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Abstract. The increasing role of Systems of Systems (SoS) in safety-
critical applications establishes the need for methods to ensure their safe
behaviour. One approach to ensuring this is by means of safety policy
— a set of rules that all the system entities must abide by. This paper
proposes simulation as a means to evaluate the effectiveness of such a pol-
icy. The requirements for simulation models are identified, and a means
for decomposing high-level policy goals into machine-interpretable policy
rules is described. It is then shown how the enforcement of policy could
be integrated into a simple agent architecture based around a black-
board. Finally, an approach to evaluating the safety of a system based
on simulation runs is outlined.

1 Introduction

Large-scale military and transport Systems of Systems (SoS) present many chal-
lenges for safety. Attempts to define the term ‘SoS’ have been controversial —
attempts can be found in [1] and [2]. It is easy, however, to identify uncontrover-
sial examples, Air Traffic Control and Network Centric Warfare being the most
prominent. These examples feature mobile components distributed over a large
area, such as a region, country or entire continent. Their components frequently
interact with each other in an ad-hoc fashion, and have the potential to cause
large-scale destruction and injury. It follows that for SoS that are being designed
and procured now, safety has a high priority.

In order to ensure the safe behaviour of SoS, the behaviour of the individual
system entities must be controlled, as must the overall behaviour that emerges
from their individual actions and interactions. One way to achieve this is to im-
pose a system-wide safety policy, which describes the rules of behaviour which
agents in the system must obey. Due to the geographically distributed nature of
many entities, the policy typically cannot be directly enforced by some external
controller (as in security policy); rather, the entities must comply with it individ-
ually. Evaluating the effectiveness of such a decentralised policy is not straight-
forward in a complex system, since the overall safe behaviour only emerges from
the behaviour of the entities themselves.

An SoS is a complex multi-agent system (MAS) in which many entities have
a mobile physical presence. The agents within this MAS are in themselves very



complex. This complexity means that formal analysis methods and conventional
system safety techniques are not adequate for evaluating the safety of an SoS.
In this paper, we propose simulation as a viable alternative.

Once the ‘baseline’ model of an SoS has been evaluated, the analysis can
be repeated for a range of candidate safety policies. Based on the results of
this analysis, candidate policies can be modified or discarded, and the process
repeated until a satisfactory safety policy is found. We believe that simulation
is a valuable tool for the development of SoS safety policy.

1.1 Structure of this Paper

The following section describes the problems faced in analysing and ensuring
the safety of SoS. Section 3 introduces the concept of safety policy. Section
4 describes what is required from a simulation engine and simulation model.
Section 5 outlines an approach to implementation of an SoS as a multi-agent
simulation that satisfies the identified requirements. Section 6 highlights how
safety cannot be considered in isolation from other dependability attributes.
Section 7 describes some issues and challenges that need to be tackled, and
section 8 presents a summary.

2 The Problem of SoS Safety Analysis

The Oxford English Dictionary [3] defines safety as “The state of being safe;
exemption from hurt or injury; freedom from danger.” In system safety engi-
neering, it is common to restrict the definition of ‘hurt or injury’ to the injury
or death of humans. For the purposes of this paper, we will restrict ourselves to
this definition. It can be noted, however, that the approach presented can easily
be expanded to cover alternative conceptions of safety, such as those including
avoidance of material loss.

The problems faced by safety analysts when attempting to analyse SoS fall
into three categories: the difficulty of performing hazard analysis, the restricted
means by which safety features can be introduced, and the problem of ‘System
Accidents’. In their discussion of functional hazard analysis, Wilkinson and Kelly
[4] note that these problems are present in conventional systems. The character-
istics of SoS, however, exacerbate them.

2.1 Hazard Analysis

In a conventional system, such as a single vehicle or a chemical plant, the sys-
tem boundary is well-defined and the components within that boundary can be
enumerated. Once hazard analysis has been performed to identify events that
may cause injury or death, safety measures can be introduced and the risk of
accidents computed from the probabilities of various failures. Conventional tech-
niques such as fault tree analysis are effective in this task.

