretation,
thereby covering a multitude of deficiencies in any modelling approach adopted.

The use of simulation in our work is for what Dewar et al. describe in [20] as ‘weak
prediction’. They note that “subjective judgement is unavoidable in assessing credibil-
ity” and that when such a simulation produces an unexpected result “it has created an
interesting hypothesis that can (and must) be tested by other means”. In other words,
when a simulation reveals a plausible system hazard, other, more conventional analyses
must be carried out to determine whether it is credible in the real system. Therefore, the
role of the simulation analysis is to narrow down a huge analysis space into one that is
manually tractable.

8 Summary and Future Work

This paper demonstrates an approach to performing hazard analysis for complex sys-
tems of systems using a combination of multi-agent simulation and machine learning.
This was motivated by the successful use of multi-agent techniques in other fields of
modelling and analysis. As illustrated in the example in this paper, we have been able
to show that the approach can be used to identify hazards.

Challenges that remain to be tackled include the application of this technique to
a wide variety of systems and scenarios, and combining the results of simulation and
analysis across multiple scenarios and system configurations. There is also scope for
further experimentation with different machine learning algorithms and different tech-
niques for introducing deviations into simulation runs.

Acknowledgements The work described in this paper was funded under the Defence
and Aerospace Defence Partnership in High Integrity Real Time Systems (Strand 2).

References

1. Maier, M.W.: Architecting principles for systems-of-systems. In: 6th Annual Symposium of
INCOSE. (1996) 567–574

2. Periorellis, P., Dobson, J.: Organisational failures in dependable collaborative enterprise
systems. Journal of Object Technology 1 (2002) 107–117



3. Alexander, R., Hall-May, M., Kelly, T.: Characterisation of systems of systems failures.
In: Proceedings of the 22nd International Systems Safety Conference (ISSC 2004), System
Safety Society (2004) 499–508

4. Wilkinson, P.J., Kelly, T.P.: Functional hazard analysis for highly integrated aerospace sys-
tems. In: IEE Seminar on Certification of Ground / Air Systems, London, UK (1998)

5. Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Basic Books, New
York (1984)

6. Leveson, N.: A new accident model for engineering safer systems. In: Proceedings of the
20th International System Safety Society Conference (ISSC 2003), System Safety Society,
Unionville, Virginia (2002) 476–486

7. Ferber, J.: Multi-Agent Systems: an Introduction to Distributed Artificial Intelligence.
Addison-Wesley (1999)

8. Ilachinski, A.: Exploring self-organized emergence in an agent-based synthetic warfare lab.
Kybernetes: The International Journal of Systems & Cybernetics 32 (2003) 38–76

9. Hall-May, M., Kelly, T.P.: Defining and decomposing safety policy for systems of systems.
In: Proceedings of the 24th International Conference on Computer Safety, Reliability and
Security (SAFECOMP ’05). Volume 3688 of LNCS., Fredrikstad, Norway, Springer-Verlag
(2005) 37–51

10. Kletz, T.: HAZOP and HAZAN: Identifying and Assessing Process Industry Hazards. 3rd
edn. Institution of Chemical Engineers (1992)

11. McDermid, J.A., Nicholson, M., Pumfrey, D.J., Fenelon, P.: Experience with the application
of HAZOP to computer-based systems. In: Proceedings of the Tenth Annual Conference on
Computer Assurance, IEEE (1995) 37–48

12. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman (1993)
14. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. 2nd

edn. Morgan Kaufmann, San Francisco (2005)
15. Ammirato, F., Bieth, M., Chapman, O.J.V., Davies, L.M., Engl, G., Faidy, C., Seldis, T.,

Szabo, D., Trampus, P., Kang, K.S., Zdarek, J.: Improvement of in-service inspection in
nuclear power plants. Technical Report IAEA-TECDOC-1400, International Atomic Energy
Agency (2004)

16. Blom, H.A.P., Stroeve, S.H., de Jong, H.H.: Safety risk assessment by Monte Carlo simu-
lation of complex safety critical operations. In Redmill, F., Anderson, T., eds.: Proceedings
of the Fourteenth Safety-critical Systems Symposium, Bristol, UK, Safety-Critical Systems
Club, Springer (2006) 47–67

17. Johnson, C.: The Glasgow-hospital evacuation simulator: Using computer simulations to
support a risk-based approach to hospital evacuation. Technical report, University of Glas-
gow (2005) Submitted to the Journal of Risk and Reliability.

18. Goswami, K.K., Iyer, R.K., Young, L.: DEPEND: A simulation-based environment for sys-
tem level dependability analysis. IEEE Trans. Comput. 46 (1997) 60–74

19. Platts, J.T., Peeling, E., Thie, C., Lock, Z., Smith, P.R., Howell, S.E.: Increasing UAV intel-
ligence through learning. In: AIAA Unmanned Unlimited, Chicago IL (2004)

20. Dewar, J.A., Bankes, S.C., Hodges, J.S., Lucas, T., Saunders-Newton, D.K., Vye, P.: Credi-
ble uses of the distributed interactive simulation (DIS) system. Technical Report MR-607-A,
RAND (1996)


