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Abstract 

In any safety engineering effort, deriving safety requirements is a key activity. Doing this for 
autonomous systems (AS) is challenging. However, several existing techniques can be pulled 
together to create a reasonable approach The risk of interaction between implemented 
requirements  remains a concern, as does ambiguity about the appropriate boundary of the 
AS system. We believe these issues can be addressed by the development of advanced 
modelling and analysis techniques. 
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Introduction 

SEAS DTC project SER011 is concerned 
with the safety certification of autonomous 
systems (AS). We have previously 
produced reports and papers that surveyed 
the general situation ([1], [2])  and defined 
high-level certification objectives that are 
common across all AS ([3], [4]). Our 
current work, summarised in this paper, 
explains how those general objectives can 
be turned into specific safety requirements 
for a specific AS. 

The primary aims of the work are (a) to 
identify a basic safety process that can be 
put into place on real projects and (b) to 
establish common ground for future 
discussions on AS safety. 

As before, the work assumes that Def Stan 
00-56 Issue 4 [5] is the standard to be 
certified against, as this is the primary 
safety standard for new MOD equipment 
acquisitions. Certification against 00-56 
Issue 3 [6] may be possible, and there is 
little practical difference between these two 
issues. 

The next section explains why safety 
requirements are necessary. This is 
followed by a section on defining the 
system to be analysed, and a description of 
the methods that can be applied to that 
system. We then discuss a salient issue 
(that of safety-critical interactions between 
requirements), and present a case study. 
This is followed by an outline of planned 
future work. 

The Need for Safety Requirements 

Put simply: safety requirements are 
requirements that, if met, will make the AS 
acceptably safe. They mandate actions that 
are needed for safety (for example, that a 
road-going UGV will stay in lane), and 
forbid things that will cause accidents (for 
example, an armed AV is not allowed to 
shoot at a target if a friendly is in the way).  

It is possible that a safety-critical system 
could be developed without explicit safety 
requirements; certainly, non-critical 
systems are sometimes developed this way. 
It is unlikely in practice, because explicit 
safety requirements provide a key way to 
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maintain development team knowledge of 
what is important for safety. In typical 
practice, safety requirements are derived by 
a three-stage process: 

1. Hazard Identification (HI) – all the 
hazards exhibited by the system are 
identified. A hazard is “A physical 
situation or state of a system, often 
following from some initiating event, 
that may lead to an accident” [5]. Part 
of HI is brainstorming the possible 
accidents that could occur, but this part 
is normally quite simple. 

2. Hazard Analysis (HA) – possible 
causes of the system’s hazards are 
explored and recorded. Essentially, this 
step identifies all processes, 
combinations of events, and sequences 
that can lead from a “normal” or “safe” 
state to an accident. Success in this step 
means that the safety engineer now 
understands how the system gives rise 
to an accident. 

3. Requirements Derivation – once the 
set of hazards is known, and their 
causation is understood, engineers can 
derive safety requirements that either 
prevent the hazards occurring or 
mitigate the resulting accidents. 

The Boundary of the System 

When performing any analysis, we must 
define what constitutes the system to be 
analysed. We must define the boundaries 
of the system: what’s in “the system”? 
What’s relegated to “the environment”? We 
must also define groupings: what gets its 
own hazard analysis and top-level 
requirements? What just gets treated as 
mechanism, as part of something else? 
There are many boundary decisions you 
could justify, but we can make some firm 
recommendations. 

The ideal is for analysis to take account of 
a wide context for the AS, including all its 

operators, peers and shared resources. A 
sophisticated high-LoA AS may have 
complex interactions with a wide range of 
peers. These peers include other AS, 
humans, and human-operated systems. 
Some of these peers will have the potential 
to cause hazards in the AS, and in turn the 
AS may be able to cause hazards for its 
peers. These ways to cause hazards need to 
be dealt with, so hazard analysis needs to 
include this wider context and requirements 
need to be derived both for the AS with 
respect to its peers (so it doesn’t cause their 
hazards) and for the peers with respect to 
the AS (so they don’t cause its hazards). 

