
4th SEAS DTC Technical Conference - Edinburgh 2009

Deriving Safety Requirements for Autonomous Systems

Robert Alexander, Tim Kelly
Department of Computer Science, University of York

Heslington, York, YO10 5DD

Nicola Herbert
BAE Systems Military Air Solutions,

Warton Aerodrome, Preston, Lancashire, PR4 1AX

Abstract

In any safety engineering effort, deriving safety requirements is a key activity. Doing this for
autonomous systems (AS) is challenging. However, several existing techniques can be pulled
together to create a reasonable approach The risk of interaction between implemented
requirements remains a concern, as does ambiguity about the appropriate boundary of the
AS system. We believe these issues can be addressed by the development of advanced
modelling and analysis techniques.

Keywords : safety, certification, requirements, analysis

Introduction

SEAS DTC project SER011 is concerned
with the safety certification of autonomous
systems (AS). We have previously
produced reports and papers that surveyed
the general situation ([1], [2]) and defined
high-level certification objectives that are
common across all AS ([3], [4]). Our
current work, summarised in this paper,
explains how those general objectives can
be turned into specific safety requirements
for a specific AS.

The primary aims of the work are (a) to
identify a basic safety process that can be
put into place on real projects and (b) to
establish common ground for future
discussions on AS safety.

As before, the work assumes that Def Stan
00-56 Issue 4 [5] is the standard to be
certified against, as this is the primary
safety standard for new MOD equipment
acquisitions. Certification against 00-56
Issue 3 [6] may be possible, and there is
little practical difference between these two
issues.

The next section explains why safety
requirements are necessary. This is
followed by a section on defining the
system to be analysed, and a description of
the methods that can be applied to that
system. We then discuss a salient issue
(that of safety-critical interactions between
requirements), and present a case study.
This is followed by an outline of planned
future work.

The Need for Safety Requirements

Put simply: safety requirements are
requirements that, if met, will make the AS
acceptably safe. They mandate actions that
are needed for safety (for example, that a
road-going UGV will stay in lane), and
forbid things that will cause accidents (for
example, an armed AV is not allowed to
shoot at a target if a friendly is in the way).

It is possible that a safety-critical system
could be developed without explicit safety
requirements; certainly, non-critical
systems are sometimes developed this way.
It is unlikely in practice, because explicit
safety requirements provide a key way to

4th SEAS DTC Technical Conference - Edinburgh 2009

maintain development team knowledge of
what is important for safety. In typical
practice, safety requirements are derived by
a three-stage process:

1. Hazard Identification (HI) – all the
hazards exhibited by the system are
identified. A hazard is “A physical
situation or state of a system, often
following from some initiating event,
that may lead to an accident” [5]. Part
of HI is brainstorming the possible
accidents that could occur, but this part
is normally quite simple.

2. Hazard Analysis (HA) – possible
causes of the system’s hazards are
explored and recorded. Essentially, this
step identifies all processes,
combinations of events, and sequences
that can lead from a “normal” or “safe”
state to an accident. Success in this step
means that the safety engineer now
understands how the system gives rise
to an accident.

3. Requirements Derivation – once the
set of hazards is known, and their
causation is understood, engineers can
derive safety requirements that either
prevent the hazards occurring or
mitigate the resulting accidents.

The Boundary of the System

When performing any analysis, we must
define what constitutes the system to be
analysed. We must define the boundaries
of the system: what’s in “the system”?
What’s relegated to “the environment”? We
must also define groupings: what gets its
own hazard analysis and top-level
requirements? What just gets treated as
mechanism, as part of something else?
There are many boundary decisions you
could justify, but we can make some firm
recommendations.

The ideal is for analysis to take account of
a wide context for the AS, including all its

operators, peers and shared resources. A
sophisticated high-LoA AS may have
complex interactions with a wide range of
peers. These peers include other AS,
humans, and human-operated systems.
Some of these peers will have the potential
to cause hazards in the AS, and in turn the
AS may be able to cause hazards for its
peers. These ways to cause hazards need to
be dealt with, so hazard analysis needs to
include this wider context and requirements
need to be derived both for the AS with
respect to its peers (so it doesn’t cause their
hazards) and for the peers with respect to
the AS (so they don’t cause its hazards).