In an SoS, the necessary hazard analysis is itself very difficult. When hazard
analysis postulates some failure of a component, the effect of that failure must



be propagated through the system to reveal whether or not the failure results in
a hazard. The system boundary is not well defined, and the set of entities within
that boundary can vary over time, either as part of normal operation (a new
aircraft enters a controlled airspace region) or as part of evolutionary develop-
ment (a military unit receives a new air-defence system). Conventional tactics
to minimise interactions may be ineffective, because the system consists of com-
ponent entities that are individually mobile. In some cases, particularly military
systems, the entities may be designed (for performance purposes) to form ad-
hoc groupings amongst themselves. Conventional techniques may be inadequate
for determining whether or not some failure in some entity is hazardous in the
context of the SoS as a whole.

It follows from this that a hazard analysis approach is needed which can
reveal hazards caused by failure propagation through complex systems and that
can consider the effect of multiple simultaneous failures.

2.2 Ensuring Safety

A purely functional design with no safety features is unlikely to be adequately
safe. Therefore, design changes need to be made in order to reduce safety risk to
acceptable levels. In a conventional monolithic system, there are many features
that can be introduced to prevent or mitigate hazards; examples include blast
doors, interlocks, and pressure release valves.

The SoS that are considered here contain many mobile agents with a high
degree of autonomy. Such ‘hard’ safety features are therefore not available. Con-
sider, for example, air traffic control. If a controller wants to prevent a given
aircraft from entering an airspace region (say, one reserved for an airshow) then
he or she can instruct the aircraft to fly around it. The controller cannot, how-
ever, physically prevent the aircraft from flying into the region. (In a military
scenario there are more drastic measures for dealing with aberrant agents, par-
ticularly if they are unmanned.)

Therefore, achieving safety in an SoS will rely to a large extent on responsible
behaviour from the individual agents. In order to achieve this, agents need to
know what behaviour is acceptable in any given circumstance. It follows from
this that system designers and operators need to know how the agents in the
system can safely interact.

2.3 System Accidents

Perrow, in [5], discusses what he calls ‘normal accidents’ in the context of com-
plex systems. His ‘Normal Accident Theory’ holds that any complex, tightly-
coupled system has the potential for catastrophic failure stemming from simul-
taneous minor failures. Similarly, Leveson, in [6] notes that many accidents have
multiple necessary causes; in such cases it follows an investigation of any one
cause prior to the accident (i.e. without the benefit of hindsight) would not have
shown the accident to be plausible.

An SoS can certainly be described as a ‘complex, tightly-coupled system’,
and as such is likely to experience such accidents. It can also be noted that a



‘normal accident’ could result from the combination of apparently safe, normal
behaviours which are safe in isolation but hazardous in combination. Imagine,
for example, a UAV that aggressively uses airspace and bandwidth under some
circumstances. This may be safe when the UAV is operating on its own, but not
when it is part of larger SoS.

It follows from this that an SoS safety analysis approach will need to be able
to capture the effects of interactions between multiple simultaneous failures and
normal agent behaviour.

3 What is Safety Policy?

3.1 Background on Policy

The belief that numerous independently designed and constructed autonomous
systems can work together synergistically and without accident is näıve, unless
they are operating to a shared set of rules which is informed by a high level view
of the system. In existing systems of systems such rules already exist, to a degree,
because otherwise such systems would be nothing more than an uncoordinated
collection of parts. Burns, in [7]: “The proper functioning of the network as a
whole is a result of the coordinated configuration of multiple network elements
whose interaction gives rise to the desired behaviours.”

The problems that we face, however, are that often these rules or procedures
are either not explicitly expressed, not well understood or are inconsistent. Sim-
ilarly, they typically do not consider the inter-operating systems as a whole SoS,
or simply do not address the safety aspects arising from this inter-operation. A
term that can be used to encompass such rules and procedures is policy. Whilst
some existing work covers security policy, no work yet deals with a policy for
the safe operation of a system of systems.

The Oxford English Dictionary [3] defines ‘policy’ as:

“A course of action or principle adopted by a government, party, individ-
ual, etc.; any course of action adopted as advantageous or expedient.”

Intuitively, therefore, a policy guides the action of an individual or group
according to some criteria. Foreign policy, for example, is a familiar concept
from everyday language and sets out ground rules for guiding a nation’s diplo-
matic interactions with other nations. Similarly, common law attempts to cur-
tail undesirable—and hence illegal—behaviour and promote desirable behaviour
amongst the populace.