A pragmatic approach for many simpler 
AS (and simpler arrangements for use) is to 
treat “the system” as being the combination 
of operator(s), AS and any links between 
them. Hazards occur at the boundary of this 
system, and causes can be explained in 
terms of the parts within it (for example, a 
hazard at the boundary might be caused by 
loss of the communication link between AS 
and operator.). We refer to this combination 
as the “Combined Autonomous System” or 
CAS (after Hollnagel’s “Joint Cognitive 
System” concept [7]). For clarity, the rest 
of this paper will assume the CAS as the 
object of analysis. 

Methods for Analysis 

In order to support engineers in the analysis 
of AS, we have identified a set of methods 
for each necessary aspect in the safety 
requirements process. The methods build 
on and complement each other in order 
give some confidence that all necessary 
safety requirements have been identified. 

We expect that these methods, used 
together, will be basically adequate for 
much AS analysis. We are concerned, 
however, that many AS will need better 
methods. The potential for further work to 
improve on this is discussed in the section 
“Moving Forward”, below. 
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Identifying Capabilities 

A key first step is to identify the 
capabilities that the CAS needs to have in 
order to perform its mission and remain 
safe. It is very likely that its developers will 
already have identified some capabilities; it 
is also very likely that this will not be 
adequate for safety engineering. In some 
system design documentation, lower level 
capabilities may be implied rather than 
explicitly stated which may make the task 
of identifying capabilities difficult. Also, in 
some domains, standards may not exist, or 
if they do, may not only express 
capabilities in high-level terms. 

There is a requirement for a robust and 
systematic method for identifying the 
capabilities required of a CAS. Task 
Analysis (see [8]) is proposed as a good 
methodology for identify CAS capabilities. 
Task analysis can be defined as the study of 
what an entity is required to do, in terms of 
actions and/or cognitive processes in order 
to achieve a given goal.  Hierarchical task 
analysis, specifically, is a method of 
decomposing a high level capability down 
to its lowest levels in order to enumerate 
every capability required of a system.  

The aim of using this technique is to 
produce a hierarchical decomposition of 
each of a CAS’ high level capabilities, 
which is then repeatedly decomposed in 
more detail until the low level capabilities 
are at a level that can be usefully analysed 
for safety.  

Hazard Identification and Analysis 

The Energy Trace and Barrier Analysis 
(ETBA) technique is a preliminary hazard 
analysis technique based on energy models 
of accidents, where accidents are viewed as 
the result of an undesired release of energy 
from a system, which may lead to harm 
(see Leveson in [9]).  The technique is 
based on the principle that if one can 
identify the sources of energy in a system, 

one can prevent an unwanted or 
uncontrolled release of that energy in a way 
that might cause harm, by using some form 
of barrier. 

When performing preliminary hazard 
analysis, it is usual for an organisation to 
use checklists or previous hazard analyses, 
which encapsulate previous experience 
[10]. Checklists are useful as an aid to 
system developers in the preliminary 
identification of hazards, and checklists can 
be combined with other techniques such as 
ETBA. Obviously, the novelty of many AS 
makes checklists thin on the ground (and 
likely to be sparse when they do exist). 

Scenario FFA is a method for doing hazard 
analysis over scenarios. An analyst works 
over a list of the events in a scenario, 
applying guide words to the events at each 
step. It is powerful because the context of 
any action is very salient to the analyst as 
he considers it (in contrast with FFA, which 
can be difficult because the method 
provokes analysts to consider functions “in 
general”, without specific context. 

Functional Failure Analysis (FFA) is a 
systematic predictive hazard analysis 
technique that is applied early in the 
development of a system design to help 
identify and refine safety related 
requirements [10]. The FFA technique 
involves the analysis of different failure 
modes of system functions, which must 
first be identified from an appropriate 
system design representation.  

