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Abstract. A crucial part of safety-critical systems development is identifying
how system behaviours lead to accidents. Doing this for complex systems is hard
because of the need to consider the interaction between multiple simultaneous
failures and normal system behaviours. Multi-agent simulation provides a way to
explore the behaviour that emerges from a model of a system under normal and
failure conditions. However, it is easy to generate vast amounts of data from such
simulations that can be hard to comprehend and interpret. Machine learning can
be applied to help understand the patterns that are implicit in this data. This paper
first describes the concept of hazard analysis, and how this can be performed
using multi-agent simulation. It then describes how machine learning techniques
can be used to extract rules from simulation output. The approach is illustrated
using a military system-of-systems case study.

1 Introduction

A risk-based safety process has hazard analysis at its heart. The hazards latent in a
safety-critical system are those states of the system that could lead to an accident with-
out any further abnormal occurrences. Once we have a adequately complete set of haz-
ards for a system, the rest of the safety engineering process can proceed from there to
prevent their occurrence or to mitigate their effects.

Hazard analysis is the process of identifying hazards present in a system and deter-
mining the causal processes that allow them to be reached. A wide range of established
hazard analysis techniques exist, but as discussed by the authors in [1] the emerging
class of systems referred to as Systems of Systems (SoS) presents many challenges
for hazard analysis. There is therefore interest in developing novel hazard analysis ap-
proaches. This paper presents such an approach based on the combination of multi-
agent simulation and machine learning.

The following section discusses the application of simulation techniques to hazard
analysis, and section 3 outlines a systematic method for doing so. Section 4 illustrates
the process with a case study based on a military System of Systems. Section 5 discusses
the role of the approach in a wider process. Finally, section 6 summarises the paper and
describes the expected direction of future work.



2 Hazard Analysis and Simulation

Simulation has been advocated as a tool for safety analysis by a number of authors,
including Henk [2] and Johnson [3]. Most existing work, however, concentrates on us-
ing stochastic Monte Carlo techniques to acquire quantitative statistical measures of the
overall safety of a system under specified conditions. By contrast, the work described
in this paper attempts to determine the relationship of simulation parameters to distinct
(undesirable) modes of behaviour of the system; the aim is to acquire a useful qualita-
tive understanding of system behaviour.

If analysts do want to use these existing tools for hazard analysis, they have to spend
considerable time manually studying visualisations of simulation runs. This is unlikely
to be practical for performing an adequately thorough analysis.

Analysts therefore need tools that will explicitly explore the space of possible sit-
uations, and then clearly show which combinations of conditions will lead to hazards.
This paper describes an approach that attempts to achieve this by combining simula-
tion (to explore the behaviour space of the system) and machine learning (to reduce the
results to a comprehensible size and complexity).

3 Method

In our approach, an analyst first builds a detailed simulation model (which is simple
enough to build, but has dynamics that are too complex to understand just by watch-
ing it run), then derives from that various other models that characterise its behaviour
(which are simple enough for humans to read and understand). The intention is that
these simpler models will guide analysts towards identifying some hazards in the sys-
tem that they would otherwise have missed.

The simpler models are generated by machine learning algorithms applied the out-
put of the simulation. In order to supply sufficient examples for the learner to work
from, a set of deviations is defined on the simulation model and runs are performed for
each possible combination of deviations.

One important way to apply deviations to a model, and the one that is used in this
paper, is to identify all the external channels of each agent over which interactions
can occur. Examples of channels include network wires, radio transmissions or simply
being located in the same airspace. For each channel, a set of failure modes of these is
then derived (possibly using a set of guide words as in the popular analysis technique
HAZOP [4]). Each combination of some entity having some failure mode on some
channel provides a single distinct ‘deviation’.

Once the set of deviations has been explored, machine learning techniques are ap-
plied to learn a set of rules that relate deviations to accidents. Analysts must study these
rules to determine which of them are realistic (as opposed to simulation artifacts) and
how the mechanisms of the system gave rise to the accident. From this knowledge the
set of hazards present in the system can be derived.



4 Example

The example uses a simulation model of a military unit engaged in anti-guerilla opera-
tions. The unit contains Unmanned Air Vehicles (UAVs), artillery pieces and helicopter-
borne infantry. A single vignette has been implemented for this model, in which the
agents in the system must detect and neutralize a number of static enemy positions.