Much of government policy, however, confuses policy with ‘goal-setting’. Al-
though some definitions of policy mention goals, they are in the context of policy
goals, or high-level actions, such as “the system is to operate safely at all times”
or “no University applicant should be discriminated against based on his/her
ability to pay tuition fees”, as distinct from targets, e.g. “to ensure 50% of
school-leavers continue to higher education”. Policy can therefore be thought of
as being orthogonal, but complementary, to plans and goals.

Policy is defined in the literature in various ways, but the most generally
applicable system-oriented definition is given in [8]:



“A policy is a rule that defines a choice in behaviour of a system.”

This definition is distinct from that used in, for example, reinforcement learn-
ing, where a prescriptive policy maps from perceived internal state to a set of
actions. Indeed, it can be seen that policy is persistent [9]; policy is not a single
action which is immediately taken, because a policy should remain relatively
stable over a period of time. Any policy containing one-off actions is brittle, in
that it cannot be reused in a different context and quickly becomes out-of-date
and invalid.

Most organisations issue policy statements, intended to guide their members
in particular circumstances [9]. Some provide positive guidance, while others
set out constraints on behaviour. To take a simple example as an illustration,
consider a mother who asks her child to go to the corner shop to buy a pint of
milk. She may lay down two rules with which the child must comply on this trip:

1. The child must not talk to strangers.
2. The child must use the pedestrian crossing when crossing the road.

The first of these rules defines what the child is allowed to do, specifically
it proscribes conversation with people with whom the child is not previously
acquainted. The second statement expresses the obligation that the child should
take a safe route across the road, namely by using the pedestrian crossing. To-
gether these rules form a policy that guides the behaviour of the child on his
journey to the corner shop. The rules are invariant to the child’s ‘mission’; they
still hold whether the child is going to buy a loaf of bread or a dozen eggs, or
not going to the corner shop at all.

3.2 Systems of Systems and Safety Policy

According to Bodeau [10], the goal of SoS engineering is “to ensure the system
of systems can function as a single integrated system to support its mission
(or set of missions).” Among the principle concerns of SoS engineering that
Bodeau identifies are interoperability, end-to-end performance, maintainability,
reliability and security. Unfortunately, he neglects to mention safety.

Wies, in[11], describes policy as defining the desired behaviour of a system, in
that it is a restriction on the possible behaviour. Leveson extends this sentiment
to say that the limits of what is possible with today’s (software-based) systems
are very different to the limits of what can be accomplished safely [6]. In terms of
collaborative groups of systems, SoS, whose behaviour has been observed to be
non-deterministic, a policy is a mechanism to create order or (relative) simplicity
in the face of complexity. Sage and Cuppan [12] talk of “abandoning the myth
of total control”, while Clough [13] describes it as creating a system that is
“deterministic at the levels that count”, i.e. at the ‘black-box’ level, and Edwards
[14] observes the need to “selectively rein in the destructive unpredictability
present in collaborative systems”.

In discussing policy many different terms are employed, such as rule, pro-
cedure, convention, law and code of conduct. The presence of so many terms



would seem to suggest a lack of clarity about what policy is, but these terms can
be viewed as policy at different levels of abstraction. Often policy specifications
cause confusion by combining statements at high and low levels of abstraction
[11].

Policy statements or goals can be organised into a hierarchy, with the most
abstract at the top. There is a need to refine from these abstract policies down
to implementable, atomic procedures. Existing goal-oriented techniques and no-
tations, such as GSN [15], KAOS [16] and TROPOS [17], provide a basis for
the decomposition of high-level goals. Specifically, the Goal Structuring Nota-
tion (described by Kelly in [15]) allows the explicit capture of contextual as-
sumptions, for example assumptions made about other agents’ behaviour, and
of strategies followed to perform the decomposition.

At the lowest level of abstraction policies can be expressed in terms of the
permissions, obligations and prohibitions of individual and groups of agents. In
this paper, an approach is suggested for decomposing and implementing policy
goals motivated by safety concerns in a simulation of an SoS. The effect of this
policy is to moderate the behaviour of the agents such that no accidents occur
in the simulated SoS.