The Hazards and Operability Analysis 
(HAZOP) technique was originally 
designed for use in the chemical industry in 
the 1960s [9]. HAZOP is a systematic 
hazard analysis technique that allows a 
designer to examine all system flows and 
possible deviations from those flows using 
a set of guidewords (NO, MORE, LESS, 
REVERSE and so on). The aim of the 
technique is to identify all hazards 
associated with deviations from the 
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system’s expected behaviour by examining 
deviations in system data flows.  

A variant of HAZOP that can be applied to 
the hazard analysis of CAS was proposed 
by Hall May in [11].  Hall-May’s Agent 
Behaviour Cycle (ABC), is a model of a 
system’s behaviour based on Boyd’s 
OODA loop (see [12]). The ABC identifies 
the stages in an entity’s behaviour where 
failures might occur. Possible failure modes 
for a function are derived from the stages of 
the behavioural cycle of the ABC. A 
HAZOP-type deviation analysis can be 
performed on the functions of the system 
based on the types of failures that an agent 
can make.  

The hazard identification and hazard 
analysis techniques presented here are 
intended to be complementary. First, ETBA 
and checklists provide a level of basic 
Hazard Identification from an initial system 
concept or set of system requirements. 

The FFA technique provides a means to 
analyse the main functions of a CAS and 
the effects of deviations from those 
functions.  The HAZOP technique provides 
a means to analyse the flows of data 
between components of a CAS and the 
effects of deviations from those flows. The 
Hall-May variant of HAZOP provides a 
means to analyse a system in terms of the 
kinds of error that an autonomous system 
might make when performing a task, such 
as making an error of perception when 
identifying a specific location.   

Together these complementary hazard 
analysis techniques can be used to analyse 
hazards posed by a CAS from different 
viewpoints (with reference to functions, 
data and CAS behaviour). FFA derives 
hazards from known CAS functions, 
HAZOP derives hazards from expected 
data exchange with other systems, and 
Scenario FFA derives hazards from 
planned actions in expected scenarios. 
There is therefore a greater likelihood that 

all hazards and safety requirements can be 
identified in comparison to using only one 
of these techniques. 

When performing hazard analysis, we must 
capture the resulting descriptions of hazard 
causation. A common form for capturing 
this is the Fault Tree. Fault Trees Analysis 
is a graphical technique which uses 
Boolean logic to describe the combinations 
of events and conditions that contribute to 
the occurrence of a hazard. Fault Trees are  
used in many fields including the 
aerospace, electronic and nuclear industries 
[9]. When reduced its “minimal cut-set” 
form, a fault tree shows the smallest sets of 
events which could lead to a hazard. 

Requirements Derivation 

Traditionally, most derivation of safety 
requirements has been informal. Engineers 
have looked at the hazard list and proposed 
requirements in an ad hoc fashion. The 
requirements are then analysed in a variety 
of ways (explicitly and implicitly) and re-
worked as weaknesses are identified. It is a 
truism that changing requirements of any 
kind is expensive, because their scope for 
impact on the design, implementation and 
planned usage is large. A method that 
reduces the need for requirements change is 
always welcome. 

To this end, we can have adapted the work 
of Hall-May on policy derivation [11]. The 
method was originally developed for 
creating safety policy for SoS. It is 
systematic, in that it provides a structured 
process for achieving complete 
requirements, and traceable, in that it 
maintains the rationale for each 
requirement. 

The Hall-May method is based on existing 
methods for constructing safety arguments, 
such as those of Kelly [13]. It works by 
specifying top-level requirements and then 
progressively decomposing them until it 
reaches low-level requirements that can be 
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implemented. The resulting tree is an 
argument for the completeness and 
adequacy of the requirements. It is 
normally expressed in the Goal Structure 
Notation (GSN) that was developed for 
describing safety cases. 