A pragmatic approach for many simpler
AS (and simpler arrangements for use) is to
treat “the system” as being the combination
of operator(s), AS and any links between
them. Hazards occur at the boundary of this
system, and causes can be explained in
terms of the parts within it (for example, a
hazard at the boundary might be caused by
loss of the communication link between AS
and operator.). We refer to this combination
as the “Combined Autonomous System” or
CAS (after Hollnagel’s “Joint Cognitive
System” concept [7]). For clarity, the rest
of this paper will assume the CAS as the
object of analysis.

Methods for Analysis

In order to support engineers in the analysis
of AS, we have identified a set of methods
for each necessary aspect in the safety
requirements process. The methods build
on and complement each other in order
give some confidence that all necessary
safety requirements have been identified.

We expect that these methods, used
together, will be basically adequate for
much AS analysis. We are concerned,
however, that many AS will need better
methods. The potential for further work to
improve on this is discussed in the section
“Moving Forward”, below.

4th SEAS DTC Technical Conference - Edinburgh 2009

Identifying Capabilities

A key first step is to identify the
capabilities that the CAS needs to have in
order to perform its mission and remain
safe. It is very likely that its developers will
already have identified some capabilities; it
is also very likely that this will not be
adequate for safety engineering. In some
system design documentation, lower level
capabilities may be implied rather than
explicitly stated which may make the task
of identifying capabilities difficult. Also, in
some domains, standards may not exist, or
if they do, may not only express
capabilities in high-level terms.

There is a requirement for a robust and
systematic method for identifying the
capabilities required of a CAS. Task
Analysis (see [8]) is proposed as a good
methodology for identify CAS capabilities.
Task analysis can be defined as the study of
what an entity is required to do, in terms of
actions and/or cognitive processes in order
to achieve a given goal. Hierarchical task
analysis, specifically, is a method of
decomposing a high level capability down
to its lowest levels in order to enumerate
every capability required of a system.

The aim of using this technique is to
produce a hierarchical decomposition of
each of a CAS’ high level capabilities,
which is then repeatedly decomposed in
more detail until the low level capabilities
are at a level that can be usefully analysed
for safety.

Hazard Identification and Analysis

The Energy Trace and Barrier Analysis
(ETBA) technique is a preliminary hazard
analysis technique based on energy models
of accidents, where accidents are viewed as
the result of an undesired release of energy
from a system, which may lead to harm
(see Leveson in [9]). The technique is
based on the principle that if one can
identify the sources of energy in a system,

one can prevent an unwanted or
uncontrolled release of that energy in a way
that might cause harm, by using some form
of barrier.

When performing preliminary hazard
analysis, it is usual for an organisation to
use checklists or previous hazard analyses,
which encapsulate previous experience
[10]. Checklists are useful as an aid to
system developers in the preliminary
identification of hazards, and checklists can
be combined with other techniques such as
ETBA. Obviously, the novelty of many AS
makes checklists thin on the ground (and
likely to be sparse when they do exist).

Scenario FFA is a method for doing hazard
analysis over scenarios. An analyst works
over a list of the events in a scenario,
applying guide words to the events at each
step. It is powerful because the context of
any action is very salient to the analyst as
he considers it (in contrast with FFA, which
can be difficult because the method
provokes analysts to consider functions “in
general”, without specific context.

Functional Failure Analysis (FFA) is a
systematic predictive hazard analysis
technique that is applied early in the
development of a system design to help
identify and refine safety related
requirements [10]. The FFA technique
involves the analysis of different failure
modes of system functions, which must
first be identified from an appropriate
system design representation.

The Hazards and Operability Analysis
(HAZOP) technique was originally
designed for use in the chemical industry in
the 1960s [9]. HAZOP is a systematic
hazard analysis technique that allows a
designer to examine all system flows and
possible deviations from those flows using
a set of guidewords (NO, MORE, LESS,
REVERSE and so on). The aim of the
technique is to identify all hazards
associated with deviations from the

4th SEAS DTC Technical Conference - Edinburgh 2009

system’s expected behaviour by examining
deviations in system data flows.

A variant of HAZOP that can be applied to
the hazard analysis of CAS was proposed
by Hall May in [11]. Hall-May’s Agent
Behaviour Cycle (ABC), is a model of a
system’s behaviour based on Boyd’s
OODA loop (see [12]). The ABC identifies
the stages in an entity’s behaviour where
failures might occur. Possible failure modes
for a function are derived from the stages of
the behavioural cycle of the ABC. A
HAZOP-type deviation analysis can be
performed on the functions of the system
based on the types of failures that an agent
can make.