4 Requirements on the Simulation Engine and Models

Multi-agent Simulation has previously been used in a safety context, for example
to evaluate the safety of proposed changes to the US National Airspace System
[18] and to study the relationship between road intersection layout and automo-
bile accidents [19]. As noted by Ferber in [20], such simulations “make it possible
to model complex situations whose overall structures emerge from interactions
between individuals”.

However, not all multi-agent simulations are suitable for safety analysis. In
order to perform safety analysis using simulation, there are two key requirements
that must be satisfied by the simulation environment and the models that it
contains. Firstly, the simulation must be able to generate the types of hazards
and accidents that are of concern, without the emergent system behaviour being
described in advance. Secondly, it must be possible to detect these situations
when they occur.

For example, consider a system to be analysed that involves flocking Un-
manned Air Vehicles (UAVs). Given a description of how the entities behave, in
terms of flight control, attempting to achieve mission goals, and collision avoid-
ance, it must be possible to run a simulation of a typical mission scenario and see
what flight paths the entity behaviour would generate. It must also be possible
to detect whether these flight paths would lead to collisions, or hazardous loss
of separation.

From the general requirements above, and by looking at the nature of the
accidents we are concerned with, a number of more detailed requirements can
be derived. These requirements are discussed in the following sections.



4.1 Sharing of Physical Space

Safety-critical accidents must, by their nature, occur in physical space. At the
point of an accident, it is through physical interaction that humans are injured
or killed. It follows that a safety-related simulation must have a clearly-defined
model of space and time interactions. Models that abstract away such details (e.g.
by maintaining only relative time ordering, or by dividing geography into large,
arbitrarily shaped regions) will not be able to capture the necessary interactions.

It can be noted that although physical space is needed to actually effect an
accident, many accidents have causes which can be traced back to events and
interactions at the control system or communication levels.

4.2 Autonomous Entity Behaviour

The SoS that are of concern to us involve entities with a large degree of auton-
omy. Many SoS that are being developed now feature unmanned vehicles, and
their autonomous behaviour is an important issue for safety analysis. Negative
emergent behaviour, resulting from the interaction of many such vehicles, is a
particular concern. It is therefore important to model autonomous behaviour.
Autonomous agents are also needed in order to simulate deviation from expected
scenario courses; entities must be able to make plausible decisions and actions
once the situation has departed from the expected course of events.

The simulation cannot, therefore, rely on a single centralised plan of action.
The entity models must be capable of some degree of planning and decision-
making so as to achieve their goals in the face of unexpected obstacles.

4.3 Local and Shared Entity World Views

A common cause of accidents in many systems is a discrepancy between the
mental model of one agent (be it a UAV or a chemical plant worker) and the
actual state of the world. Each agent has a local world model based on the
information that they have perceived directly, that they have received in com-
munication from others, and that they have inferred from the information from
the other two sources. For example, an airline pilot can observe other aircraft
in their immediate area, can receive notification from an air traffic controller of
upcoming weather obstacles, and can infer from the ATC’s instructions that the
course they have been placed on is free from either.

Increasingly, automated systems are used to share data between agents in a
system. Examples include air traffic control centres exchanging data on aircraft
that are moving from one region to another, and a group of fighter aircraft having
access to the combined vision cones of all their radars (this is sometimes referred
to as ‘data fusion’). This exchange provides many benefits (potentially including
safety benefits, as agent knowledge is increased), but also raises new kinds of
hazards. For example, if an agent misidentifies a friendly aircraft as hostile, a
data fusion system may propagate that ‘knowledge’ to many other agents, some
of whom may be in position to threaten the friendly aircraft.



4.4 Communication Between Entities

As mentioned above, entities can supplement their world model through com-
munication with other agents. Communication also incorporates command and
control relationships, which affect the behaviour of subordinate agents. Errors
in communication may, consequently, cause accidents either by modifying an
agent’s world model or by instructing the agent to perform an unsafe action.

4.5 Proxy Measures of Safety

Although a simulation model may generate explicit accidents, a safety analyst
cannot rely on this. As in the real world, accidents in a well-modelled simulated
SoS will be rare; they will be avoided due to subtleties of time and distance. For
example, a collision between a UAV and a manned aircraft may be repeatedly
avoided in a series of different runs, with the two aircraft coming close to collision
but never actually colliding. For the case of policy, the number and severity of
accidents is therefore too crude a measure for the safety of a given policy. There
is therefore a need for surrogate measures (e.g. counting near misses rather than
just collisions), offering greater resolution than a simple casualty count.