In our situation, we can get our top-level 
requirements from our identified hazards. 
For each hazard, we can state “Hazard X 
does not occur”. We can then derive the 
levels below using the knowledge of hazard 
causation that we got from hazard analysis.  

In Hall-May’s work, he decomposed by 
assigning requirements to agents within a 
Systems of Systems. Compliance with 
those agent-level requirements was left to 
the individual agents (or their designers and 
operators). In our case, we need to go 
further – we need to assign requirements to 
the various component parts of the CAS. 
Such parts include the operator, advanced 
software components (such as planners and 
learning algorithms), software monitoring 
and safety functions, and mechanical 
components (such as actuators). 

We may also, however, need to go 
‘upwards’ from the CAS and impose 
requirements on the environment. These 
may be SoS requirements which are 
imposed on peers (e.g. “No manned aircraft 
shall approach within 1000m distance of 
the UAV, irrespective of other rules in 
force”), or they may be use restrictions on 
the AS (e.g. “Do not launch the UAV when 
average wind speed is above 20 mph”). 

In practice, a given high-level requirement 
may need to be decomposed across several 
parts of the CAS and its environment. 

Interactions Between Requirements 

There are many extant software safety 
standards, and safety standards that are 
concerned with software safety to some 
degree. Often, these standards state that the 
input to the software safety process is a set 

of safety requirements for the software 
function (stemming from a system-level 
hazard analysis), and the output is software 
that meets all those requirements. 
Effectively, the software safety 
requirements are handed-off from the 
system safety process to the software safety 
process. DO-178B [14] is the most relevant 
of such standards. 

Although this approach may be adequate 
for simple software components, it is very 
fraught when dealing with highly complex, 
high-authority software. It is possible that 
the design and implementation decisions 
made to meet the individual requirements 
will interact – that the implemented 
software functions will interfere with each 
other. In other words, the overall behaviour 
of the system emerges from the interaction 
of all the implemented requirements. The 
resulting emergent behaviour may not be 
safe – it may introduce a new hazard, or 
provide a new way to achieve a known 
hazard. 

This issue is relevant to any software-
intensive system. We are concerned, 
however, that this problem will be worse 
for AS. In a manned aircraft, for example, 
there are many interacting systems that 
affect overall flight behaviour. Much of the 
time, the human pilot acts as a mediator 
between these systems. 

By contrast, in an AS these diverse systems 
and functions will have to interact and 
cooperate without the human mediator. In a 
UAV the implemented capabilities for 
collision avoidance, staying out of 
restricted airspace, target monitoring, and 
respond to own health monitoring will all 
impact the same aspects of external system 
behaviour (in this case, gross UAV 
movement). In order to be safe, the effects 
of all these functions need to be 
coordinated. 

It is therefore critically important to explore 
the interactions of software functions as 
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implemented; to explore the implications of 
the combined design and implementation 
choices you’ve made. If an AS has not been 
analysed in this way, then there is 
insufficient evidence that that AS is 
adequately safe. 

00-56 Issue 4, as written, does not 
explicitly require this analysis. It might be 
possible to certify an AS without adequate 
modelling of software function interactions. 
However, it would be within the rights of a 
regulator (working to 00-56) to demand 
that this analysis be performed. In any case, 
in a court case after an accident, the 
developer would be open to a charge of 
inadequate engineering process. 

One way to explore the interaction in a 
plausible context is to perform field tests. 
However, this is unlikely to be adequate for 
safety, and may not provide adequate 
evidence for certification (see our initial 
report [1] for more discussion on the value 
of evidence types). Indeed, in extreme 
cases this testing could present a severe 
safety risk. Therefore, some form of pre-
field analysis will also be needed. The 
safety analysis team needs to model the 
algorithms, protocols and procedures 
implemented by the AS, and to model the 
missions and contexts that they will be used 
in. 

This is an issue that we will return to as the 
project progresses. Some relevant 
approaches are discussed under “Moving 
Forward”, below. 