The hazard identification and hazard
analysis techniques presented here are
intended to be complementary. First, ETBA
and checklists provide a level of basic
Hazard Identification from an initial system
concept or set of system requirements.

The FFA technique provides a means to
analyse the main functions of a CAS and
the effects of deviations from those
functions. The HAZOP technique provides
a means to analyse the flows of data
between components of a CAS and the
effects of deviations from those flows. The
Hall-May variant of HAZOP provides a
means to analyse a system in terms of the
kinds of error that an autonomous system
might make when performing a task, such
as making an error of perception when
identifying a specific location.

Together these complementary hazard
analysis techniques can be used to analyse
hazards posed by a CAS from different
viewpoints (with reference to functions,
data and CAS behaviour). FFA derives
hazards from known CAS functions,
HAZOP derives hazards from expected
data exchange with other systems, and
Scenario FFA derives hazards from
planned actions in expected scenarios.
There is therefore a greater likelihood that

all hazards and safety requirements can be
identified in comparison to using only one
of these techniques.

When performing hazard analysis, we must
capture the resulting descriptions of hazard
causation. A common form for capturing
this is the Fault Tree. Fault Trees Analysis
is a graphical technique which uses
Boolean logic to describe the combinations
of events and conditions that contribute to
the occurrence of a hazard. Fault Trees are
used in many fields including the
aerospace, electronic and nuclear industries
[9]. When reduced its “minimal cut-set”
form, a fault tree shows the smallest sets of
events which could lead to a hazard.

Requirements Derivation

Traditionally, most derivation of safety
requirements has been informal. Engineers
have looked at the hazard list and proposed
requirements in an ad hoc fashion. The
requirements are then analysed in a variety
of ways (explicitly and implicitly) and re-
worked as weaknesses are identified. It is a
truism that changing requirements of any
kind is expensive, because their scope for
impact on the design, implementation and
planned usage is large. A method that
reduces the need for requirements change is
always welcome.

To this end, we can have adapted the work
of Hall-May on policy derivation [11]. The
method was originally developed for
creating safety policy for SoS. It is
systematic, in that it provides a structured
process for achieving complete
requirements, and traceable, in that it
maintains the rationale for each
requirement.

The Hall-May method is based on existing
methods for constructing safety arguments,
such as those of Kelly [13]. It works by
specifying top-level requirements and then
progressively decomposing them until it
reaches low-level requirements that can be

4th SEAS DTC Technical Conference - Edinburgh 2009

implemented. The resulting tree is an
argument for the completeness and
adequacy of the requirements. It is
normally expressed in the Goal Structure
Notation (GSN) that was developed for
describing safety cases.

In our situation, we can get our top-level
requirements from our identified hazards.
For each hazard, we can state “Hazard X
does not occur”. We can then derive the
levels below using the knowledge of hazard
causation that we got from hazard analysis.

In Hall-May’s work, he decomposed by
assigning requirements to agents within a
Systems of Systems. Compliance with
those agent-level requirements was left to
the individual agents (or their designers and
operators). In our case, we need to go
further – we need to assign requirements to
the various component parts of the CAS.
Such parts include the operator, advanced
software components (such as planners and
learning algorithms), software monitoring
and safety functions, and mechanical
components (such as actuators).

We may also, however, need to go
‘upwards’ from the CAS and impose
requirements on the environment. These
may be SoS requirements which are
imposed on peers (e.g. “No manned aircraft
shall approach within 1000m distance of
the UAV, irrespective of other rules in
force”), or they may be use restrictions on
the AS (e.g. “Do not launch the UAV when
average wind speed is above 20 mph”).

In practice, a given high-level requirement
may need to be decomposed across several
parts of the CAS and its environment.

Interactions Between Requirements

There are many extant software safety
standards, and safety standards that are
concerned with software safety to some
degree. Often, these standards state that the
input to the software safety process is a set

of safety requirements for the software
function (stemming from a system-level
hazard analysis), and the output is software
that meets all those requirements.
Effectively, the software safety
requirements are handed-off from the
system safety process to the software safety
process. DO-178B [14] is the most relevant
of such standards.