4.6 Introducing Expected Variation

In a model that is solely concerned with performance, for example, it may be
sufficient to capture only average performance over time. For a safety model,
this is not sufficient; specific, high-cost events must be captured. Therefore,
simulations must not only be performed with idealised models of expected entity
behaviour; they must also cover all anticipated failure modes. For example, it
must be possible to specify that a UAV included in a simulated system has no
functioning IFF (Identify Friend-or-Foe) capability, or that one of its engines is
operating at reduced maximum thrust.

Going beyond simple failures, it is also desirable to be able to implement dif-
ferent behaviours. Each entity has a set of default behaviours, and the developer
of an entity model may provide a set of optional or alternative behaviours. By
swapping behaviours in and out from this larger set, variations in overall entity
behaviour can be introduced that may affect the results of the simulation run.
An example would be swapping a cautious target identification behaviour for a
more aggressive one that made fewer checks before deciding that an entity was
hostile.

5 Implementing a Multi-Agent Simulation of an SoS

5.1 Describing Policy in a Machine-Interpretable Form

Policy has to be implemented by individual agents — even if there is a central
‘master controller’ for the whole system, in the systems we are dealing with it
will not be able to enforce policy by fiat. Therefore policy has to be decomposed
into rules that are expressed in terms of individual agent behaviour. It follows
that for any given entity type, policy must be expressed such that it involves:



– Responding to states or events that the agent is capable of observing
– Making decisions that are within the scope of the agent’s intelligence and

world model (this is particularly important for non-human agents)
– Taking actions that the agent is capable of performing

To this end, policy is decomposed in the context of an SoS model. This model
embodies the contextual assumptions of other agents’ behaviour, knowledge and
capabilities. Policy decomposition proceeds with increasing specificity, working
top-down from a high-level goal to policy statements on individual agents or sets
of agents. Goal Structure Notation (see section 3.2) allows the explicit capture of
the strategies by which the decomposition is achieved and the context necessary
for such a decomposition.

Figure 1 illustrates an excerpt from a possible policy hierarchy for the UK
civil aerospace Rules of the Air [21]. The policy decomposition starts from an
obvious high-level goal, ‘No collisions shall occur in the civil aviation SoS’, which
is at the top of the diagram. This goal is then decomposed hierarchically, leading
eventually to a number of low-level goals (leaf nodes on the diagram; due to space
limitations, only two of these are shown). These lowest-level goals correspond
to policy rules that can be implemented directly by agents; in the diagram, the
goal ‘Below1000’ has been annotated by a machine-interpretable version of the
corresponding policy rule.

The low-level policy statements are expressed as one of three types:

Permit Describes the actions that an agent is permitted to perform or condi-
tions that it is permitted to satisfy.

Forbid Describes the actions that an agent is forbidden to perform or conditions
that it is forbidden to satisfy.

Oblige Describes the actions that an agent is obliged to perform.

In contrast to policy definition languages such as Ponder [22], we do not at-
tempt to define those actions which an agent is forbidden to perform as well as
those which it is obliged not to perform. As mentioned in section 2.2 it is not
always possible to prevent agents from performing actions contrary to policy.
Unlike security policies, which often assume the presence of an access control
monitor, safety policy cannot assume that aberrant agent behaviour can be
blocked by an external controller. For example, in air traffic control, there is
no external way to stop a wayward aircraft from straying into a forbidden re-
gion of airspace. In a sense, the system operator must rely on agents to police
themselves.

There must also be a design decision about the overall permissiveness of the
SoS. A policy model can either be open or closed: the former allowing all ac-
tions which are not expressly forbidden, while the latter forbids all those actions
that are not explicitly permitted. The presence of both permit and forbid in
this policy model would therefore appear redundant. This is not so, however,
given that exceptions to rules can be expressed in the opposite modality. For
instance, in an open policy model, a policy rule may forbid the low flying of an
aircraft; exceptions to this rule (e.g. for take-off and landing) can be expressed



as permissions. The more specific permissions must then take precedence over
the more general blanket policy to forbid low flying.