It is relatively easy to enumerate the possible accidents that can occur in the system.
Simple examination of our model reveals that the following accidents are possible:

– Accident 1 — Helicopter collides with another helicopter
– Accident 2 — Helicopter collides with a UAV
– Accident 3 — Landed helicopter is hit by friendly artillery fire
– Accident 4 — UAV collides with a UAV
– Accident 5 — Helicopter hit by enemy anti-aircraft fire

The model was run for a large set of combinations of possible entity-failure pairs,
resulting in a large set of logs describing the events that occurred in the simulation
runs. Rules were learned from this output using the C4.5 algorithm as described by
Quinlan in [5] and implemented in the data mining tool WEKA (described by Witten
and Frank in [6]). For example, for the accident ‘landed helicopter is hit by artillery
fire’ the following rules (expressed as entity-failure combinations) were derived:

1. ¬lossofcommsfailure uav2 ∧ ¬lossofcommsfailure uav4 → safe
2. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4 ∧
¬firespreadwidely gun3 ∧ ¬fireskewnorthwest gun3→ accident

3. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4 ∧
¬firespreadwidely gun3 ∧ fireskewnorthwest gun3→ safe

4. ¬lossofcommsfailure uav2 ∧ lossofcommsfailure uav4
∧ firespreadwidely gun3 → accident

5. lossofcommsfailure uav2 → safe

Table 1 summarises the results of the analysis. For each accident that occurred in
the runs performed, it shows the number of instances that contained that accident, the
number of rules in the learned model (in the form: total number of rules / number of
rules that lead to the accident occurring) and the percentage accuracy of that learned
model (over the training set).

It then gives the number of rules above the plausibility threshold (defined to be a
probability of 10−11 per run) and the highest estimated probability of any of the rules
occurring. Here, we have assumed for the sake of illustration an independent probability
of 10−3 that each failure will be present in a given run. If the data were available, it
would be possible to substitute the correct failure rate for each simple system failure.
This could be derived by conventional means.

It can be seen from the table that the most likely accidents are the loss of helicopters
2 through 4 to enemy fire, or the collisions between UAVs 1 and 4 or 4 and 3. All the
accidents that occurred have at least one rule that can cause them with a probability of
10−4 or better. Were this a real system, it is unlikely that this would be considered an
acceptable level of safety.



Accident #runs #rules #plausible rules highest prob % accuracy
Enemy kills helicopter 1 6657 54/33 19 9.98× 10−4 96.7
Enemy kills helicopter 2 6966 42/28 14 1× 10−3 99.3
Enemy kills helicopter 3 6738 56/35 21 1× 10−3 99.1
Enemy kills helicopter 4 6842 56/35 21 1× 10−3 99.2
Artillery kills helicopter 1 14 5/2 2 9.97× 10−4 99.5
Artillery kills helicopter 3 14 5/2 2 9.97× 10−4 99.5
Collison UAV1 UAV4 2048 2/1 1 1× 10−3 100
Collison UAV4 UAV3 3904 2/1 1 1× 10−3 100
(other) 0

Table 1. Summary of the learned rules

For the five accidents identified above, we have rules that correspond to three of
them. (Accidents 1 and 2, involving helicopters colliding with UAVs or other heli-
copters, do not occur in any of the runs we are working with). In section 1 we defined
hazards to be “those states of the system that could lead to an accident without any
further abnormal occurrences”. These rules therefore describe hazards present in the
system.

Some of these hazards may have been predictable by purely manual analysis (e.g.
“UAV in shared airspace with no ability to detect other airborne entities”). This is de-
sirable; for the approach to be validated it needs to be able to identify such ‘obvious’
hazards. We expect, however, that it will go further by finding non-obvious hazards.
In this example, there are other rules (such as those given above for ‘landed helicopter
is hit by artillery fire’) that may not have been predicted, and appear as hazards only
through the interaction of the agents in the simulation.

Interpretation of the rules learned has to be part of a process that identifies whether
the rules are simulation artifacts, and whether they can be usefully generalised. Full
discussion of this is outside the scope of this paper, but the role of simulation in an
investigative process is briefly discussed in the following section.

5 Using the Learned Rules

In this work, the aim of the simulation is to identify ways in which hazards (and hence
accidents) could reasonably occur; in this respect, it is comparable to existing hazard
analysis techniques. Any hazards that are identified through simulation will require
further manual investigation — the simulation result is valuable in that it has drawn the
analyst’s attention to the hazards and ‘made a case’ for their plausibility by means of
the recorded event trace.

Dewar et al, in [7] describe this level of fidelity as ‘weak prediction’. They note
that “subjective judgement is unavoidable in assessing credibility” and that when such
a simulation produces an unexpected result “it has created an interesting hypothesis that
can (and must) be tested by other means”. In other words, when a simulation reveals
a plausible system hazard, other, more conventional analyses must be carried out to
determine whether it is credible in the real system. Therefore, the role of the simulation
analysis is to narrow down a huge analysis space into one that is manually tractable.



6 Summary and Future Work

This paper has described an approach to performing hazard analysis for complex sys-
tems of systems using a combination of multi-agent simulation and machine learning.
Application to a case study has demonstrated that rules describing hazards can be de-
rived.

Future work will include applying the approach to additional systems and scenarios,
and applying other machine learning algorithms. Additional approaches to introducing
deviation, along with ways to combine the results from multiple scenarios, will be de-
veloped. Finally, in order to evaluate the real-world value of the approach it will be
applied in realistic industrial case studies.
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