Although this approach may be adequate
for simple software components, it is very
fraught when dealing with highly complex,
high-authority software. It is possible that
the design and implementation decisions
made to meet the individual requirements
will interact – that the implemented
software functions will interfere with each
other. In other words, the overall behaviour
of the system emerges from the interaction
of all the implemented requirements. The
resulting emergent behaviour may not be
safe – it may introduce a new hazard, or
provide a new way to achieve a known
hazard.

This issue is relevant to any software-
intensive system. We are concerned,
however, that this problem will be worse
for AS. In a manned aircraft, for example,
there are many interacting systems that
affect overall flight behaviour. Much of the
time, the human pilot acts as a mediator
between these systems.

By contrast, in an AS these diverse systems
and functions will have to interact and
cooperate without the human mediator. In a
UAV the implemented capabilities for
collision avoidance, staying out of
restricted airspace, target monitoring, and
respond to own health monitoring will all
impact the same aspects of external system
behaviour (in this case, gross UAV
movement). In order to be safe, the effects
of all these functions need to be
coordinated.

It is therefore critically important to explore
the interactions of software functions as

4th SEAS DTC Technical Conference - Edinburgh 2009

implemented; to explore the implications of
the combined design and implementation
choices you’ve made. If an AS has not been
analysed in this way, then there is
insufficient evidence that that AS is
adequately safe.

00-56 Issue 4, as written, does not
explicitly require this analysis. It might be
possible to certify an AS without adequate
modelling of software function interactions.
However, it would be within the rights of a
regulator (working to 00-56) to demand
that this analysis be performed. In any case,
in a court case after an accident, the
developer would be open to a charge of
inadequate engineering process.

One way to explore the interaction in a
plausible context is to perform field tests.
However, this is unlikely to be adequate for
safety, and may not provide adequate
evidence for certification (see our initial
report [1] for more discussion on the value
of evidence types). Indeed, in extreme
cases this testing could present a severe
safety risk. Therefore, some form of pre-
field analysis will also be needed. The
safety analysis team needs to model the
algorithms, protocols and procedures
implemented by the AS, and to model the
missions and contexts that they will be used
in.

This is an issue that we will return to as the
project progresses. Some relevant
approaches are discussed under “Moving
Forward”, below.

Case Study

To illustrate our combined method in
action, we have applied it to one of the
SEAS vignettes. Specifically, we chose
Vignette 8A: “Air Attack - ISTAR Chain –
SEAD”. In this vignette, several different
UAVs are used in order attack anti-aircraft
platforms hiding in a built-up area. It
showcases medium autonomy and high-risk
operation.

We performed a task analysis on the case
study, identifying a number of capabilities.
From these (combined with a basic model
of the interactions between the agents in the
system) we performed a hazard
identification and analysis. Some of the
analysis results were captured in a Fault
Tree.

Working from the identified hazards, we
used the Hall-May method to derive some
high-level safety requirements. Part of the
Hall-May GSN structure is shown in
Figures 1 and 2.

Figure 1 – Top Level Requirements Derivation

Figure 2 – Decomposition of 'LaunchedTarget'
Requirement

In order to carry out this case study we had
to make large numbers of assumptions. For
example, just performing the Scenario FFA
analysis on the scenario required us to
make and capture fifteen explicit
assumptions.

4th SEAS DTC Technical Conference - Edinburgh 2009

The full results of the case study, including
a list of all assumptions made, can be found
in our report [15].

Moving Forward

We will move forward from the work
described in this paper in several ways.

First, our next work package concerns the
wider safety lifecycle. The case study
described above is typical of good early-
stage safety work: it takes a Concept of
Operations and explores its initial
implications for safety. It uses many
assumptions because detail is not available.
This is not the end of safety engineering, of
course – further work will be need
throughout the lifecycle. As detail emerges
(system architecture, software
requirements, greater clarity of likely
missions), its safety implications needs to
be considered. Different techniques are
needed (and useful) at different points.

Second, we will explore advanced analysis
techniques to deal with the issues raised by
autonomous systems. Relevant techniques
include constructive simulation, model-
checking and implementation in synthetic
environments. A key advantage of all of
these is that they integrate different aspects
of the system description into one analysis.
This is crucial for addressing the
“requirement interaction” challenge
discussed above.