5.2 Implementation in an Agent Architecture

The implementation of policy at the agent level is tied closely to the details of the
agent architecture used. In the current work, an architecture is proposed based
on the ‘C4’ architecture developed by the Synthetic Characters group at the
MIT Media Lab. This is a blackboard architecture, in that it contains a series of
subsystems that communicate only through a structured shared memory space.
C4 is described by Isla et al in [23]. The blackboard architecture is valuable in
that it allows discrete behaviours to be loosely coupled, and hence allows variant
behaviours to be easily swapped in and out as described in section 4.6.

Our proposed architecture is depicted in figure 2. The core of the system is
the blackboard, which is divided into several sub-boards. Of particular note is
the outgoing action board, which determines what the agent actually does after
each decision cycle. Each agent has several behaviours, which act by making
changes to the blackboard (including the action space). The arbitration strategy
is simple — on each time ‘tick’, all behaviours are processed in turn (from top
to bottom in the diagram).

The arbiter also has a role in enforcing adherence to safety policy. It can be
seen that one of the first behaviours to be processed is the Policy Processor,
which compares the current policy to the current state and ‘fires’ all the policy
rules that apply. This generates a set of permitted and forbidden actions, which
is written to the policy sub-board. This sub-board is hereafter read-only — the
other behaviours can observe it, in order that they might propose only permitted
actions, but they cannot change it. The policy sub-board is regenerated on each
tick, as changes in the environment may change which policy rules now apply.

Policy rule firings generate tuples of the form (operator, action, list of pa-
rameters). For example:

– (FORBID, change-speed, < 180 knots)
– (FORBID, enter-region, 2000m radius of [15000,5100])
– (PERMIT, attack-target, entity#127)

The rule-firings and the behaviours use the same ontology. As noted above,
behaviours can see which PERMIT and FORBID policy rules are active at the
current time, and modify their behaviour accordingly. As a supplement to this,
or an alternative, the arbiter may check proposed actions (against the policy
board) and reject those that are against the rules. This could seem redundant,
since the behaviours are part of the agent, and hence as much a trusted source as
the arbiter itself. It is easier, however, to build a reliable policy enforcer than it is
to build behaviours that always conform to policy. Likewise, it is easier to build
a behaviour that chooses its action taking into account what policy currently
permits, rather than build one that tries whatever action seems best, then tries
to respond when the action is forbidden.



permit {
subject a:Aircraft;
target  as:Airspace;
if   ((a.altitude  10000) and
      (a.airspace.atc notEmpty() and

 ((as.class == ‘B’) or
 (as.class == ‘C’) or
 (as.class == ‘D’)));

satisfy ((a.horizDistFromCloud  500) and
    (a.vertDistFromCloud  1000) and
    (a.flightVisibility  5));

}

No collisions
No collisions shall
occur in the civil
aviation SoS

Collision strategy

Decomposition over all
entities with which an
aircraft can collide

Aircraft collision

An aircraft shall not
collide with other aircraft

Ground collision

An aircraft shall not collide
with the ground or fixed
objects

Entities

Entities that should be
avoided are other aircraft,
the ground and fixed
structures

FixedObjects

Fixed objects are
attached to the ground
and have some height

VisualRange

The pilot of an aircraft shall
maintain a minimum visual
range from the cockpit

MinimumVisRange

Visual range such that
pilot can take evasive
action in time to avoid a
collision

VisAllAirspace

Decomposition over
nature of control of
airspace

VisRangeInContrAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within controlled
airspace (25)

VisRangeOutContrAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit outside
controlled airspace (26)

ReportedVisibility

Visual range (visibility) is that
communicated to the pilot by
ATC upon landing or taking-
off from an aerodrome (24)(3)

VisRangeClassAirspa
ce

Decomposition over all
classes of airspace

AirspaceClasses

Controlled airspace is
either of class A, B,
C, D or E

VisRangeInClassBAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within class B
airspace (25)(1)

VisRangeInClassCDEAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within class C, D
and E airspace (25)(2)

ClassA

Flights in class A
airspace are assumed to
require no minimum
visibility

ATControl

Controlled airspace is
controlled by an air
traffic control unit

FlightLevel

Decomposition over
flight level of aircraft

Below1000

Aircraft flying below 1000
feet must maintain a
visibility > 5km

Above1000

Aircraft flying below 1000
feet must maintain a
visibility > 8km

VisibilityAtAltitude

Altitude of aircraft
affects visibility

Key to Symbols

Goal

Strategy

Context

Solved by

In context of

UndevelopedGoal

Fig. 1. Example Policy Decomposition for Rules of the Air
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Temporal
Filtering
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Processor
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Policy Rule
Firings

Blackboard

Agent Body
State

Outgoing Action

Motor SystemWorld
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Manager

Navigator

Weapon
Control

Arbiter

Fig. 2. The Agent Architecture

An alternative to the policy enforcement role of the arbiter is that of a moni-
tor, which notes policy violations but does not prevent them. This is particularly
valuable during development of an agent.