Case Study 

To illustrate our combined method in 
action, we have applied it to one of the 
SEAS vignettes. Specifically, we chose 
Vignette 8A: “Air Attack - ISTAR Chain – 
SEAD”. In this vignette, several different 
UAVs are used in order attack anti-aircraft 
platforms hiding in a built-up area. It 
showcases medium autonomy and high-risk 
operation. 

We performed a task analysis on the case 
study, identifying a number of capabilities. 
From these (combined with a basic model 
of the interactions between the agents in the 
system) we performed a hazard 
identification and analysis. Some of the 
analysis results were captured in a Fault 
Tree.  

Working from the identified hazards, we 
used the Hall-May method to derive some 
high-level safety requirements. Part of the 
Hall-May GSN structure is shown in 
Figures 1 and 2.  

Figure 1 – Top Level Requirements Derivation 

 

Figure 2 – Decomposition of 'LaunchedTarget' 
Requirement 

In order to carry out this case study we had 
to make large numbers of assumptions. For 
example, just performing the Scenario FFA 
analysis on the scenario required us to 
make and capture fifteen explicit 
assumptions. 
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The full results of the case study, including 
a list of all assumptions made, can be found 
in our report [15]. 

Moving Forward 

We will move forward from the work 
described in this paper in several ways.  

First, our next work package concerns the 
wider safety lifecycle. The case study 
described above is typical of good early-
stage safety work: it takes a Concept of 
Operations and explores its initial 
implications for safety. It uses many 
assumptions because detail is not available. 
This is not the end of safety engineering, of 
course – further work will be need 
throughout the lifecycle. As detail emerges 
(system architecture, software 
requirements, greater clarity of likely 
missions), its safety implications needs to 
be considered. Different techniques are 
needed (and useful) at different points. 

Second, we will explore advanced analysis 
techniques to deal with the issues raised by 
autonomous systems. Relevant techniques 
include constructive simulation, model-
checking and implementation in synthetic 
environments. A key advantage of all of 
these is that they integrate different aspects 
of the system description into one analysis. 
This is crucial for addressing the 
“requirement interaction” challenge 
discussed above.  

At the time of writing, our SER011 
collaborators in the advanced modelling 
and analysis strands (at QinetiQ and the 
University of Cranfield) are just getting 
started. We will work with them to 
incorporate their methods into our 
approach. Our primary project case study 
will show the use of these advanced 
techniques. 

The challenge of justifying the validity of 
advanced models is ever-present. We will 
address this explicitly, and will present 

safety case patterns for arguing conclusions 
from these models. 

Finally, we will apply our approach to 
further case studies. We hope to base these 
on the SEAS Vignettes, but in order to do 
this we will have to develop them well 
beyond their current level. The current 
descriptions are very conceptual, and as 
noted above even a rudimentary analysis 
requires a large number of assumptions. 
Safety engineering research is very difficult 
in the abstract – it becomes interesting only 
when applied to concrete cases. 

In doing this, we will need support from the 
rest of the SEAS DTC. We are starting to 
look for partners and collaborators – other 
SEAS projects with systems and 
technologies that we can analyse. We hope 
to work with the SEAS demonstration 
programme in pursuit of this aim. 

We are particularly keen to work with 
groups who are applying novel 
technologies in practical demonstration 
systems. We would like to work with you 
in order to define explicit safety 
requirements for a given use of your 
technology, and to explore some of the 
ways that you might meet those 
requirements. It may be that applying our 
work to your technology would provide 
grounds for a further funding bid. 

Conclusions 

We have developed an approach to deriving 
safety requirements for autonomous 
systems. The approach is widely applicable 
and can be carried out without extensive 
software or modelling support. We have a 
case study. In doing this, we have revealed 
some outstanding issues (interaction of 
requirements and assignment of a system 
boundary). These need to be addressed as 
the project moves forward. 
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