At the time of writing, our SER011
collaborators in the advanced modelling
and analysis strands (at QinetiQ and the
University of Cranfield) are just getting
started. We will work with them to
incorporate their methods into our
approach. Our primary project case study
will show the use of these advanced
techniques.

The challenge of justifying the validity of
advanced models is ever-present. We will
address this explicitly, and will present

safety case patterns for arguing conclusions
from these models.

Finally, we will apply our approach to
further case studies. We hope to base these
on the SEAS Vignettes, but in order to do
this we will have to develop them well
beyond their current level. The current
descriptions are very conceptual, and as
noted above even a rudimentary analysis
requires a large number of assumptions.
Safety engineering research is very difficult
in the abstract – it becomes interesting only
when applied to concrete cases.

In doing this, we will need support from the
rest of the SEAS DTC. We are starting to
look for partners and collaborators – other
SEAS projects with systems and
technologies that we can analyse. We hope
to work with the SEAS demonstration
programme in pursuit of this aim.

We are particularly keen to work with
groups who are applying novel
technologies in practical demonstration
systems. We would like to work with you
in order to define explicit safety
requirements for a given use of your
technology, and to explore some of the
ways that you might meet those
requirements. It may be that applying our
work to your technology would provide
grounds for a further funding bid.

Conclusions

We have developed an approach to deriving
safety requirements for autonomous
systems. The approach is widely applicable
and can be carried out without extensive
software or modelling support. We have a
case study. In doing this, we have revealed
some outstanding issues (interaction of
requirements and assignment of a system
boundary). These need to be addressed as
the project moves forward.

4th SEAS DTC Technical Conference - Edinburgh 2009

References

[1] R. Alexander, M. Hall-May, T. P. Kelly,
"Certification of Autonomous Systems,"
SEAS DTC SEAS/TR/2006/1, (2007).

[2] R. D. Alexander, M. Hall-May, T. P. Kelly,
"Certification of Autonomous Systems," in
Proceedings Of The 2nd SEAS DTC
Technical Conference, Edinburgh, (2007).

[3] R. Alexander, N. Herbert, T. Kelly,
"Certification Objectives for Autonomous
Systems," SEAS DTC SEAS/TR/2008/1
(2008).

[4] R. Alexander, N. Herbert, T. Kelly,
"Structuring Safety Cases for Autonomous
Systems," in Proceedings Of the 3rd IET
System Safety Conference, (2008).

[5] "MoD Interim Defence Standard 00-56
Issue 4 - Safety Management Requirements
for Defence Systems," Ministry of Defence,
(2007).

[6] "MoD Interim Defence Standard 00-56
Issue 3 - Safety Management Requirements
for Defence Systems," UK Ministry of
Defence, (2004).

[7] E. Hollnagel, D. D. Woods, Joint Cognitive
Systems: Foundations of Cognitive Systems
Engineering: CRC Press, (2005).

[8] B. Kirwan, L. K. Ainsworth, A Guide to
Task Analysis: CRC Press, (1992).

[9] N. G. Leveson, Safeware: system safety and
computers: ACM Press New York, NY,
USA, (1995).

[10] D. J. Pumfrey, "The Principled Design
of Computer System Safety Analyses,"
DPhil Thesis, University of York, (1999).

[11] M. Hall-May, "Ensuring Safety of
Systems of Systems—A Policy-based
Approach," PhD Thesis, University of
York, September 2007, (2007).

[12] J. R. Boyd, "A discourse on winning
and losing," Air University Library,
Maxwell AFB, Alabama, USA Tech. Rep.
MU43947, (1987).

[13] T. P. Kelly, "Arguing Safety - A
Systematic Approach to Managing Safety
Cases," PhD Thesis, University of York,
(1998).

[14] "DO-178B: Software Considerations in
Airborne Systems and Equipment
Certification," (1999).

[15] R. Alexander, N. Herbert, T. Kelly,
"Deriving Safety Requirements for
Autonomous Systems," SEAS DTC
SEAS/TR/2009/1, (2009).

Acknowledgements
The work reported in this paper was funded
by the Systems Engineering for
Autonomous Systems (SEAS) Defence
Technology Centre established by the UK
Ministry of Defence. We would like to
thank Andrew Miller (BAE Systems), and
Richard Hawkins (University of York) for
their help and support in this work.