An advantage of the blackboard model is that the behaviours are loosely
coupled to each other; they interact only through the blackboard. This means
that behaviours can be added, removed or changed at any time, without changing
the other behaviours. This relates to the requirements identified in section 4.6.

5.3 Evaluating the Safety Achieved by the Policy

In order to evaluate the level of safety that has been achieved, the SoS agents
must be configured to use the policy, then simulation runs must be performed for
a variety of representative scenarios. Further variation can be introduced through
failures and variant behaviours applied to agents. The level of safety achieved by
the system operating with the policy can be evaluated by measuring the number
of accidents and incidents, and the worst near-incidents, that occurred across all
runs with that policy.

Once the SoS model has been configured and the set of runs decided on,
measures must be put in place to measure the level of safety achieved by the
system. From the definition of safety presented in section 2, it can be seen that
two types of event need to be counted.

The first type is accidents, which corresponds to “exemption from hurt or
injury” in the definition. Examples of such accidents include collisions between
vehicles and military units firing on friendly forces. The set of possibilities is
quite small, and they can be easily detected.

From “freedom from danger” we can derive another class of event, the in-
cident or ‘near miss’. Examples include activations of an aircraft’s collision-



avoidance system, separation between two aircraft falling below some safe level,
and queries to a superior of the form “Is X hostile?” when X is in fact friendly.
Unlike actual accidents, a great many types of such incidents can be described.
It can be noted that many incidents correspond to hazards; when an incident
occurs, it may be the case that an accident could happen without any other
deviation from normal behaviour.

The great value of counting incidents as opposed to accidents is that accidents
are extremely rare — in the real world, accidents are often avoided by (seemingly)
sheer chance. Measures that track incidents can be given variable sensitivity, so
that they can be adapted to the level of risk that is actually exhibited in the
system. For example, it is desirable to calculate actual collisions accurately, so
that their effects on the unfolding scenario can be modelled realistically. This
is especially true if a multi-criteria analysis is being performed, for example
with performance as well as safety being analysed. By comparison, an incident
measure based on aircraft proximity can be as sensitive (or insensitive) as is
required since triggering it only affects the statistics gathered, not the events
that follow it.

For both accidents and incidents, it is possible to weight events by a measure
of their severity. Consider one policy that generated a number of minor accidents
against another that caused a single accident with massive loss of life. A simple
approach is to count the human casualties (or potential casualties, in the case of
an incident) that could result from an event. The safest policy is then the one
that caused the smallest loss of simulated lives over all the scenarios that were
considered. Weighing accidents against incidents is more difficult, however; there
is the question here of model fidelity, and the consequent fear that an incident
in the simulation might have been an accident in the real system.

The means of detecting accidents during a simulation run are well understood
as they are an essential part of many non-safety simulations. Providing a large
range of incident detectors is less straightforward, and some of these will raise
performance challenges. This is, however, beyond the scope of this paper.

If two policies cannot be compared because their accident and incident counts
are zero or very low, a third technique is possible. For a variety of measures,
perhaps the same measures as those used for incidents, the worst magnitude
achieved could be tracked. An obvious example is violation of aircraft separation;
rather than just counting the number of occasions on which this occurred, the
minimum separation achieved can be recorded. The minimum for the policy is
then the minimum over all runs. An example of this can be seen in Benson [24].

6 Dependability Conflicts in Systems of Systems

Safety is an important system attribute, but it is not the only consideration
when developing an SoS. There are other important attributes such as avail-
ability, performance and security. The term dependability is commonly used to
encompass all such system attributes [25]. Attempting to address all these differ-
ent attributes can result in competing objectives; consequently there are conflicts



that need to be resolved and trade-offs that need to be made in order to achieve
the optimum characteristics for a system.

In SoS, conflicting objectives (and hence trade-offs) are inevitable; probably
the most obvious are conflicts between performance and safety. An example is
the reduction of minimum aircraft vertical separation (RVSM), within controlled
airspace. In RVSM airspace, aircraft fly closer to each other, greatly increasing
the number of aircraft that can be served by an ATC centre within a certain
period of time. This has obvious performance benefits (reduction of delays, more
flights during peak hours), but it raises some serious safety concerns. Special safe-
guards (changes to either sub-system design or operational policies) are therefore
required.

If an SoS is developed with safety as the highest priority, it will be possible to
devise policies that constrain the interactions of system agents to the safest that
are possible. However, such an approach might unacceptably decrease the overall
performance of the system. For example, there is no point in introducing an
extremely safe air traffic policy if doing so reduces the throughput of the system
to uneconomic levels. In order that safety is not achieved at the unacceptable
detriment of other attributes, it is important to model the effect on all attributes
of safety-related changes.

Performance acceptability criteria differ depending on the particular system
mission. Therefore, the required performance level and its criticality (based on
which we determine our willingness to compromise safety in favour of perfor-
mance) are defined with consideration of the system’s context and operational
objectives. Simulation provides a way to evaluate the different dependability at-
tributes of the system in different contexts, by running a set of representative
operational scenarios. This provides a basis for achieving a satisfactory trade-off
between the different attributes.

7 Issues and Challenges

7.1 Model Fidelity and Statistical Significance

No novel and untried systems of systems will enter operation with only simulated
evidence of its safety. Simulation, however, gives a guide to the behaviour of the
system which informs, and is supplemented by, further analysis. It is particularly
valuable in that it can reveal the emergent behaviour of a complex system in a
variety of contexts; it is difficult if not impossible to acquire knowledge of this
by other means.

Even when the fidelity of a given simulation is considered inadequate to assess
the safety of a system, it can provide confidence that a given policy is viable, and
help judge relative superiority to other candidates. (For an example of this, see
Benson in [24]). Perhaps most importantly, the simulation analysis can reveal
flaws in a policy that would not have been apparent in manual analysis.

The problem of model fidelity, and of the validity of any results that are
gained through simulation, is a serious one and affects all applications of simu-
lation analysis, not just safety. This is a longstanding controversy in the field of



robotics; discussion can be found in Brooks [26] and Jakobi [27]. In the current
context, one key requirement for usefulness is that the simulation be able to
exhibit emergent behaviour.

7.2 Volume of Processing

As noted above in section 5.3, evaluating the safety of the system requires a
large number of scenarios to be simulated. For each of those simulations, a large
range of failures and variant behaviours need to be considered. Combinations of
failures and behaviours are also important.

It follows that the possible set of simulation runs is extremely large. A näıve
approach would be to run all possible combinations of scenario, failures and
behaviours. However, as discussed by Hoeber in [28], such exhaustive exploration
is intractable even for simple simulations and modest numbers of inputs.

There is therefore a need for more targeted exploration of the state space.
In [29], Dewar et al discuss some experimental designs that can be used for
reducing the number of combinations that need to be run. Many such designs,
however, deal poorly with systems in which the interesting phenomena result
from combinations of inputs.

One other approach would be to concentrate on and prioritise those combi-
nations of failures that were statistically most likely. A useful selection criteria
can be based on the potential for certain types of SoS failures to occur together,
as discussed by the authors in [30].

8 Summary

In this paper, we have presented the case for using safety policy to ensure the
safe behaviour of complex systems of systems, and suggested multi-agent sim-
ulation as a means of evaluating the effectiveness of such policies. It is clear
that analysing SoS is difficult, particularly when they are highly decentralised.
Simulation offers an approach to dealing with some of these difficulties.

An approach to policy evaluation has been proposed, whereby an SoS is
exercised through a variety of simulations for each candidate policy, with a range
of failures and behaviour modifications being introduced. The level of safety
provided by each policy can be assessed by measuring the values of various safety-
related parameters. This concept can be extended further, using simulation to
consider the trade-off between safety and performance.

A number of challenges remain, such as limitations in the fidelity of models
and the number of runs needed to get statistically valid results. The authors are
currently working on tools and examples to demonstrate the concepts described
in this paper.
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